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Introduction

Some History and Motivation

Famous combinatorial problems with long mathematical
history on sequences of n real numbers, or permutations
of the integers 1, . . . , n

I Erdős and Szekeres (1935): monotone subsequences

I Fan Chung (1980): unimodal subsequences

I Euler (cf. Stanley, 2010): alternating permutations

Probabilistic version (full-information)

I Longest monotone subsequences: Hammersley (1972),
Kingman (1973), Logan and Shepp (1977), Veřsik and
Kerov (1977), . . .

I Longest Unimodal subsequences: Steele (1981)

I Longest Alternating subsequences: Widom (2006),
Pemantle (cf. Stanley, 2007), Stanley (2008), Houdré
and Restrepo (2010)

Now ... Study the sequential (on-line) version of these
problems

I Objective: maximize the expected length (number of
selections) of monotone, unimodal and alternating
subsequences
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Introduction

Full-information vs. on-line — Increasing
n = 100

Un = 22 Uo
n (π∗n ) = 21
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Introduction

Full-information vs. on-line — Increasing
n = 100 In = 15

Uo
n (π∗n ) = 21
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Introduction

Full-information vs. on-line — Increasing
n = 100 In = 15 I on (π∗n ) = 14
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Introduction

Full-information vs. on-line — Unimodal
n = 100

Un = 22 Uo
n (π∗n ) = 21
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Introduction

Summary View of Means in Some On-Line Selection Problems

How Much Better Does a “Prophet” Do Asymptotically?

Full Information Real Time Info. Only Realized Bonus

Increasing

2
√
n

√
2n 29%

Unimodal

2
√

2n 2
√
n 29%

Alternating

2n/3 (2−
√

2)n 12%

Question: Can one get more detailed information?

More precise asymptotics of the means?

Any second-order information, i.e. what about the variances?

Is there hope for a CLT or other distributional result?

There is a CLT for the On-Line Alternating Subsequence Problem (briefly noted in
next frame)

There has much further work on the On-Line Selection of a Monotone Increasing
Subsequence, the original motivating problem. This will get most of our attention.
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Introduction CLT for Alternating

Sequentially Selected Alternating Series — A CLT

Theorem (Arlotto & Steele, AAP 2014)

There is a constant σ > 0 such that

Ao
n(π∗n )− n(2−

√
2)

nσ
⇒ N(0, 1).

The Mysterious σ? Its existence is proved but the value is not yet known.

A Candidate σ? Yes, but not yet in the bag.

Path to Proof? Ao
n(π∗n ) can be written as a (reverse, inhomogeneous) Markov

Additive Functional.

Appropriate Tools? Dobrushin (long ago) and Sethuraman and Varadhan (more
recently) have an elegant approach to the CLT for inhomogeneous Markov additive
process.

Conditions to Check? These are surprisingly concrete L2 calculations (variance
bounds).

Source of Juice? Very detailed analytical understanding of the acceptance threshold
functions.
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On-Line Selection of Increasing Subsequences On-line Selection of Increasing Subsequences

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy π∗ ∈ Π(n) such that

E[I on (π∗)] = sup
π∈Π(n)

E [I on (π)],

and for such an optimal policy and all n ≥ 1 one has

E[I on (π∗)] ∼ (2n)1/2 as n→∞.

Or, more precisely,

(2n)1/2 − O(n1/4) <

E[I on (π∗)]

< (2n)1/2.

Asymptotic behavior: Samuels and Steele (1981)
Upper bound: Bruss and Robertson (1991), Gnedin (1999)
Lower bound: Rhee and Talagrand (1991)

Bigger Steps: How about variance asymptotics or even a CLT?
Puzzle: A CLT is far from a sure thing. For the off-line problem one does NOT have
a CLT — One has the famous Tracy-Widom Law.
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On-Line Selection of Increasing Subsequences Poissonization and a CLT

Poissonization: A Homogenizing Trick with Benefits

If one takes a sample size N(t) that is Poisson with mean t there are several
benefits: (a) optimal policies are stationary — no horizon effects and (b) one gets
the machinery of infinitesimal generators, Dynkin Martingale, etc. There is long
history of applications, perhaps starting with Lucien LeCam.

Theorem (Bruss & Delbaen, 2001 and 2004)

For the on-line Poisson LIS problem, one has

(2t)1/2 − O(log(t)) < E[Lo
N(t)] < (2t)1/2,

1

3
(2t)1/2 − O(1) < Var[Lo

N(t)] <
1

3
(2t)1/2 + O(log t), and ...

31/2{Lo
N(t) − (2t)1/2}
(2t)1/4

=⇒ N(0, 1).
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On-Line Selection of Increasing Subsequences Poissonization and a CLT

Finite Horizon On-Line LIS: De-Poissonization or What?

Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line
Poisson LIS?

Is this a routine de-Poissonization, or is there something special?

De-Poissonization in General — and for the LIS CLT in particular

I De-Poissonization is Tauberian process, i.e. one moves from “average behavior” to
“individual behavior”.

I There are situations where this process is now a well-known, relatively easy, part of
Tauberian theory.

I De-Poissonization of a Decision Problem is a whole new kettle of fish.
I Only “one of the five steps” to the proof of the CLT for the finite horizon LIS uses

what one could call classical de-Poissonization.

J. M. Steele (UPenn, Wharton) On-line Selection August 2015 8



On-Line Selection of Increasing Subsequences Poissonization and a CLT

Finite Horizon On-Line LIS: De-Poissonization or What?

Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line
Poisson LIS?

Is this a routine de-Poissonization, or is there something special?

De-Poissonization in General — and for the LIS CLT in particular

I De-Poissonization is Tauberian process, i.e. one moves from “average behavior” to
“individual behavior”.

I There are situations where this process is now a well-known, relatively easy, part of
Tauberian theory.

I De-Poissonization of a Decision Problem is a whole new kettle of fish.
I Only “one of the five steps” to the proof of the CLT for the finite horizon LIS uses

what one could call classical de-Poissonization.

J. M. Steele (UPenn, Wharton) On-line Selection August 2015 8



On-Line Selection of Increasing Subsequences Poissonization and a CLT

Finite Horizon On-Line LIS: De-Poissonization or What?

Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line
Poisson LIS?

Is this a routine de-Poissonization, or is there something special?

De-Poissonization in General — and for the LIS CLT in particular

I De-Poissonization is Tauberian process, i.e. one moves from “average behavior” to
“individual behavior”.

I There are situations where this process is now a well-known, relatively easy, part of
Tauberian theory.

I De-Poissonization of a Decision Problem is a whole new kettle of fish.
I Only “one of the five steps” to the proof of the CLT for the finite horizon LIS uses

what one could call classical de-Poissonization.

J. M. Steele (UPenn, Wharton) On-line Selection August 2015 8



On-Line Selection of Increasing Subsequences Poissonization and a CLT

Finite Horizon On-Line LIS: De-Poissonization or What?

Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line
Poisson LIS?

Is this a routine de-Poissonization, or is there something special?

De-Poissonization in General — and for the LIS CLT in particular

I De-Poissonization is Tauberian process, i.e. one moves from “average behavior” to
“individual behavior”.

I There are situations where this process is now a well-known, relatively easy, part of
Tauberian theory.

I De-Poissonization of a Decision Problem is a whole new kettle of fish.
I Only “one of the five steps” to the proof of the CLT for the finite horizon LIS uses

what one could call classical de-Poissonization.

J. M. Steele (UPenn, Wharton) On-line Selection August 2015 8



On-Line Selection of Increasing Subsequences Poissonization and a CLT

Finite Horizon On-Line LIS: De-Poissonization or What?

Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line
Poisson LIS?

Is this a routine de-Poissonization, or is there something special?

De-Poissonization in General — and for the LIS CLT in particular

I De-Poissonization is Tauberian process, i.e. one moves from “average behavior” to
“individual behavior”.

I There are situations where this process is now a well-known, relatively easy, part of
Tauberian theory.

I De-Poissonization of a Decision Problem is a whole new kettle of fish.
I Only “one of the five steps” to the proof of the CLT for the finite horizon LIS uses

what one could call classical de-Poissonization.

J. M. Steele (UPenn, Wharton) On-line Selection August 2015 8



On-Line Selection of Increasing Subsequences Poissonization and a CLT

Finite Horizon On-Line LIS: De-Poissonization or What?

Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line
Poisson LIS?

Is this a routine de-Poissonization, or is there something special?

De-Poissonization in General — and for the LIS CLT in particular

I De-Poissonization is Tauberian process, i.e. one moves from “average behavior” to
“individual behavior”.

I There are situations where this process is now a well-known, relatively easy, part of
Tauberian theory.

I De-Poissonization of a Decision Problem is a whole new kettle of fish.

I Only “one of the five steps” to the proof of the CLT for the finite horizon LIS uses
what one could call classical de-Poissonization.

J. M. Steele (UPenn, Wharton) On-line Selection August 2015 8



On-Line Selection of Increasing Subsequences Poissonization and a CLT

Finite Horizon On-Line LIS: De-Poissonization or What?

Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line
Poisson LIS?

Is this a routine de-Poissonization, or is there something special?

De-Poissonization in General — and for the LIS CLT in particular

I De-Poissonization is Tauberian process, i.e. one moves from “average behavior” to
“individual behavior”.

I There are situations where this process is now a well-known, relatively easy, part of
Tauberian theory.

I De-Poissonization of a Decision Problem is a whole new kettle of fish.
I Only “one of the five steps” to the proof of the CLT for the finite horizon LIS uses

what one could call classical de-Poissonization.

J. M. Steele (UPenn, Wharton) On-line Selection August 2015 8



On-Line Selection of Increasing Subsequences Poissonization and a CLT

Out of Five: Only One for Free

The CLT of Bruss and Delbean has five parts:

1 Mean lower bound: (2t)1/2 − O(log(t))

2 Mean upper bound: (2t)1/2

3 Variance lower bound:
1

3
(2t)1/2 − O(1)

4 Variance upper bound:
1

3
(2t)1/2 + O(log t)

5 The CLT itself

Only one of these steps has what one can properly call a de-Poissonization.

De-Poissonization gives us the mean lower bound for the finite horizon problem —
and leaves us four steps to go.
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On-Line Selection of Increasing Subsequences Poissonization and a CLT

De-Poissonization of the Mean Lower Bound: One Proof

In the Poisson model, one knows the Poisson parameter t and one makes optimal
selections from a sequence of random size N(t).

If, ex-post, we are told that N(t) = j our expected reward is E[Lo
N(t)|N(t) = j ].

The Poisson strategy is a suboptimal strategy for a problem where one knows
ex-ante that the sample has size j , so we have

E[Lo
N(t)|N(t) = j ] ≤ E[Lo

j ].

If we now compute the total expectations we have

E[Lo
N(t)] ≤

∞∑
j=0

e−t t
j

j!
E[Lo

j ].

We may now seem stuck. No conventional Tauberian theory comes to our aid.

But we have another property: the map φ(j) = E[Lo
j ] is concave. Jensen’s inequality

then forks up

E[Lo
N(n)] ≤

∞∑
j=0

e−n n
j

j!
E[Lo

j ] ≤ E[Lo
n].

Thus, we have lossless transference of any mean lower bound from the Poisson
model to the Finite Horizon model.
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On-Line Selection of Increasing Subsequences Poissonization and a CLT

The Shape of E[Lon] and the Shape of Value Functions

The transference of the lower bounds is exceptional — but suggestive.

Question: where does one get concavity of φ(j) = E[Lo
j ]? It’s no real help that

E [Lo
n] ∼ (2n)1/2.

Ultimately we get concavity of of j 7→ φ(j) from the Bellman equation:

vk(s) = F (s)vk−1(s) +

∫ ∞
s

max{vk−1(s), 1 + vk−1(x)}f (x) dx

What other “shape” properties can one extract from the Bellman equation?

If we take the uniform distribution on [0, 1], the Bellman equation and induction can
be used to prove the concavity of s 7→ vk(s) for all k.

This gives a path to the proof of the lower bound of Var[Lo
n]. It is not easy but it is

direct; no passage through the bound of Bruss and Delbean.

How about the upper bound for Var[Lo
n]?

Alessandro and I were stuck here for a long time.
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On-Line Selection of Increasing Subsequences Poissonization and a CLT

Breaking Symmetry

A Simple but Critical Observation: The distribution of Lo
n does not depend on f ,

but the value function s 7→ vk(s) does depend on f .

This means that we spend symmetry when make a specific choice of f .

If one takes the exponential distribution, then with a sustained analysis the Bellman
equation can used to show that s 7→ vk(s) is convex.

This came as a surprise for us, but we knew why we wanted such a result.

Arguments like that given for the lower bound on Var[Lo
n] could now be used to get

an upper bound — again without passage through the bounds of Bruss and Delbean.

The flood gate is opened and more analysis of the same flavor (but with plenty of
details) lead us through the Martingale CLT to a CLT for the Finite Horizon
Selection Problem for LIS:

31/2{Lo
n − (2n)1/2}

(2n)1/4
=⇒ N(0, 1).
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On-Line Selection of Increasing Subsequences Final Slide

Quick Glance Back: What Can You Take Away?

Problems of Sequential Selection: Rich in history, connections, problems and
techniques

Poissonization is very powerful!

De-Poissonization may be easy — or almost impossible.

Given any “invariance” (or symmetry): Ask “Does this break someplace?” “What do
we buy if we spend our symmetry?”

Here we bought a lot, but we always needed our workhorses: the Bellman equation,
shape, and submodularity

Enough for Today? ... almost certainly, but with some left for tomorrow.

¡Gracias por su atención !

J. M. Steele (UPenn, Wharton) On-line Selection August 2015 13
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