1 Introduction

Let $X \in \mathbb{R}^{d_1 \times d_2}$ be a random matrix. In many settings, we are interested in the behavior of either:

$$\left\| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X] \right\|_F \leq ?$$

where each X_i is sampled i.i.d. from some distribution. Here, $\left\| \cdot \right\|_F$ denotes the Frobenius norm.

The following theorem provides a high probability bound on these quantities.

Theorem 1.1. Assume that $X_i \in \mathbb{R}^{m \times n}$ are sampled i.i.d. Let $d = \min\{d_1, d_2\}$.

- **(Spectral Norm)** Suppose $\left\| X \right\|_2 \leq M$ almost surely. Then with probability greater than $1 - \delta$,
 $$\left\| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X] \right\|_2 \leq 6M \sqrt{\frac{1}{n} \left(\sqrt{\log d} + \sqrt{\log \frac{1}{\delta}} \right)} .$$

- **(Frobenius Norm)** Suppose $\left\| X \right\|_F \leq M$ almost surely. Then with probability greater than $1 - \delta$,
 $$\left\| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X] \right\|_F \leq 6M \sqrt{\frac{1}{n} \left(1 + \sqrt{\log \frac{1}{\delta}} \right)} .$$

1.1 Concentration and Strong-smoothness

Throughout we let \mathcal{X} be a Euclidean vector space equipped with an inner product $\langle \cdot, \cdot \rangle$. We also work with a norm $\left\| \cdot \right\|$ over \mathcal{X} (and this norm need not the one induced by $\langle \cdot, \cdot \rangle$).

Definition 1.2. A function $f : \mathcal{X} \to \mathbb{R}$ is β-strongly smooth w.r.t. a norm $\left\| \cdot \right\|$ if f is everywhere differentiable and if for all x, y we have

$$f(x + y) \leq f(x) + \langle \nabla f(x), y \rangle + \frac{1}{2} \beta \|y\|^2$$

We now point out the role of strong smoothness in proving certain concentration results. In particular, we are interested in the behavior of a function $f(\sum_{i=1}^{n} Z_i)$ where Z_i is a martingale difference sequence. The following simple lemma bounds the expectation of this quantity.

Lemma 1.3. [Juditsky and Nemirovski; 08] Suppose that Z_i is a martingale difference sequence (where $Z_i \in \mathcal{X}$) and that $\left\| Z_i \right\| \leq M_i$ almost surely. Also, suppose that f^2 is β-strongly smooth w.r.t. a norm $\left\| \cdot \right\|$ on \mathcal{X} and that $f(0) = 0$.

$$\mathbb{E} f \left(\sum_{i=1}^{n} Z_i \right) \leq \sqrt{\frac{1}{2} \beta \sum_{i=1}^{n} M_i^2}$$
Proof. By smoothness we have:

\[
\mathbb{E} f^2 \left(\sum_{i=1}^n Z_i \right) \leq \mathbb{E} f^2 \left(\sum_{i=1}^{n-1} Z_i \right) + \mathbb{E} \left\langle \nabla f^2 \left(\sum_{i=1}^{n-1} Z_i \right), Z_n \right\rangle + \frac{1}{2} \beta \mathbb{E} \| Z_n \|^2 \\
= \mathbb{E} f^2 \left(\sum_{i=1}^{n-1} Z_i \right) + \mathbb{E} \left\langle \nabla f^2 \left(\sum_{i=1}^{n-1} Z_i \right), \mathbb{E} [Z_n | Z_1, \ldots, Z_{n-1}] \right\rangle + \frac{1}{2} \beta \mathbb{E} \| Z_n \|^2 \\
\leq \mathbb{E} f^2 \left(\sum_{i=1}^n Z_i \right) + 0 + \frac{1}{2} \beta X_n^2
\]

where we have used that Z_n is a martingale difference sequence. Proceeding recursively and using that $f(0) = 0$, we have that:

\[
\mathbb{E} f^2 \left(\sum_{i=1}^n Z_i \right) \leq \frac{1}{2} \beta \sum_{i=1}^n M_i^2
\]

and proof is completed by Jensen’s inequality.

To obtain concentration, we can directly appeal to Hoeffding-Azuma if f is a norm. However, note that in the following lemma we do not require f^2 to be strongly smooth (which is useful for the case of the spectral norm, which is not strongly smooth).

Lemma 1.4. Let f be a norm. Suppose that Z_i are independent (where $Z_i \in \mathcal{X}$) and that $f(Z_i) \leq M_i$ almost surely. Then with probability greater than $1 - \delta$,

\[
f \left(\sum_{i=1}^n Z_i \right) \leq \mathbb{E} f \left(\sum_{i=1}^n Z_i \right) + 8 \log \frac{1}{\delta} \sum_{i=1}^n M_i^2
\]

Proof. Using that f is a norm,

\[
\left| f \left(\sum_{i=1}^n Z_i \right) - f \left(\sum_{i \neq j} Z_i + Z_i' \right) \right| \leq f(Z_j) + f(Z_j')
\]

for all Z_1, \ldots, Z_n, and Z'_j. Since the distribution over Z_i’s are independent, this implies (Doob’s) martingale $D_j = \mathbb{E}[f(\sum_{i=1}^n Z_i) | Z_j, \ldots, Z_1]$ satisfies the bounded difference property:

\[
|D_j - D_{j-1}| \leq 2 M_j.
\]

The result now follows from Hoeffding-Azuma.

1.2 Matrix Concentration Proofs

The Schatten q-norm is defined as:

\[
\frac{1}{2} \| X \|_{S(q)}^2 := \frac{1}{2} \| \sigma(X) \|_q^2
\]

where $\sigma(X)$ is the singular values of X and $\| \cdot \|_q^2$ is the usual L_q-norm. The function f^2:

\[
f^2(X) = \frac{1}{2} \| X \|_{S(q)}^2
\]

is $(q - 1)$-strongly smooth, as shown in [Juditsky and Nemirovski; 08] (for $q \geq 2$).

Note that the spectral norm $\| \cdot \|_2$ is just the Schatten ∞-norm $\| \cdot \|_{S(\infty)}$ and the Frobenius norm $\| \cdot \|_F$ is just the Schatten 2-norm $\| \cdot \|_{S(2)}$.

2
Proof. For the spectral norm case, note that our assumption that $\|X\|_{S(\infty)} \leq M$ (almost surely) implies $\|X\|_{S(q)} \leq d^{1/q} M$ (almost surely). Let $Z_i = X_i - \mathbb{E}[X]$. By convexity of norms and Jensen’s inequality, $\|\mathbb{E}[X]\|_{S(q)} \leq \mathbb{E}[\|X\|_{S(q)}] \leq d^{1/q} M$. So we have that $\|Z_i\|_{S(q)} \leq 2d^{1/q} M$ (almost surely). Hence, by Lemma 1.3:

$$
\mathbb{E} \left\| \sum_{i=1}^{n} Z_i \right\|_{S(\infty)} \leq \mathbb{E} \left\| \sum_{i=1}^{n} Z_i \right\|_{S(q)} \leq \sqrt{4(q - 1)nd^{2/q} M^2}
$$

and choosing $q = \log d$

$$
\mathbb{E} \left\| \sum_{i=1}^{n} Z_i \right\|_{S(\infty)} \leq 2M \sqrt{n \log d}
$$

Now let us apply Lemma 1.4 with f as the spectral norm $\|\cdot\|_{S(\infty)}$. Here, we have that $\|Z_i\|_{S(\infty)} \leq 2M$ (almost surely), and our first claim follows.

For the Frobenius norm case, again let $Z_i = X_i - \mathbb{E}[X]$. Then by convexity of norms and Jensen’s inequality, $\|\mathbb{E}[X]\|_{S(2)} \leq \mathbb{E}[\|X\|_{S(2)}] \leq M$. So we have that $\|Z_i\|_{S(2)} \leq 2M$ (almost surely). Hence, by Lemma 1.3:

$$
\mathbb{E} \left\| \sum_{i=1}^{n} Z_i \right\|_{S(2)} \leq \sqrt{4nM^2}
$$

Using Lemma 1.4 with this norm and $\|Z_i\|_{S(2)} \leq 2M$, we have our second claim.

Acknowledgements

These notes are from discussions with Ambuj Tewari and Shai Shalev-Schwartz. Also, they borrow heavily from ideas in [Juditsky and Nemirovski; 08].