1 Kalman Filters

We now summarize a simplified version of linear Gaussian time series. Here, we assume that the transition noise and observation noise are stationary.

Assume that:

\[h_{t+1} = Th_t + \eta \]

where \(\eta \) is a multivariate normal (with some fixed unknown covariance matrix). Also, assume:

\[x_t = Oh_t + \varepsilon \]

where \(\varepsilon \) is multivariate normal (with some fixed unknown covariance matrix). To completely specify the model, we must specify the distribution under which \(h_1 \) is drawn from.

1.1 Stationary Kalman filters

Let us assume that \(T, O, \) and both noise covariance matrices are full rank. One can show that the posterior distribution of \(Pr(h_t|x_1, \ldots x_{t-1}) \) will converge to a multivariate normal, with some asymptotic covariance distribution. Let us say this distribution is \(N(h_\infty, \Sigma_\infty) \).

For simplicity, let us assume that the initial hidden state is sampled from this distribution, i.e. \(h_1 \sim N(h_\infty, \Sigma_\infty) \).

We are interested in keeping track of the hidden state and predicting the next observation. Let us define:

\[g_t = E[h_t|x_{<t}] \]

These are the quantities that we would like to compute.

The Kalman filter says that these expressions have the following form. Initially,

\[g_1 = h_\infty \]

and for all future times:

\[g_{t+1} = Tg_t + K(x_t - Og_t) \]

\[E[x_{t+1}|x_{<t+1}] = Og_{t+1} \]

Here \(K \) is the Kalman gain matrix, and \(x_t - Og_t \) is often referred to as the “innovation”, “measurement residual”, or “measurement error”. The KF takes this particularly simple form as we have assumed that \(h_1 \) is sampled from the asymptotic distribution and that our noise and transition model are stationary. Otherwise, \(K \) would vary with time.

Note that these are simple matrix update rules.
1.2 Agnostic Assumptions and best fit Kalman Filters

The more general class of Gaussian linear models is where:

\[h_{t+1} = T h_t + \eta_t \quad \text{and} \quad x_t = O h_t + \varepsilon_t \]

where both noise terms are time dependent Gaussian noise. Again, if these noise covariances are known, then the Kalman filter is a simple way to compute conditional expectations (and posterior distributions). Here, the Kalman gain matrix \(K \) will be time dependent.

It is straightforward to see in this more general setting that conditional expectation
\[E[x_t | x_{<t}] \]

is linear in \(x_{<t} \). In fact, one can view the Kalman filter as a concise way of computing this conditional expectation (which exploits the time series structure).

Now among the more general class of state-space models that we are considering, we can ask the question of what the best linear prediction of \(E[x_t | x_{<t}] \) is? By linear, we mean in terms of \(x_{<t} \).

Lemma 1.1. For any state space model, where:

\[E[h_{t+1} | h_t] = T h_t \quad \text{and} \quad E[x_t | h_t] = O h_t \]

Let the best linear prediction of \(E[x_t | x_{<t}] \) be \(w \cdot x_{<t} \). There exists a Gaussian noise model (with \(T \) and \(O \) the same but with appropriately chosen time varying covariance matrices), such that the Kalman filter’s computation of \(E[x_t | x_{<t}] \) is identical to \(w \cdot x_{<t} \).

For example, even if the model is an HMM, the best linear prediction (as a function of the entire history) can be computed by a Kalman filter (with appropriately chosen noise). We can view this lemma as showing how the best fit Gaussian noise model/Kalman filters are “robust” even when the underlying dynamics are non-Gaussian.

2 In Our Transformed Representation

Assumption 1 (Stationarity and Full Rank). Assume that:

- \(T \) and \(O \) are full rank.
- The model has stationary Gaussian noise (with full rank covariance matrices).
- \(h_1 \) is a multivariate normal (with the asymptotic mean and covariance matrix). This implies the Kalman gain matrix is stationary.

Recall our transformed representation:

\[\tilde{h}_t = M h_t \quad \text{and} \quad \tilde{T} = M T M^{-1} \]

where \(h_t = M^{-1} \tilde{h}_t \) (since \(M \) is invertible) and

\[E[\tilde{h}_{t+1} | \tilde{h}_t] = \tilde{T} \tilde{h}_t \quad \text{and} \quad E[x_t | \tilde{h}_t] = U \tilde{h}_t \]

Also, recall that we can recover both \(\tilde{T} \) and \(U \).

Define:

\[\tilde{g}_t = E[\tilde{h}_t | x_{<t}] = M g_t \]

Lemma 2.1. In this representation, the KF is:

\[\tilde{g}_1 = M g_1 = M h_1 \]

\[\tilde{g}_t + 1 = \tilde{T} \tilde{g}_t + \tilde{K}(x_t - U \tilde{g}_t) \]

\[E[x_t | x_{<t}] = U \tilde{g}_t \]

where \(\tilde{K} = M K \).
Proof. First, note that:

\[\mathbb{E}[x_t|x_{<t}] = \mathbb{E}[\mathbb{E}[x_t|\tilde{h}_t]|x_{<t}] = \mathbb{E}[U\tilde{h}_t|x_{<t}] = U\tilde{g}_t \]

From the original KF, we have

\[g_{t+1} = Tg_t + K(x_t - Og_t) \]

By multiplying by \(M \), we have:

\[\tilde{g}_{t+1} = MTg_t + MK(x_t - Og_t) \]

\[= MTM^{-1}\tilde{g}_t + \tilde{K}(x_t - \mathbb{E}[x_t|x_{<t}]) \]

\[= \tilde{T}\tilde{g}_t + \tilde{K}(x_t - U\tilde{g}_t) \]

which completes the proof. \(\square \)

3 Learning the KF and “bottleneck prediction”

As we have \(\tilde{T} \) and \(U \) already, all that remains to specify is \(\tilde{g}_1 \) and \(\tilde{K} \).

Theorem 3.1. Assume our Stationarity and Full Rank assumption. Let the “thin” SVD of the cross correlation matrix at some timestep 1 be \(E[x_2x_1^\top] = UDV^\top \). Then we have that \(M = U^\top O \) is invertible. Define

\[\Sigma_{11} = \mathbb{E}[(x_1 - \mathbb{E}[x_1])^\top (x_1 - \mathbb{E}[x_1])] \quad \text{and} \quad \Sigma_{21} = \mathbb{E}[(x_2 - \mathbb{E}[x_2])(x_1 - \mathbb{E}[x_1])^\top] \]

Then our Kalman filter uses the following parameters:

\[\tilde{T} = (U^\top \mathbb{E}[x_3x_1^\top])(U^\top \mathbb{E}[x_2x_1^\top])^+ \]

\[g_1 = U^\top \mathbb{E}[x_1] \]

\[\tilde{K} = U^\top \Sigma_{21} \Sigma_{11}^{-1} \]

where the inverse exists.

Proof. By our previous lemma, we have that:

\[\mathbb{E}[x_2|x_1] = U\tilde{g}_2 \]

\[= U\tilde{T}\tilde{g}_1 + U\tilde{K}(x_1 - U\tilde{g}_1) \]

\[= \mathbb{E}[x_2] + U\tilde{K}(x_1 - E[x_1]) \]

i.e.

\[\mathbb{E}[x_2 - E[x_2]|x_1] = U\tilde{K}(x_1 - E[x_1]) \]

Multiplying by \((x_1 - E[x_1])^\top \) and taking expectations:

\[\Sigma_{21} = U\tilde{K}\Sigma_{11} \]

Now, we have have that:

\[U\tilde{K} = \Sigma_{21}\Sigma_{11}^{-1} \]

Since \(U^\top U = I \) (as \(U \) has orthonormal columns), we have our result. \(\square \)