Finite Horizon Dynamic Programming: Getting Value from Spending Symmetry

J. Michael Steele
University of Pennsylvania
The Wharton School
Department of Statistics

Stochastic Processes and Applications, Buenos Aires, August 8, 2014

Some History and Motivation

- Famous combinatorial problems with long mathematical history on sequences of n real numbers, or permutations of the integers $1, \ldots, n$
- Erdős and Szekeres (1935): monotone subsequences
- Fan Chung (1980): unimodal subsequences
- Euler (cf. Stanley, 2010): alternating permutations

Some History and Motivation

- Famous combinatorial problems with long mathematical history on sequences of n real numbers, or permutations of the integers $1, \ldots, n$
- Erdős and Szekeres (1935): monotone subsequences
- Fan Chung (1980): unimodal subsequences
- Euler (cf. Stanley, 2010): alternating permutations

- Probabilistic version (full-information)
- Longest monotone subsequences: Hammersley (1972), Kingman (1973), Logan and Shepp (1977), Veršik and Kerov (1977),
- Longest Unimodal subsequences: Steele (1981)
- Longest Alternating subsequences: Widom (2006), Pemantle (cf. Stanley, 2007), Stanley (2008), Houdré and Restrepo (2010)

Some History and Motivation

- Famous combinatorial problems with long mathematical history on sequences of n real numbers, or permutations of the integers $1, \ldots, n$
- Erdős and Szekeres (1935): monotone subsequences
- Fan Chung (1980): unimodal subsequences
- Euler (cf. Stanley, 2010): alternating permutations

- Probabilistic version (full-information)
- Longest monotone subsequences: Hammersley (1972), Kingman (1973), Logan and Shepp (1977), Veršik and Kerov (1977),
- Longest Unimodal subsequences: Steele (1981)
- Longest Alternating subsequences: Widom (2006), Pemantle (cf. Stanley, 2007), Stanley (2008), Houdré and Restrepo (2010)
- Now... Study the sequential (on-line) version of these problems
- Objective: maximize the expected length (number of selections) of monotone, unimodal and alternating subsequences

Full-information vs. on-line - Increasing

$$
n=100
$$

Full-information vs. on-line - Increasing

$$
n=100 \quad I_{n}=15
$$

Full-information vs. on-line - Increasing

$$
n=100 \quad I_{n}=15 \quad I_{n}^{\circ}\left(\pi_{n}^{*}\right)=14
$$

Full-information vs. on-line - Unimodal

$$
n=100
$$

Full-information vs. on-line - Unimodal

$$
n=100 \quad U_{n}=22
$$

Full-information vs. on-line - Unimodal

$$
n=100 \quad U_{n}=22 \quad U_{n}^{\circ}\left(\pi_{n}^{*}\right)=21
$$

Summary View of Means in Some On-Line Selection Problems

- How Much Better Does a "Prophet" Do Asymptotically?

	Full Information	Real Time Info. Only	Realized Bonus
Increasing			
Unimodal			
Alternating			

Summary View of Means in Some On-Line Selection Problems

- How Much Better Does a "Prophet" Do Asymptotically?

	Full Information	Real Time Info. Only	Realized Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal			
Alternating			

Summary View of Means in Some On-Line Selection Problems

- How Much Better Does a "Prophet" Do Asymptotically?

	Full Information	Real Time Info. Only	Realized Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating			

Summary View of Means in Some On-Line Selection Problems

- How Much Better Does a "Prophet" Do Asymptotically?

	Full Information	Real Time Info. Only	Realized Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

Summary View of Means in Some On-Line Selection Problems

- How Much Better Does a "Prophet" Do Asymptotically?

	Full Information	Real Time Info. Only	Realized Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Can one get more detailed information?

Summary View of Means in Some On-Line Selection Problems

- How Much Better Does a "Prophet" Do Asymptotically?

	Full Information	Real Time Info. Only	Realized Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Can one get more detailed information?
- More precise asymptotics of the means?

Summary View of Means in Some On-Line Selection Problems

- How Much Better Does a "Prophet" Do Asymptotically?

	Full Information	Real Time Info. Only	Realized Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Can one get more detailed information?
- More precise asymptotics of the means?
- Any second-order information, i.e. what about the variances?

Summary View of Means in Some On-Line Selection Problems

- How Much Better Does a "Prophet" Do Asymptotically?

	Full Information	Real Time Info. Only	Realized Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Can one get more detailed information?
- More precise asymptotics of the means?
- Any second-order information, i.e. what about the variances?
- Is there hope for a CLT or other distributional result?

Summary View of Means in Some On-Line Selection Problems

- How Much Better Does a "Prophet" Do Asymptotically?

	Full Information	Real Time Info. Only	Realized Bonus
Increasing	$2 \sqrt{n}$	$\sqrt{2 n}$	29%
Unimodal	$2 \sqrt{2 n}$	$2 \sqrt{n}$	29%
Alternating	$2 n / 3$	$(2-\sqrt{2}) n$	12%

- Question: Can one get more detailed information?
- More precise asymptotics of the means?
- Any second-order information, i.e. what about the variances?
- Is there hope for a CLT or other distributional result?
- There is a CLT for the On-Line Alternating Subsequence Problem (briefly noted in next frame)
- There has much further work on the On-Line Selection of a Monotone Increasing Subsequence, the original motivating problem. This will get most of our attention.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, AAP 2014)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{\circ}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, AAP 2014)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{\circ}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, AAP 2014)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{\circ}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, AAP 2014)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{\circ}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1) .
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.
- Path to Proof? $A_{n}^{o}\left(\pi_{n}^{*}\right)$ can be written as a (reverse, inhomogeneous) Markov Additive Functional.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, AAP 2014)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{\circ}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1)
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.
- Path to Proof? $A_{n}^{o}\left(\pi_{n}^{*}\right)$ can be written as a (reverse, inhomogeneous) Markov Additive Functional.
- Appropriate Tools? Dobrushin (long ago) and Sethuraman and Varadhan (more recently) have an elegant approach to the CLT for inhomogeneous Markov additive process.

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, AAP 2014)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{\circ}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1)
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.
- Path to Proof? $A_{n}^{o}\left(\pi_{n}^{*}\right)$ can be written as a (reverse, inhomogeneous) Markov Additive Functional.
- Appropriate Tools? Dobrushin (long ago) and Sethuraman and Varadhan (more recently) have an elegant approach to the CLT for inhomogeneous Markov additive process.
- Conditions to Check? These are surprisingly concrete L^{2} calculations (variance bounds).

Sequentially Selected Alternating Series - A CLT

Theorem (Arlotto \& Steele, AAP 2014)
There is a constant $\sigma>0$ such that

$$
\frac{A_{n}^{\circ}\left(\pi_{n}^{*}\right)-n(2-\sqrt{2})}{n \sigma} \Rightarrow N(0,1)
$$

- The Mysterious σ ? Its existence is proved but the value is not yet known.
- A Candidate σ ? Yes, but not yet in the bag.
- Path to Proof? $A_{n}^{o}\left(\pi_{n}^{*}\right)$ can be written as a (reverse, inhomogeneous) Markov Additive Functional.
- Appropriate Tools? Dobrushin (long ago) and Sethuraman and Varadhan (more recently) have an elegant approach to the CLT for inhomogeneous Markov additive process.
- Conditions to Check? These are surprisingly concrete L^{2} calculations (variance bounds).
- Source of Juice? Very detailed analytical understanding of the acceptance threshold functions.

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]
$$

and for such an optimal policy and all $n \geq 1$ one has

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]
$$

and for such an optimal policy and all $n \geq 1$ one has

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]
$$

and for such an optimal policy and all $n \geq 1$ one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]
$$

and for such an optimal policy and all $n \geq 1$ one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

Or, more precisely,

$$
(2 n)^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2}
$$

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]
$$

and for such an optimal policy and all $n \geq 1$ one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

Or, more precisely,

$$
(2 n)^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2}
$$

- Asymptotic behavior: Samuels and Steele (1981)

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]
$$

and for such an optimal policy and all $n \geq 1$ one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

Or, more precisely,

$$
(2 n)^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2}
$$

- Asymptotic behavior: Samuels and Steele (1981)
- Upper bound: Bruss and Robertson (1991), Gnedin (1999)

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]
$$

and for such an optimal policy and all $n \geq 1$ one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

Or, more precisely,

$$
(2 n)^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2}
$$

- Asymptotic behavior: Samuels and Steele (1981)
- Upper bound: Bruss and Robertson (1991), Gnedin (1999)
- Lower bound: Rhee and Talagrand (1991)

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]
$$

and for such an optimal policy and all $n \geq 1$ one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

Or, more precisely,

$$
(2 n)^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2}
$$

- Asymptotic behavior: Samuels and Steele (1981)
- Upper bound: Bruss and Robertson (1991), Gnedin (1999)
- Lower bound: Rhee and Talagrand (1991)
- Bigger Steps: How about variance asymptotics or even a CLT?

On-Line LIS Problem: First Some More on the Means

Theorem (On-Line Monotone)

There is a policy $\pi^{*} \in \Pi(n)$ such that

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]=\sup _{\pi \in \Pi(n)} E\left[I_{n}^{\circ}(\pi)\right]
$$

and for such an optimal policy and all $n \geq 1$ one has

$$
\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right] \sim(2 n)^{1 / 2} \quad \text { as } n \rightarrow \infty
$$

Or, more precisely,

$$
(2 n)^{1 / 2}-O\left(n^{1 / 4}\right)<\mathbb{E}\left[I_{n}^{\circ}\left(\pi^{*}\right)\right]<(2 n)^{1 / 2}
$$

- Asymptotic behavior: Samuels and Steele (1981)
- Upper bound: Bruss and Robertson (1991), Gnedin (1999)
- Lower bound: Rhee and Talagrand (1991)
- Bigger Steps: How about variance asymptotics or even a CLT?
- Puzzle: A CLT is far from a sure thing. For the off-line problem one does NOT have a CLT - One has the famous Tracy-Widom Law.

Poissonization: A Homogenizing Trick with Benefits

- If one takes a sample size $N(t)$ that is Poisson with mean t there are several benefits: (a) optimal policies are stationary - no horizon effects and (b) one gets the machinery of infinitesimal generators, Dynkin Martingale, etc. There is long history of applications, perhaps starting with Lucien LeCam.

Poissonization: A Homogenizing Trick with Benefits

- If one takes a sample size $N(t)$ that is Poisson with mean t there are several benefits: (a) optimal policies are stationary - no horizon effects and (b) one gets the machinery of infinitesimal generators, Dynkin Martingale, etc. There is long history of applications, perhaps starting with Lucien LeCam.

Theorem (Bruss \& Delbaen, 2001 and 2004)
For the on-line Poisson LIS problem, one has

Poissonization: A Homogenizing Trick with Benefits

- If one takes a sample size $N(t)$ that is Poisson with mean t there are several benefits: (a) optimal policies are stationary - no horizon effects and (b) one gets the machinery of infinitesimal generators, Dynkin Martingale, etc. There is long history of applications, perhaps starting with Lucien LeCam.

Theorem (Bruss \& Delbaen, 2001 and 2004)
For the on-line Poisson LIS problem, one has

$$
(2 t)^{1 / 2}-O(\log (t))<\mathbb{E}\left[L_{N(t)}^{o}\right]<(2 t)^{1 / 2}
$$

Poissonization: A Homogenizing Trick with Benefits

- If one takes a sample size $N(t)$ that is Poisson with mean t there are several benefits: (a) optimal policies are stationary - no horizon effects and (b) one gets the machinery of infinitesimal generators, Dynkin Martingale, etc. There is long history of applications, perhaps starting with Lucien LeCam.

Theorem (Bruss \& Delbaen, 2001 and 2004)

For the on-line Poisson LIS problem, one has

$$
(2 t)^{1 / 2}-O(\log (t))<\mathbb{E}\left[L_{N(t)}^{o}\right]<(2 t)^{1 / 2}
$$

$$
\frac{1}{3}(2 t)^{1 / 2}-O(1)<\operatorname{Var}\left[L_{N(t)}^{\circ}\right]<\frac{1}{3}(2 t)^{1 / 2}+O(\log t), \quad \text { and } \ldots
$$

Poissonization: A Homogenizing Trick with Benefits

- If one takes a sample size $N(t)$ that is Poisson with mean t there are several benefits: (a) optimal policies are stationary - no horizon effects and (b) one gets the machinery of infinitesimal generators, Dynkin Martingale, etc. There is long history of applications, perhaps starting with Lucien LeCam.

Theorem (Bruss \& Delbaen, 2001 and 2004)

For the on-line Poisson LIS problem, one has

$$
(2 t)^{1 / 2}-O(\log (t))<\mathbb{E}\left[L_{N(t)}^{o}\right]<(2 t)^{1 / 2}
$$

$$
\frac{1}{3}(2 t)^{1 / 2}-O(1)<\operatorname{Var}\left[L_{N(t)}^{o}\right]<\frac{1}{3}(2 t)^{1 / 2}+O(\log t), \quad \text { and } \ldots
$$

$$
\frac{3^{1 / 2}\left\{L_{N(t)}^{o}-(2 t)^{1 / 2}\right\}}{(2 t)^{1 / 4}} \Longrightarrow N(0,1)
$$

Finite Horizon On-Line LIS: De-Poissonization or What?

- Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line Poisson LIS?

Finite Horizon On-Line LIS: De-Poissonization or What?

- Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line Poisson LIS?
- Is this a routine de-Poissonization, or is there something special?

Finite Horizon On-Line LIS: De-Poissonization or What?

- Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line Poisson LIS?
- Is this a routine de-Poissonization, or is there something special?
- De-Poissonization in General - and for the LIS CLT in particular

Finite Horizon On-Line LIS: De-Poissonization or What?

- Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line Poisson LIS?
- Is this a routine de-Poissonization, or is there something special?
- De-Poissonization in General - and for the LIS CLT in particular
- De-Poissonization is Tauberian process, i.e. one moves from "average behavior" to "individual behavior".

Finite Horizon On-Line LIS: De-Poissonization or What?

- Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line Poisson LIS?
- Is this a routine de-Poissonization, or is there something special?
- De-Poissonization in General — and for the LIS CLT in particular
- De-Poissonization is Tauberian process, i.e. one moves from "average behavior" to "individual behavior".
- There are situations where this process is now a well-known, relatively easy, part of Tauberian theory.

Finite Horizon On-Line LIS: De-Poissonization or What?

- Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line Poisson LIS?
- Is this a routine de-Poissonization, or is there something special?
- De-Poissonization in General — and for the LIS CLT in particular
- De-Poissonization is Tauberian process, i.e. one moves from "average behavior" to "individual behavior".
- There are situations where this process is now a well-known, relatively easy, part of Tauberian theory.
- De-Poissonization of a Decision Problem is a whole new kettle of fish.

Finite Horizon On-Line LIS: De-Poissonization or What?

- Can one prove the FINITE horizon analog of the Bruss-Delbean CLT for the On-Line Poisson LIS?
- Is this a routine de-Poissonization, or is there something special?
- De-Poissonization in General - and for the LIS CLT in particular
- De-Poissonization is Tauberian process, i.e. one moves from "average behavior" to "individual behavior".
- There are situations where this process is now a well-known, relatively easy, part of Tauberian theory.
- De-Poissonization of a Decision Problem is a whole new kettle of fish.
- Only "one of the five steps" to the proof of the CLT for the finite horizon LIS uses what one could call classical de-Poissonization.

Out of Five: Only One for Free

- The CLT of Bruss and Delbean has five parts:

Out of Five: Only One for Free

- The CLT of Bruss and Delbean has five parts:
(1) Mean lower bound: $(2 t)^{1 / 2}-O(\log (t))$

Out of Five: Only One for Free

- The CLT of Bruss and Delbean has five parts:
(1) Mean lower bound: $(2 t)^{1 / 2}-O(\log (t))$
(2) Mean upper bound: $(2 t)^{1 / 2}$

Out of Five: Only One for Free

- The CLT of Bruss and Delbean has five parts:
(1) Mean lower bound: $(2 t)^{1 / 2}-O(\log (t))$
(2) Mean upper bound: $(2 t)^{1 / 2}$
(3) Variance lower bound: $\frac{1}{3}(2 t)^{1 / 2}-O(1)$

Out of Five: Only One for Free

- The CLT of Bruss and Delbean has five parts:
(1) Mean lower bound: $(2 t)^{1 / 2}-O(\log (t))$
(2) Mean upper bound: $(2 t)^{1 / 2}$
(3) Variance lower bound: $\frac{1}{3}(2 t)^{1 / 2}-O(1)$
(9) Variance upper bound: $\frac{1}{3}(2 t)^{1 / 2}+O(\log t)$

Out of Five: Only One for Free

- The CLT of Bruss and Delbean has five parts:
(1) Mean lower bound: $(2 t)^{1 / 2}-O(\log (t))$
(2) Mean upper bound: $(2 t)^{1 / 2}$
(3) Variance lower bound: $\frac{1}{3}(2 t)^{1 / 2}-O(1)$
(9) Variance upper bound: $\frac{1}{3}(2 t)^{1 / 2}+O(\log t)$
(5) The CLT itself

Out of Five: Only One for Free

- The CLT of Bruss and Delbean has five parts:
(1) Mean lower bound: $(2 t)^{1 / 2}-O(\log (t))$
(2) Mean upper bound: $(2 t)^{1 / 2}$
(3) Variance lower bound: $\frac{1}{3}(2 t)^{1 / 2}-O(1)$
(9) Variance upper bound: $\frac{1}{3}(2 t)^{1 / 2}+O(\log t)$
(5) The CLT itself
- Only one of these steps has what one can properly call a de-Poissonization.

Out of Five: Only One for Free

- The CLT of Bruss and Delbean has five parts:
(1) Mean lower bound: $(2 t)^{1 / 2}-O(\log (t))$
(2) Mean upper bound: $(2 t)^{1 / 2}$
(3) Variance lower bound: $\frac{1}{3}(2 t)^{1 / 2}-O(1)$
(9) Variance upper bound: $\frac{1}{3}(2 t)^{1 / 2}+O(\log t)$
(6) The CLT itself
- Only one of these steps has what one can properly call a de-Poissonization.
- De-Poissonization gives us the mean lower bound for the finite horizon problem and leaves us four steps to go.

De-Poissonization of the Mean Lower Bound: One Proof

- In the Poisson model, one knows the Poisson parameter t and one makes optimal selections from a sequence of random size $N(t)$.

De-Poissonization of the Mean Lower Bound: One Proof

- In the Poisson model, one knows the Poisson parameter t and one makes optimal selections from a sequence of random size $N(t)$.
- If, ex-post, we are told that $N(t)=j$ our expected reward is $\mathbb{E}\left[L_{N(t)}^{o} \mid N(t)=j\right]$.

De-Poissonization of the Mean Lower Bound: One Proof

- In the Poisson model, one knows the Poisson parameter t and one makes optimal selections from a sequence of random size $N(t)$.
- If, ex-post, we are told that $N(t)=j$ our expected reward is $\mathbb{E}\left[L_{N(t)}^{o} \mid N(t)=j\right]$.
- The Poisson strategy is a suboptimal strategy for a problem where one knows ex-ante that the sample has size j, so we have

$$
\mathbb{E}\left[L_{N(t)}^{o} \mid N(t)=j\right] \leq \mathbb{E}\left[L_{j}^{o}\right]
$$

De-Poissonization of the Mean Lower Bound: One Proof

- In the Poisson model, one knows the Poisson parameter t and one makes optimal selections from a sequence of random size $N(t)$.
- If, ex-post, we are told that $N(t)=j$ our expected reward is $\mathbb{E}\left[L_{N(t)}^{o} \mid N(t)=j\right]$.
- The Poisson strategy is a suboptimal strategy for a problem where one knows ex-ante that the sample has size j, so we have

$$
\mathbb{E}\left[L_{N(t)}^{o} \mid N(t)=j\right] \leq \mathbb{E}\left[L_{j}^{o}\right]
$$

- If we now compute the total expectations we have

$$
\mathbb{E}\left[L_{N(t)}^{o}\right] \leq \sum_{j=0}^{\infty} e^{-t} \frac{t^{j}}{j!} \mathbb{E}\left[L_{j}^{o}\right]
$$

De-Poissonization of the Mean Lower Bound: One Proof

- In the Poisson model, one knows the Poisson parameter t and one makes optimal selections from a sequence of random size $N(t)$.
- If, ex-post, we are told that $N(t)=j$ our expected reward is $\mathbb{E}\left[L_{N(t)}^{o} \mid N(t)=j\right]$.
- The Poisson strategy is a suboptimal strategy for a problem where one knows ex-ante that the sample has size j, so we have

$$
\mathbb{E}\left[L_{N(t)}^{o} \mid N(t)=j\right] \leq \mathbb{E}\left[L_{j}^{o}\right]
$$

- If we now compute the total expectations we have

$$
\mathbb{E}\left[L_{N(t)}^{o}\right] \leq \sum_{j=0}^{\infty} e^{-t} \frac{t^{j}}{j!} \mathbb{E}\left[L_{j}^{o}\right]
$$

- We may now seem stuck. No conventional Tauberian theory comes to our aid.

De-Poissonization of the Mean Lower Bound: One Proof

- In the Poisson model, one knows the Poisson parameter t and one makes optimal selections from a sequence of random size $N(t)$.
- If, ex-post, we are told that $N(t)=j$ our expected reward is $\mathbb{E}\left[L_{N(t)}^{o} \mid N(t)=j\right]$.
- The Poisson strategy is a suboptimal strategy for a problem where one knows ex-ante that the sample has size j, so we have

$$
\mathbb{E}\left[L_{N(t)}^{o} \mid N(t)=j\right] \leq \mathbb{E}\left[L_{j}^{o}\right]
$$

- If we now compute the total expectations we have

$$
\mathbb{E}\left[L_{N(t)}^{o}\right] \leq \sum_{j=0}^{\infty} e^{-t} \frac{t^{j}}{j!} \mathbb{E}\left[L_{j}^{o}\right]
$$

- We may now seem stuck. No conventional Tauberian theory comes to our aid.
- But we have another property: the map $\phi(j)=\mathbb{E}\left[L_{j}^{\circ}\right]$ is concave. Jensen's inequality then forks up

$$
\mathbb{E}\left[L_{N(n)}^{o}\right] \leq \sum_{j=0}^{\infty} e^{-n} \frac{n^{j}}{j!} \mathbb{E}\left[L_{j}^{o}\right] \leq \mathbb{E}\left[L_{n}^{o}\right]
$$

Thus, we have lossless transference of any mean lower bound from the Poisson model to the Finite Horizon model.

The Shape of $\mathbb{E}\left[L_{n}^{\circ}\right]$ and the Shape of Value Functions

- The transference of the lower bounds is exceptional - but suggestive.

The Shape of $\mathbb{E}\left[L_{n}^{0}\right]$ and the Shape of Value Functions

- The transference of the lower bounds is exceptional - but suggestive.
- Question: where does one get concavity of $\phi(j)=\mathbb{E}\left[L_{j}^{\circ}\right]$? It's no real help that $E\left[L_{n}^{o}\right] \sim(2 n)^{1 / 2}$.

The Shape of $\mathbb{E}\left[L_{n}^{o}\right]$ and the Shape of Value Functions

- The transference of the lower bounds is exceptional - but suggestive.
- Question: where does one get concavity of $\phi(j)=\mathbb{E}\left[L_{j}^{\circ}\right]$? It's no real help that $E\left[L_{n}^{o}\right] \sim(2 n)^{1 / 2}$.
- Ultimately we get concavity of of $j \mapsto \phi(j)$ from the Bellman equation:

$$
v_{k}(s)=F(s) v_{k-1}(s)+\int_{s}^{\infty} \max \left\{v_{k-1}(s), 1+v_{k-1}(x)\right\} f(x) d x
$$

The Shape of $\mathbb{E}\left[L_{n}^{0}\right]$ and the Shape of Value Functions

- The transference of the lower bounds is exceptional - but suggestive.
- Question: where does one get concavity of $\phi(j)=\mathbb{E}\left[L_{j}^{\circ}\right]$? It's no real help that $E\left[L_{n}^{o}\right] \sim(2 n)^{1 / 2}$.
- Ultimately we get concavity of of $j \mapsto \phi(j)$ from the Bellman equation:

$$
v_{k}(s)=F(s) v_{k-1}(s)+\int_{s}^{\infty} \max \left\{v_{k-1}(s), 1+v_{k-1}(x)\right\} f(x) d x
$$

- What other "shape" properties can one extract from the Bellman equation?

The Shape of $\mathbb{E}\left[L_{n}^{o}\right]$ and the Shape of Value Functions

- The transference of the lower bounds is exceptional - but suggestive.
- Question: where does one get concavity of $\phi(j)=\mathbb{E}\left[L_{j}^{\circ}\right]$? It's no real help that $E\left[L_{n}^{o}\right] \sim(2 n)^{1 / 2}$.
- Ultimately we get concavity of of $j \mapsto \phi(j)$ from the Bellman equation:

$$
v_{k}(s)=F(s) v_{k-1}(s)+\int_{s}^{\infty} \max \left\{v_{k-1}(s), 1+v_{k-1}(x)\right\} f(x) d x
$$

- What other "shape" properties can one extract from the Bellman equation?
- If we take the uniform distribution on $[0,1]$, the Bellman equation and induction can be used to prove the concavity of $s \mapsto v_{k}(s)$ for all k.

The Shape of $\mathbb{E}\left[L_{n}^{o}\right]$ and the Shape of Value Functions

- The transference of the lower bounds is exceptional - but suggestive.
- Question: where does one get concavity of $\phi(j)=\mathbb{E}\left[L_{j}^{\circ}\right]$? It's no real help that $E\left[L_{n}^{o}\right] \sim(2 n)^{1 / 2}$.
- Ultimately we get concavity of of $j \mapsto \phi(j)$ from the Bellman equation:

$$
v_{k}(s)=F(s) v_{k-1}(s)+\int_{s}^{\infty} \max \left\{v_{k-1}(s), 1+v_{k-1}(x)\right\} f(x) d x
$$

- What other "shape" properties can one extract from the Bellman equation?
- If we take the uniform distribution on $[0,1]$, the Bellman equation and induction can be used to prove the concavity of $s \mapsto v_{k}(s)$ for all k.
- This gives a path to the proof of the lower bound of $\operatorname{Var}\left[L_{n}^{o}\right]$. It is not easy but it is direct; no passage through the bound of Bruss and Delbean.

The Shape of $\mathbb{E}\left[L_{n}^{o}\right]$ and the Shape of Value Functions

- The transference of the lower bounds is exceptional - but suggestive.
- Question: where does one get concavity of $\phi(j)=\mathbb{E}\left[L_{j}^{\circ}\right]$? It's no real help that $E\left[L_{n}^{o}\right] \sim(2 n)^{1 / 2}$.
- Ultimately we get concavity of of $j \mapsto \phi(j)$ from the Bellman equation:

$$
v_{k}(s)=F(s) v_{k-1}(s)+\int_{s}^{\infty} \max \left\{v_{k-1}(s), 1+v_{k-1}(x)\right\} f(x) d x
$$

- What other "shape" properties can one extract from the Bellman equation?
- If we take the uniform distribution on $[0,1]$, the Bellman equation and induction can be used to prove the concavity of $s \mapsto v_{k}(s)$ for all k.
- This gives a path to the proof of the lower bound of $\operatorname{Var}\left[L_{n}^{o}\right]$. It is not easy but it is direct; no passage through the bound of Bruss and Delbean.
- How about the upper bound for $\operatorname{Var}\left[L_{n}^{\circ}\right]$?
- Alessandro and I were stuck here for a long time.

Breaking Symmetry

- A Simple but Critical Observation: The distribution of L_{n}° does not depend on f, but the value function $s \mapsto v_{k}(s)$ does depend on f.

Breaking Symmetry

- A Simple but Critical Observation: The distribution of L_{n}^{o} does not depend on f, but the value function $s \mapsto v_{k}(s)$ does depend on f.
- This means that we spend symmetry when make a specific choice of f.

Breaking Symmetry

- A Simple but Critical Observation: The distribution of L_{n}^{o} does not depend on f, but the value function $s \mapsto v_{k}(s)$ does depend on f.
- This means that we spend symmetry when make a specific choice of f.
- If one takes the exponential distribution, then with a sustained analysis the Bellman equation can used to show that $s \mapsto v_{k}(s)$ is convex.

Breaking Symmetry

- A Simple but Critical Observation: The distribution of L_{n}^{o} does not depend on f, but the value function $s \mapsto v_{k}(s)$ does depend on f.
- This means that we spend symmetry when make a specific choice of f.
- If one takes the exponential distribution, then with a sustained analysis the Bellman equation can used to show that $s \mapsto v_{k}(s)$ is convex.
- This came as a surprise for us, but we knew why we wanted such a result.

Breaking Symmetry

- A Simple but Critical Observation: The distribution of L_{n}^{o} does not depend on f, but the value function $s \mapsto v_{k}(s)$ does depend on f.
- This means that we spend symmetry when make a specific choice of f.
- If one takes the exponential distribution, then with a sustained analysis the Bellman equation can used to show that $s \mapsto v_{k}(s)$ is convex.
- This came as a surprise for us, but we knew why we wanted such a result.
- Arguments like that given for the lower bound on $\operatorname{Var}\left[L_{n}^{\circ}\right]$ could now be used to get an upper bound - again without passage through the bounds of Bruss and Delbean.

Breaking Symmetry

- A Simple but Critical Observation: The distribution of L_{n}^{o} does not depend on f, but the value function $s \mapsto v_{k}(s)$ does depend on f.
- This means that we spend symmetry when make a specific choice of f.
- If one takes the exponential distribution, then with a sustained analysis the Bellman equation can used to show that $s \mapsto v_{k}(s)$ is convex.
- This came as a surprise for us, but we knew why we wanted such a result.
- Arguments like that given for the lower bound on $\operatorname{Var}\left[L_{n}^{\circ}\right]$ could now be used to get an upper bound - again without passage through the bounds of Bruss and Delbean.
- The flood gate is opened and more analysis of the same flavor (but with plenty of details) lead us through the Martingale CLT to a CLT for the Finite Horizon Selection Problem for LIS:

$$
\frac{3^{1 / 2}\left\{L_{n}^{o}-(2 n)^{1 / 2}\right\}}{(2 n)^{1 / 4}} \Longrightarrow N(0,1)
$$

Quick Glance Back: What Can You Take Away?

Quick Glance Back: What Can You Take Away?

- Problems of Sequential Selection: Rich in history, connections, problems and techniques

Quick Glance Back: What Can You Take Away?

- Problems of Sequential Selection: Rich in history, connections, problems and techniques

Quick Glance Back: What Can You Take Away?

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Poissonization is very powerful!

Quick Glance Back: What Can You Take Away?

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Poissonization is very powerful!
- De-Poissonization may be easy - or almost impossible.

Quick Glance Back: What Can You Take Away?

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Poissonization is very powerful!
- De-Poissonization may be easy - or almost impossible.
- Given any "invariance" (or symmetry): Ask "Does this break someplace?" "What do we buy if we spend our symmetry?"

Quick Glance Back: What Can You Take Away?

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Poissonization is very powerful!
- De-Poissonization may be easy - or almost impossible.
- Given any "invariance" (or symmetry): Ask "Does this break someplace?" "What do we buy if we spend our symmetry?"
- Here we bought a lot, but we always needed our workhorses: the Bellman equation, shape, and submodularity

Quick Glance Back: What Can You Take Away?

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Poissonization is very powerful!
- De-Poissonization may be easy - or almost impossible.
- Given any "invariance" (or symmetry): Ask "Does this break someplace?" "What do we buy if we spend our symmetry?"
- Here we bought a lot, but we always needed our workhorses: the Bellman equation, shape, and submodularity
- Enough for Today? ... almost certainly, but with some left for tomorrow.

Quick Glance Back: What Can You Take Away?

- Problems of Sequential Selection: Rich in history, connections, problems and techniques
- Poissonization is very powerful!
- De-Poissonization may be easy - or almost impossible.
- Given any "invariance" (or symmetry): Ask "Does this break someplace?" "What do we buy if we spend our symmetry?"
- Here we bought a lot, but we always needed our workhorses: the Bellman equation, shape, and submodularity
- Enough for Today? ... almost certainly, but with some left for tomorrow.
- ¡Gracias por su atención!

References I

F. Thomas Bruss and James B. Robertson. "Wald's lemma" for sums of order statistics of i.i.d. random variables. Adv. in Appl. Probab., 23(3):612-623, 1991.
F. R. K. Chung. On unimodal subsequences. J. Combin. Theory Ser. A, 29(3):267-279, 1980.
P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Math., 2: 463-470, 1935.

Alexander V. Gnedin. Sequential selection of an increasing subsequence from a sample of random size. J. Appl. Probab., 36(4):1074-1085, 1999.
J. M. Hammersley. A few seedlings of research. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. I: Theory of statistics, pages 345-394, Berkeley, CA, 1972. Univ. California Press.
C. Houdré and R. Restrepo. A probabilistic approach to the asymptotics of the length of the longest alternating subsequence. Electron. J. Combin., 17(1):Research Paper 168, 1-19, 2010.
J. F. C. Kingman. Subadditive ergodic theory. Ann. Probability, 1:883-909, 1973. With discussion by D. L. Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank Spitzer and J. M. Hammersley, and a reply by the author.

References II

B. F. Logan and L. A. Shepp. A variational problem for random Young tableaux. Advances in Math., 26(2):206-222, 1977.
WanSoo Rhee and Michel Talagrand. A note on the selection of random variables under a sum constraint. J. Appl. Probab., 28(4):919-923, 1991.
Stephen M. Samuels and J. Michael Steele. Optimal sequential selection of a monotone sequence from a random sample. Ann. Probab., 9(6):937-947, 1981.
Richard P. Stanley. Increasing and decreasing subsequences and their variants. In International Congress of Mathematicians. Vol. I, pages 545-579. Eur. Math. Soc., Zürich, 2007.

Richard P. Stanley. Longest alternating subsequences of permutations. Michigan Math. J., 57:675-687, 2008. Special volume in honor of Melvin Hochster.

Richard P. Stanley. A survey of alternating permutations. Contemp. Math., 531:165-196, 2010.
J. Michael Steele. Long unimodal subsequences: a problem of F. R. K. Chung. Discrete Math., 33(2):223-225, 1981.
A. M. Veršik and S. V. Kerov. Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux. Dokl. Akad. Nauk SSSR, 233 (6):1024-1027, 1977.

References III

Harold Widom. On the limiting distribution for the length of the longest alternating sequence in a random permutation. Electron. J. Combin., 13(1):Research Paper 25, 1-7, 2006.

