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We test a Wall Street investment strategy, ‘‘pairs trading,’’ with daily data over

1962–2002. Stocks are matched into pairs with minimum distance between normal-

ized historical prices. A simple trading rule yields average annualized excess returns of

up to 11% for self-financing portfolios of pairs. The profits typically exceed conser-

vative transaction-cost estimates. Bootstrap results suggest that the ‘‘pairs’’ effect

differs from previously documented reversal profits. Robustness of the excess returns

indicates that pairs trading profits from temporary mispricing of close substitutes. We

link the profitability to the presence of a common factor in the returns, different from

conventional risk measures.

Wall Street has long been interested in quantitative methods of specula-

tion. One popular short-term speculation strategy is known as ‘‘pairs

trading.’’ The strategy has at least a 20-year history on Wall Street and

is among the proprietary ‘‘statistical arbitrage’’ tools currently used by
hedge funds as well as investment banks. The concept of pairs trading is

disarmingly simple. Find two stocks whose prices have moved together

historically. When the spread between them widens, short the winner and

buy the loser. If history repeats itself, prices will converge and the arbi-

trageur will profit. It is hard to believe that such a simple strategy, based

solely on past price dynamics and simple contrarian principles, could

possibly make money. If the U.S. equity market were efficient at all

times, risk-adjusted returns from pairs trading should not be positive.
In this article, we examine the risk and return characteristics of pairs

trading with daily data over the period 1962 through December 2002.
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Using a simple algorithm for choosing pairs, we test the profitability of

several straightforward, self-financing trading rules. We find average

annualized excess returns of about 11% for top pairs portfolios. Although

pairs strategies exploit temporary components of stock prices, we show

that our profits are not caused by simple mean reversion as documented

in the previous literature. We examine the robustness of our results to a

wide variety of risk factors—including not only the widely used factors in

the empirical literature but also potential low-frequency institutional
factors such as bankruptcy risk. In addition, we explore the robustness

of our results to microstructure factors such as the bid-ask bounce, short-

selling costs, and transaction costs. Although some factors such as short-

selling and transaction costs affect the magnitude of the excess returns,

pairs trading remains profitable for reasonable assumptions over the

sample period of study, as well as over a true out-of-sample test of four

years. We interpret the results of our analysis as evidence in favor of

profitable arbitrage in expectations that may accrue to market partici-
pants who possess relatively low transaction costs and the ability to short

securities. We also find evidence that points to a systematic factor that

influences the profitability of pairs trading over time. This unidentified

latent risk factor has been relatively dormant recently. The importance of

this risk factor is correlated with the returns to pairs trading, which is

consistent with the view that the profits are a compensation to arbitra-

geurs for enforcing the ‘‘Law of One Price.’’

We argue that our results reveal something about the mechanism and
performance of relative-price arbitrage activities in practice. This is

potentially useful to researchers because, despite considerable theory

about market efficiency, economists have little empirical information

about how efficiency is maintained in practice. In addition, despite the

fact that hedge funds have attracted an increasing amount of investment

capital over the past decade, the study of hedge fund strategies is in its

infancy in the financial economics literature. This article examines the risk

and return characteristics of one widely practiced active trading strategy.
One natural question to ask is whether our results imply a violation of

equilibrium asset pricing. Although the documented profitability of the

pairs trading rule is a robust result, it is not inconsistent with all pricing

models. Indeed the reversion in relative values we find is consistent with a

pricing model in prices developed and tested by Bossaerts (1988). Thus,

our article at the very least suggests that this class of models merits further

empirical investigation.

The remainder of the article is organized as follows. Section 1 provides
some background on pairs trading strategy. The next section describes

our methodology of constructing pairs and calculating returns. The

empirical results are described in Section 3, and Section 4 provides con-

clusions and directions for future research.
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1. Background of Pairs Trading

1.1 History

In the mid-1980s, the Wall Street quant Nunzio Tartaglia assembled a

team of physicists, mathematicians, and computer scientists to uncover

arbitrage opportunities in the equities markets. Tartaglia’s group of for-

mer academics used sophisticated statistical methods to develop high-tech

trading programs, executable through automated trading systems, which
took the intuition and trader’s ‘‘skill’’ out of arbitrage and replaced it with

disciplined, consistent filter rules. Among other things, Tartaglia’s pro-

grams identified pairs of securities whose prices tended to move together.

They traded these pairs with great success in 1987—a year when the group

reportedly made a $50 million profit for the firm. Although the Morgan

Stanley group disbanded in 1989 after a couple of bad years of perfor-

mance, pairs trading has since become an increasingly popular ‘‘market-

neutral’’ investment strategy used by individual and institutional traders
as well as hedge funds. The increased popularity of quantitative-based

statistical arbitrage strategies has also apparently affected profits. In a

New York Times interview, David Shaw, head of one of the most success-

ful modern quant shops and himself an early Tartaglia’s protégé, sug-

gests that recent pickings for quant-shops have become slim—he

attributes the success of his firm, D. E. Shaw, to early entry into the

business. Tartaglia’s own explanation for pairs trading is psychological.

He claims, ‘‘... Human beings don’t like to trade against human nature,
which wants to buy stocks after they go up not down’’ [Hansell (1989)].

Could pairs traders be the disciplined investors taking advantage of the

undisciplined over-reaction displayed by individual investors? This is at

least one possible—albeit psychological—explanation for our results,

which is consistent with Jegadeesh and Titman’s (1995) finding that contra-

rian profits are in part due to over-reaction to company-specific informa-

tion shocks rather than price reactions to common factors.

1.2 Data snooping and market response

In our study we have not searched over the full strategy space to identify

successful trading rules, but rather we have interpreted practitioner

description of pairs trading as straightforwardly as possible. Our rules

follow the general outline of first ‘‘find stocks that move together,’’ and

second ‘‘take a long–short position when they diverge and unwind on

convergence.’’ A test requires that both of these steps must be parameter-

ized in some way. How do you identify ‘‘stocks that move together?’’
Need they be in the same industry? Should they only be liquid stocks?

How far do they have to diverge before a position is put on? When is a

position unwound? We have made some straightforward choices about

each of these questions. We put positions on at a two-standard deviation
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spread, which might not always cover transaction costs even when stock

prices converge. Although it is tempting to try potentially more profitable

schemes, the danger in data-snooping refinements outweigh the potential

insights gained about the higher profits that could result from learning

through testing.1

As with all filter rules using historical asset pricing data, data snooping

is a potential concern. One approach to the data snooping issue is to test

the results out of sample. We completed and circulated the first draft of
the working paper in 1999, using data through the end of 1998. The time

lag between the first analysis and the present study gives us an ideal

holdout sample. Using the original model, but the post-1988 data, we

found that over the 1999–2002 period, the excess return of the fully

invested portfolio of the top 20 pairs averaged 10.4% per annum, with

an annual standard deviation of 3.8% and a large and significant Newey-

West-adjusted t-statistic of 4.82—consistent with the long-term, in-sample

results of our original analysis. We were careful not to adjust our strategy
from the first draft to the current draft of the article, to avoid data-

snooping criticisms. Not only does this additional four-year sample suggest

that the results were not simply an artifact of the earlier sample period, over

which pairs trading was known to be popular, but it also suggests that the

public dissemination of the results has apparently not affected the general

risk and return characteristics of the strategy, despite curiosity from the

professional sector.

1.3 Relative pricing

Asset pricing can be viewed in absolute and relative terms. Absolute

pricing values securities from fundamentals such as discounted future

cash flow. This is a notoriously difficult process with a wide margin for

error. Articles by Bakshi and Chen (1997) and Lee et al. (1997), for

example, are heroic attempts to build quantitative value-investing models.

Relative pricing is only slightly easier. Relative pricing means that two

securities that are close substitutes for each other should sell for the same
price—it does not say what that price will be. Thus, relative pricing allows

for bubbles in the economy, but not necessarily arbitrage or profitable

speculation. The Law of One Price [LOP] and a ‘‘near-LOP’’ are applic-

able to relative pricing—even if that price is wrong.

Ingersoll (1987) defines the LOP as the ‘‘proposition ... that two invest-

ments with the same payoff in every state of nature must have the same

current value.’’ In other words, two securities with the same prices in all

states of the world should sell for the same amount. Chen and Knez
(1995) extend this to argue that ‘‘closely integrated markets should assign

1 Froot and Dabora (1999) consider ‘‘twin’’ stocks that trade in different international markets to examine
the issues of market integration.
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to similar payoffs prices that are close.’’ They argue that two securities

with similar, but not necessarily, matching payoffs across states should

have similar prices. This is of course a weaker condition and subject to

bounds on prices for unusual states; however, it allows the examination of

‘‘near-efficient’’ economies, or in Chen and Knez’ case, near integrated

markets. Notice that this theory corresponds to the desire to find two

stocks whose prices move together as long as we can define states of

nature as the time series of observed historical trading days.
We use an algorithm to choose pairs based on the criterion that they have

had the same or nearly the same state prices historically. We then trade

pairs whose prices closely match in historical state-space, because the LOP

suggests that in an efficient market their prices should be nearly identical. In

this framework, the current study can be viewed as a test of the LOP and

near-LOP in the U.S. equity markets, under certain stationarity conditions.

We are effectively testing the integration of very local markets—the markets

for specific individual securities. This is similar in spirit to Bossaerts’ (1988)
test of co-integration of security prices at the portfolio level. We further

conjecture that the marginal profits to be had from risk arbitrage of these

temporary deviations is crucial to the maintenance of first-order efficiency.

We could not have the first effect without the second.

1.4 Co-integrated prices

The pairs trading strategy may be justified within an equilibrium asset-pricing

framework with nonstationary common factors like Bossaerts and Green
(1989) and Jagannathan and Viswanathan (1988). If the long and short

components fluctuate with common nonstationary factors, then the prices

of the component portfolios would be co-integrated and the pairs trading

strategy would be expected to work. Evidence of exposures to common

nonstationary factors would support a nonstationary factor pricing frame-

work.

The space of normalized, cum-dividend prices, that is, cumulative total

returns with dividends reinvested, is the basic space for the pairs trading
strategies in this article. The main observation about our motivating

models of the CAPM-APT variety is that they are known to imply perfect

collinearity of prices, which is readily rejected by the data. On the other

hand, Bossaerts (1988) finds evidence of price co-integration for the U.S.

stock market. We would like to keep the notion of the empirically

observed co-movement of prices, without unnecessarily restrictive

assumptions, hence we proceed in the spirit of the co-integrated prices

literature. More specifically, our matching in price space can be inter-
preted as follows. Suppose that prices obey a statistical model of the form,

pit¼
X

�ilplt þ eit; k<n ð1Þ
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where eit denotes a weakly dependent error in the sense of Bossaerts (1988).

Assume also that pit is weakly dependent after differencing once. Under

these assumptions, the price vector pt is co-integrated of order 1 with co-

integrating rank r = n – k, in the sense of Engle and Granger (1987) and

Bossaerts (1988). Thus, there exist r linearly independent vectors {aq}q =

1,...,r such that zq = aq
0pt are weakly dependent. In other words, r linear

combinations of prices will not be driven by the k common nonstationary

components pl. Note that this interpretation does not imply that the market
is inefficient, rather it says that certain assets are weakly redundant, so that

any deviation of their price from a linear combination of the prices of other

assets is expected to be temporary and reverting.

To interpret the pairs as co-integrated prices, we need to assume that

for n » k, there are co-integrating vectors that have only two nonzero

coordinates. In that case, the sum or difference of scaled prices will be

reverting to zero and a trading rule could be constructed to exploit the

expected temporary deviations. Our strategy relies on exactly this conclu-
sion. In principle one could construct trading strategies with trios, quad-

ruples, and so on of stocks, which would presumably capture more

co-integrated prices and would yield better profits.

The assumption that a linear combination of two stocks can be weakly

dependent may be interpreted as saying that a co-integrating vector can

be partitioned in two parts, such that the two corresponding portfolios

are priced within a weakly dependent error of another stock. Given the

large universe of stocks, this statement is always empirically valid and
provides the basis of our formation procedure.2 However, it is important

to recognize the possibility of spuriously correlated prices, which are not

de facto co-integrated.

1.5 Bankruptcy risk

The risk of bankruptcy is one reason why the returns on individual

securities cannot be taken as stationary. Sensitivity of the pairs trading

to the default premium suggests that the strategy may work because we
are pairing two firms, the first of which may have a constant or decreasing

probability of bankruptcy (short end), whereas the second may have a

temporarily increasing probability of bankruptcy (long end). The ‘‘sur-

prise improvements’’ in the short end are then followed by improvement

in the long end if that stock survives. In other words, the source of the

profit is the improving ex post (non)realization of idiosyncratic bank-

ruptcy risk in the long (loser) stock. In such case, we would expect to have

asymmetry in the profits from the long and the short components, with

2 Note that the case n » k corresponds to the standard finance paradigm where in the large universe of n
stocks, expected returns are driven by a few, namely k, common factors. This paradigm is supported by
existing empirical work, for example, see Connor and Korajczyk (1993) for references, which generally
finds less than 10 common nonstationary components.
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most of the profits coming from the long end.3 We test long and short

positions separately to see if this is driving our results.

2. Methodology

Our implementation of pairs trading has two stages. We form pairs over a

12-month period (formation period) and trade them in the next 6-month

period (trading period). Both 12 months and 6 months are chosen arbi-

trarily and have remained our horizons since the beginning of the study.

2.1 Pairs formation

In each pairs formation period, we screen out all stocks from the CRSP

daily files that have one or more days with no trade. This serves to identify
relatively liquid stocks as well as to facilitate pairs formation. Next, we

construct a cumulative total returns index for each stock over the forma-

tion period. We then choose a matching partner for each stock by finding

the security that minimizes the sum of squared deviations between the two

normalized price series. Pairs are thus formed by exhaustive matching in

normalized daily ‘‘price’’ space, where price includes reinvested dividends.

We use this approach because it best approximates the description of

how traders themselves choose pairs. Interviews with pairs traders suggest
that they try to find two stocks whose prices ‘‘move together.’’ In addition

to ‘‘unrestricted’’ pairs, we will also present results by sector, where we

restrict both stocks to belong to the same broad industry categories

defined by Standard and Poors: Utilities, Transportation, Financial,

and Industrials. Each stock is assigned to one of these four groups,

based on the stock’s SIC code. The minimum-distance criterion is then

used to match stocks within each of the groups.

2.2 Trading period

Once we have paired up all liquid stocks in the formation period, we study

the top 5 and 20 pairs with the smallest historical distance measure, in

addition to the 20 pairs after the top 100 (pairs 101–120). This last set is

valuable because most of the top pairs share certain characteristics, which

will be described in detail below. On the day following the last day of the

pairs formation period, we begin to trade according to a prespecified rule.

Figure 1 illustrates the pairs trading strategy using two stocks, Kennecott
and Uniroyal, in the six-month period starting in August of 1962. The

top two lines represent the normalized price paths with dividends

reinvested and the bottom line indicates the opening and closing of the

strategy on a daily basis. It is clear why these two firms paired with each

other. They generally tended to move together over the trading interval.

3 We thank an anonymous referee for this example.
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Notice that the position first opens in the seventh trading day of the period

and then remains open until day 36. Over that interval, the spread actually
first increased significantly before convergence. The prices remain close

during the period and cross frequently. The pair opens five times during the

period, however not always in the same direction. Neither stock is the

‘‘leader.’’ In our example, convergence occurs in the final day of the period,

although this is not always the case.

We select trading rules based on the proposition that we open a long–

short position when the pair prices have diverged by a certain amount and

close the position when the prices have reverted. Following practice, we
base our rules for opening and closing positions on a standard deviation

metric. We open a position in a pair when prices diverge by more than

two historical standard deviations, as estimated during the pairs forma-

tion period. We unwind the position at the next crossing of the prices. If

prices do not cross before the end of the trading interval, gains or losses

are calculated at the end of the last trading day of the trading interval. If a

stock in a pair is delisted from CRSP, we close the position in that pair,

using the delisting return, or the last available price.4 We report the

Figure 1
Daily normalized prices: Kennecott and Uniroyal (pair 5)
Trading period August 1963–January 1964.

4 The profits are robust with respect to this delisting assumption. A potential problem arises if inaccurate
and stale prices exaggerate the excess returns and bias the estimated return of a long position in a
plummeting stock. To address this potential concern, we have reestimated our results under the extreme
assumption that only a long stock experiences a –100% return when it is delisted. This zero-price extreme
includes, among other things, the possibility of nontrading due to the lack of liquidity. Because selective
loss on the long position always harms the pair profit, this extreme assumption biases the results against
profitability. However, pairs trading remains profitable under this alternative: for example, the average
monthly return on the top 20 pairs portfolio is 1.32% with a standard deviation of 1.9%.
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payoffs by going one dollar short in the higher-priced stock and one

dollar long in the lower-priced stock.

2.3 Excess return computation

Because pairs may open and close at various points during the six-month

trading period, the calculation of the excess return on a portfolio of pairs

is a nontrivial issue. Pairs that open and converge during the trading

interval will have positive cash flows. Because pairs can reopen after
initial convergence, they can have multiple positive cash flows during

the trading interval. Pairs that open but do not converge will only have

cash flows on the last day of the trading interval when all positions are

closed out. Therefore, the payoffs to pairs trading strategies are a set of

positive cash flows that are randomly distributed throughout the trading

period, and a set of cash flows at the end of the trading interval that can

be either positive or negative. For each pair we can have multiple cash

flows during the trading interval, or we may have none in the case when
prices never diverge by more than two standard deviations during the

trading interval. Because the trading gains and losses are computed over

long–short positions of one dollar, the payoffs have the interpretation of

excess returns. The excess return on a pair during a trading interval is

computed as the reinvested payoffs during the trading interval.5 In parti-

cular, the long and short portfolio positions are marked-to-market daily.

The daily returns on the long and short positions are calculated as value-

weighted returns in the following way,

rP;t ¼
P

iEP wi;tri;tP
iEPwi;t

ð2Þ

wi;t ¼ wi;t�1ð1þ ri;t�1Þ ¼ ð1þ ri;1Þ � � � ð1þ ri;t�1Þ ð3Þ

where r defines returns and w defines weights, and the daily returns are

compounded to obtain monthly returns. This has the simple interpreta-

tion of a buy-and-hold strategy.

We consider two measures of excess return on a portfolio of pairs: the
return on committed capital and the fully invested return, that is, the

return on actual employed capital. The former scales the portfolio payoffs

by the number of pairs that are selected for trading, the latter divides the

payoffs by the number of pairs that open during the trading period. The

former measure of excess return is clearly more conservative: if a pair

does not trade for the whole of the trading period, we still include a dollar

5 This is a conservative approach to computing the excess return, because it implicitly assumes that all cash
earns zero interest rate when not invested in an open pair. Because any cash flow during the trading
interval is positive by construction, it ignores the fact that these cash flows are received early and
understates the computed excess returns.
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of committed capital as the cumulative return in our calculation of excess

return. It takes into account the opportunity cost of hedge funds of

having to commit capital to a strategy even if the strategy does not

trade. To the extent that hedge funds are flexible in their sources and

uses of funds, computing excess return relative to the actual capital

employed may give a more realistic measure of the trading profits.

We initiate the pairs strategy by trading the pairs at the beginning of

every month in the sample period, with the exception of the first 12
months, which are needed to estimate pairs for the strategy starting in

the first month. The result is a time series of overlapping six-month

trading period excess returns. We correct for the correlation induced

by overlap by averaging monthly returns across trading strategies that

start one month apart as in Jegadeesh and Titman (1993). The resulting

time series has the interpretation of the payoffs to a proprietary trading

desk, which delegates the management of the six portfolios to six different

traders whose formation and trading periods are staggered by one
month.

3. Empirical Results

3.1 Strategy profits

Table 1 summarizes the excess returns for the pairs portfolios that are

unrestricted in the sense that the matching stocks do not necessarily

belong to the same broad industry categories. In Section 3.5 we will
consider sector-neutral pairs strategies. Panel A summarizes the excess

returns of pairs strategies when positions are opened at the end of the day

that prices diverge and closed at the end of the day of price convergence.

The first row shows that a fully invested portfolio of the five best pairs

earned an average excess monthly return of 1.31% (t-statistic = 8.84), and

a portfolio of the 20 best pairs 1.44% per month (t = 11.56). Using the

more conservative approach to computing excess returns, using com-

mitted capital, gives excess returns of 0.78 and 0.81% per month, respec-
tively. Either way, these excess returns are large in an economical and

statistical sense and suggest that pairs trading is profitable.

The remainder of Panel A provides information about the excess return

distributions of pairs portfolios. There are diversification benefits from

combining multiple pairs in a portfolio. As the number of pairs in a

portfolio increases, the portfolio standard deviation falls. The diversifica-

tion benefits are also apparent from the range of realized returns. Inter-

estingly, as the number of pairs in the strategy increases, the minimum
realized return increases, whereas the maximum realized excess return

remains relatively stable. During the full sample period of 474 months, a

portfolio of 20 pairs experienced 71 monthly periods with negative pay-

offs, compared to 124 months for a portfolio of 5 pairs. The decrease in
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the standard deviation and the increase of the lower end of the return

distribution are also reflected in an increased skewness coefficient.
Because pairs trading is in essence a contrarian investment strategy, the

returns may be biased upward because of the bid-ask bounce [Jegadeesh

(1990), Jegadeesh and Titman (1995), Conrad and Kaul (1989)]. In parti-

cular, our strategy sells stocks that have done well relative to their match

and buys those that have done poorly. Part of any observed price diver-

gence is potentially due to price movements between bid and ask quotes:

conditional on divergence, the winner’s price is more likely to be an ask

quote and the loser’s price a bid quote. In Panel A we have used these
same prices for the start of trading and our returns may be biased upward

because of the fact that we are implicitly buying at bid quotes (losers) and

selling at ask quotes (winners). The opposite is true at the second crossing

Table 1
Excess returns of unrestricted pairs trading strategies

Pairs portfolio Top 5 Top 20 101–120 All

A. Excess return distribution (no waiting)
Average excess return (fully invested) 0.01308 0.01436 0.01081 0.01104
Standard error (Newey-West) 0.00148 0.00124 0.00094 0.00099
t-Statistic 8.84 11.56 11.54 11.16
Excess return distribution

Median 0.01194 0.01235 0.00955 0.00728
Standard deviation 0.02280 0.01688 0.01540 0.01670
Skewness 0.62 1.39 1.34 3.42
Kurtosis 7.81 10.54 10.30 25.25
Minimum –0.10573 –0.06629 –0.03857 –0.02721
Maximum 0.14716 0.13295 0.12684 0.17178
Observations with excess return < 0 26% 15% 21% 17%

Average excess return on committed capital 0.00784 0.00805 0.00679 0.00614

B. Excess return distribution (one day waiting)
Average monthly return (fully invested) 0.00745 0.00895 0.00795 0.00715
Standard error (Newey-West) 0.00119 0.00096 0.00085 0.00090
t-Statistic 6.26 9.29 9.40 7.92
Excess return distribution

Median 0.00699 0.00690 0.00694 0.00411
Standard deviation 0.02101 0.01527 0.01438 0.01577
Skewness 0.34 1.45 0.98 3.32
Kurtosis 10.64 16.13 7.78 25.66
Minimum –0.12628 –0.08218 –0.04266 –0.02951
Maximum 0.14350 0.13490 0.10464 0.16325
Observations with excess return < 0 35% 23% 28% 32%

Average excess return on committed capital 0.00463 0.00520 0.00503 0.00396

Summary statistics of the monthly excess returns on portfolios of pairs between July 1963 and December
2002 (474 observations). We trade according to the rule that opens a position in a pair at the end of the
day that prices of the stocks in the pair diverge by two historical standard deviations (Panel A). The
results in Panel B correspond to a strategy that delays the opening of the pairs position by one day. All
pairs are ranked according to least distance in historical price space. The ‘‘top n’’ portfolios include the
n pairs with least distance measures, and the portfolio ‘‘101–120’’ studies the 20 pairs after the top 100.
The average number of pairs in the all-pair portfolio is 2057. The t-statistics are computed using Newey-
West standard errors with six-lag correction. Absolute kurtosis is reported.
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(convergence): part of the drop in the winner’s price can reflect a bid

quote, and part of the rise of the loser’s price—an ask quote.

To address this issue, Panel B of Table 1 provides the excess returns

when we initiate positions in each pair on the day following the diver-

gence and liquidate on the day following the crossing. The average excess

returns on the fully invested portfolios and on committed capital drop by

about 30–55 and 20–35 basis points (bp), respectively. Although the

excess returns remain significantly positive, the drop in excess returns
suggests that a nontrivial portion of the profits in Panel A may be due to

bid–ask bounce. It is difficult to quantify which portion of the profit

reduction is due to bid–ask bounce and which portion stems from true

mean reversion in prices because of rapid market adjustment. Nonethe-

less, this difference raises questions about the economic significance of

our results when we include transaction costs. We will return to a detailed

discussion of this issue in Section 3.3. Unless stated otherwise, the remain-

der of the article will report results for pairs strategies that open (close) on
the day following divergence (convergence).

3.2 Trading statistics and portfolio composition

Table 2 summarizes the trading statistics and composition of the pairs

portfolios. What are the characteristics of the stocks that are matched

into pairs? How often does a typical pair trade? Because pairs trading is

an active investment strategy, it is important to evaluate the profitability

relative to the trading intensity of the portfolios. As mentioned before, we
use a two standard deviation trigger to open a pairs position. The second

line of panel A in Table 2 reports the average price deviation of the two

standard deviation trigger. For the top five pairs, the position typically

opens when prices have diverged by 4.76% or more. This is a relatively

narrow gap in prices.6 The trigger spread increases with the number of

pairs in the portfolio, because the standard deviation of the prices

increases as the proximity of the securities in price space decreases. The

next lines of Panel A also shows that on average almost all pairs open
during the six-month trading period, and on average more than once. Of

the top 5 pairs, on average 4.81 open during the trading period, and the

average number of round trips per pair is 2.02. The average duration of

an open position is 3.75 months. This indicates that pairs trading—

implemented according to the particular rules we chose—is a medium-

term investment strategy.

Panel B of Table 2 describes the composition of the pairs in terms of

market capitalization and industry membership. In terms of size, the
average stock in the top 5 and top 20 pairs belongs to the second and

6 The optimal trigger point in terms of profitability may actually be much higher than two standard
deviations, although we have not experimented to find out.

The Review of Financial Studies / v 19 n 3 2006

808



third deciles from the top; 74% of the stocks in the top 20 pairs belong to

the top three size deciles using CRSP breakpoints, and 91% come from

the top five size deciles. About two-thirds of the pairs combine stocks

from different size deciles (i.e., ‘‘size mixed pairs’’), and the stocks in

mixed pairs differ on average by a single decile.

The remainder of Panel B gives a breakdown of the pairs by industry
composition. On average, 71% of the stocks in the top 20 pairs are utility

stocks, despite the fact that Utilities represent a fairly small proportion of

the stocks in the whole sample. This is not surprising perhaps because

utility stocks tend to have lower volatility and tend to be correlated with

interest rate innovations. The strategy does not always match stocks

within sectors. The percentage of mixed sector pairs ranges from 20%

for the top five pairs to 44% for pairs 101–120. Given the predominance

of utilities among the top pairs, it is fair to ask whether the profitability of
pairs trading profitability is limited to the utility sector, or whether pairs

strategies are also profitable in other sectors of the market. We address

this question in Section 3.5.

Table 2
Trading statistics and composition of pairs portfolios

Pairs portfolio Top 5 Top 20 101–120 All

A. Trading statistics
Average price deviation trigger for opening pairs 0.04758 0.05284 0.07560 0.16888
Average number of pairs traded per six-month period 4.81 19.30 19.41 1944.22
Average number of round-trip trades per pair 2.02 1.96 1.78 1.62
Standard deviation of number of round trips per pair 0.62 0.40 0.27 0.16
Average time pairs are open in months 3.75 3.76 3.98 3.97
Standard deviation of time open, per pair, in months 0.80 0.45 0.38 0.17

B. Pairs portfolio composition
Average size decile of stocks 2.54 2.71 3.41 4.57
Average weight of stocks in top three size deciles 0.78 0.74 0.58 0.40
Average weight of stocks in top five size deciles 0.91 0.91 0.79 0.62
Average weight of pairs from different deciles 0.66 0.69 0.75 0.82
Average decile difference for mixed pairs 0.97 0.97 0.97 0.98
Average sector weights

Utilities 0.72 0.71 0.32 0.08
Transportation 0.02 0.02 0.02 0.03
Financials 0.11 0.13 0.26 0.16
Industrials 0.15 0.14 0.40 0.73

Mixed sector pairs 0.20 0.22 0.44 0.33

Trading statistics and composition of portfolios of pairs portfolios between July 1963 and December 2002
(474 months). Pairs are formed over a 12-month period according to a minimum-distance criterion and
then traded over the subsequent 6-month period. We trade according to the rule that opens a position in a
pair on the day following the day on which the prices of the stocks in the pair diverge by two historical
standard deviations. The ‘‘top n’’ portfolios include the n pairs with least distance measures, and the
portfolio ‘‘101–120’’ includes the 20 pairs after the top 100. Panel A summarizes the trading characteristics
of a pairs strategy. Pairs are opened when prices diverge by two standard deviations. Average deviation to
trigger opening of pair is the cross-sectional average of two standard deviations of the pair prices difference.
Panel B contains information about the size and industry membership of the stocks in the various pairs
portfolios.
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3.3 Transaction costs

Table 1 summarizes that the average monthly excess return of unrest-

ricted pairs strategies falls from 1.44%, for the top 20 portfolio, to 0.90%

per month if we postpone the trades to the day following the crossing.

This drop in the excess returns implies an estimate of the average bid-ask

spread and hence the transaction costs of trading in the sample. Although

actual transaction costs may be different, it is informative to know

whether the trading profits are large enough to survive this estimate of
transaction costs.

Suppose the extreme case where the prices of the winner at the first

crossing (divergence) are ask prices and the loser are bid prices. If the

next day prices are equally likely to be at bid or ask, then delaying trades

by one day will reduce the excess returns on average by half the sum of

the spreads of the winner and the loser. If at the second crossing (con-

vergence) of the pairs the winner is trading at the bid and the loser at the

ask, waiting one day will reduce the excess returns on average again by
one-half of the sum of the bid–ask spreads of both stocks. In this

extreme case, waiting a day before trading reduces the return on each

pair by the round-trip transaction costs in that pair. Because we trade

each pair on average two times during the six-month trading interval,

the drop in the excess returns of 324 bp per six months by waiting one

day reflects the cost of two round trips, which implies a transaction cost

of 162 bp per pair per round trip. This may be interpreted as an

estimated effective spread of 81 bp. The effective spread for the all-
pair portfolio is 70 bp. This indirect estimate is higher than the transac-

tion costs reported by Peterson and Fialkowski (1994), who find that the

average effective spread for stocks in the CRSP database in 1991 was

37 bp, and is consistent with the trading costs estimated by Keim and

Madhavan (1997). Because 91% of the stocks in the top 20 pairs belong

to the top five deciles of CRSP stocks, it is possible that the effective

spread is even lower that 37 bp.

Do our trading strategies survive these transaction costs? The profits
on our trading strategies in Table 1 range from 437 to 549 bp over a six-

month period. If the prices used to compute these excess returns are

equally likely to be at bid or ask, which seems a reasonable assumption,

we have to correct these excess returns to reflect that in practice we buy at

the ask and sell at the bid prices. In other words, we have to subtract the

round-trip trading costs to get an estimate of the profits after transaction

costs. Our conservative estimate of transaction costs of 162 bp times two

round trips per pair results in an estimate of 324 bp transaction cost per
pair per six-month period. This gives average net profits ranging from 113

to 225 bp over each six-month period. Comparing these profits to the

reported standard errors, we conclude that they are both economically

and statistically significant.
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Further analysis is required to get more precise estimates of influence of

transaction costs of pairs trading strategies. An important question in this

context is whether the trading rule that we have used to open and close

pairs can be expected to generate economically significant profits even if

pairs trading works perfectly. Because we use a measure of historical

standard deviation to trigger the opening of pairs, and because this

estimated standard deviation is the smallest among all pairs, it is likely

to underestimate the true standard deviation of a pair. As a consequence,
we may simply be opening pairs ‘‘too soon’’ and at a point that we cannot

expect it to compensate for transaction costs even if the pair subsequently

converges. Results that are not reported here suggest that this is indeed

the case for some of our pairs.

There is a second reason why our trading strategies require ‘‘too much’’

trading. We open pairs at any point during the trading period when the

normalized prices diverge by two standard deviations. This is not a

sensible rule toward the end of a trading interval. For example, suppose
that a divergence occurs at the next to last day of the trading interval. The

convergence has to be substantial to overcome the transaction cost that

will be incurred when we close out the position on the next day (the last

day of the trading interval). Unreported results suggest that this is also an

important source of excess trading.

3.4 Pairs trading by industry group

The pairs formation process thus far has been entirely mechanical. A
computer stock has the opportunity to match with a steel firm and a

utility with a bank stock. This does not mean that these matches are

likely. As summarized in Table 2, the fraction of mixed pairs is typically

well below 50%. Common factor exposures of stocks in the same industry

will make it more likely to find a match within the same sector. Also,

firms that are in industries where cross-sectional differences in factor

exposures are small or return variances are low are more likely to end

up among the top ranking of pairs. For this reason it is perhaps not
surprising that many of the top pairs match two utilities. Are the profits

to pairs trading consistent across sectors? We examine the returns on

pairs trading where stocks are matched only within the four large sector

groupings used by Standard and Poor’s: Utilities, Transportation, Finan-

cials, and Industrials. The results are summarized in Table 3. As in Table 1,

the pairs are traded with a one-day delay before opening and closing a

position to minimize the effect of the bid–ask bounce on trading. The

monthly excess returns for the top 20 pairs are the largest in the Utilities
sector, with 1.08% (Newey-West t = 10.26). The profits for the

other industry groups are somewhat lower, but all statistically significant,

with the average Transportation, Financials, and Industrials top

20 pairs earning 0.58% (Newey-West t = 4.26), 0.78% (Newey-West
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t = 7.60), and 0.61% (Newey-West t = 6.93), respectively, over a one-month

period.

Table 3 also gives a more detailed picture of the return distributions and

trading characteristics of the pairs trading strategies by sector. It shows that

Table 3
Industry sector pairs trading

Portfolio Top 5 Top 20 20 after 100 All

A. Utilities
Mean excess return 0.00905 0.01084 0.009256 0.01036
t-Statistic (Newey-West) 7.37 10.26 6.11 10.51
Median 0.00829 0.00938 0.00665 0.00969
Standard deviation 0.02154 0.01645 0.02640 0.01472
Skewness 0.44 0.76 0.66 1.39
Kurtosis 13.67 12.38 5.52 12.74
Minimum 70.12347 70.08750 70.07868 70.03519
Maximum 0.16563 0.12730 0.12133 0.12878
Observations with excess return < 0 28% 19% 35% 18%

B. Transportation
Mean excess return 0.00497 0.00577 0.00440
t-Statistic (Newey-West) 2.98 4.26 3.07
Median 0.00594 0.00547 0.00339
Standard deviation 0.03892 0.02942 0.02871
Skewness 70.50 70.11 0.53
Kurtosis 4.98 5.00 5.89
Minimum 70.19570 70.12467 70.12526
Maximum 0.10961 0.11099 0.13560
Observations with excess return < 0 44% 42% 44%

C. Financials
Mean excess return 0.00678 0.00775 0.00854 0.00726
t-Statistic (Newey-West) 4.79 7.60 7.12 7.62
Median 0.00557 0.00615 0.00660 0.00511
Standard deviation 0.02598 0.01792 0.02358 0.01808
Skewness 0.81 0.61 1.98 2.64
Kurtosis 6.37 6.48 18.27 21.21
Minimum 70.081988 70.07810 70.100477 70.04452
Maximum 0.149291 0.10638 0.195797 0.17211
Observations with excess return < 0 40% 33% 32% 34%

D. Industrial
Mean excess return 0.00490 0.00607 0.00664 0.00715
t-Statistic (Newey-West) 4.11 6.93 6.80 7.52
Median 0.00292 0.00547 0.00550 0.00397
Standard deviation 0.02361 0.01601 0.01825 0.01672
Skewness 0.40 0.43 0.94 2.97
Kurtosis 4.94 4.75 7.65 20.95
Minimum 70.10016 70.04786 70.05412 70.03431
Maximum 0.10546 0.08022 0.11619 0.16072
Observations with excess return < 0 42% 36% 35% 34%

Summary statistics for the excess monthly return distributions for pairs trading portfolios by sector. We
trade according to the ‘‘wait one day’’ rule described in the text. The average number of stocks in the
industry groups are as follows: 156 Utilities, 61 Transportation, 371 Financials, and 1729 Industrials.
There is no ‘‘20 after 100’’ portfolio for the Transportation industry group. The t-statistic of the mean is
computed using Newey-West standard errors with six lags.
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the excess return distributions of the sector pairs portfolios are generally

skewed right and exhibit positive excess kurtosis relative to a normal

distribution. The conclusion from these tables is that pairs trading is profit-

able in every broad sector category, and not limited to a particular sector.

3.5 The risk characteristics of pairs trading strategies

To provide further perspective on the risk of pairs trading, Table 4

compares the risk-premium of pairs trading to the market premium
(S&P 500) and reports the risk-adjusted returns to pairs trading using

two different models for measuring risk. Table 5 summarizes value-at-risk

(VAR) measures for pairs portfolios.

The top part of Table 4 compares the excess return to pairs trading to

the excess return on the S&P 500. Between 1963 and 2002, the average

excess return to pairs trading has been about twice as large as the excess

return of the S&P 500, with only one-half to one-third of the risk as

measured by standard deviation. As a result, the Sharpe Ratios of pairs
trading are between four and six times larger than the Sharpe Ratio of the

market. Goetzmann et al. (2002) show that Sharpe Ratios can be mis-

leading when return distributions have negative skewness. This is unlikely

to be a concern for our study, because our Table 1 showed that the

returns to pairs portfolios are positively skewed, which—if anything—

would bias our Sharpe Ratios downward.

To explore the systematic risk exposure of the pairs portfolios, we

regress their monthly excess returns on the three factors of Fama and
French (1996), augmented by two additional factors. The motivation for

the additional factors is that pairs strategies invest based on the relative

strength of individual stocks. It is therefore possible that pairs trading

simply exploits patterns in returns that are known to earn significant

profits. For example, Jegadeesh (1990) and Lehmann (1990) show that

reversal strategies that select stocks based on prior one-month return earn

positive abnormal returns. We control for this possibility by constructing

a short-term reversal factor measured as the excess return of stocks in the
top three deciles of prior-month return minus the return on stocks in the

bottom three deciles.7 If pairs strategies sell short-term winners and buy

short-term losers, we expect the exposures of pairs portfolios to be

positive to the reversal factor. The second additional factor controls for

exposure to medium-term return continuation [Jegadeesh and Titman

(1993)]. To the extent that pairs trading sells medium-term winners and

buys medium-term losers, the pairs excess returns will be negatively

correlated with momentum. To examine this possibility, we include a

7 The construction is similar to Carhart’s (1997) momentum factor, but the performance-sorting horizon
here is one month.
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Table 4
Systematic risk of pairs trading strategies

Top 5 Top 20
20 after
top 100 All

Equity
premium

‘‘Wait one day’’ portfolio performance
Mean excess return 0.00745 0.00895 0.00795 0.00715 0.00410
Standard deviation 0.02101 0.01527 0.01438 0.01577 0.04509
Sharpe Ratio 0.35 0.59 0.55 0.45 0.09
Monthly serial correlation 0.14 0.24 0.19 0.12 0.05

Factor model: Fama–French, Momentum,
Reversal

Intercept 0.00545 (3.81) 0.00764 (7.08) 0.00714 (8.66) 0.00512 (5.30)
Market 70.06661 (–1.03) 70.03155 (–0.64) 70.07697 (–1.77) 70.14520 (–3.10)
SMB 70.04233 (–0.71) 0.00111 (0.02) 70.02333 (–0.50) 70.07079 (–1.66)
HML 0.05740 (1.37) 0.04514 (1.45) 70.01724 (–0.59) 70.05403 (–1.82)
Momentum 70.02804 (–0.94) 70.04817 (–2.45) 70.10312 (–5.83) 70.18077 (–8.50)
Reversal 0.10192 (1.50) 0.07237 (1.27) 0.09459 (2.24) 0.20077 (4.34)
R2 0.05 0.09 0.18 0.54

Factor model: Ibbotson factors
Intercept 0.00716 (6.32) 0.00857 (9.25) 0.00766 (9.39) 0.00651 (7.77)
Market 70.00182 (–0.07) 0.01377 (0.74) 0.01642 (0.90) 0.06466 (1.98)
Small stock premium 0.04120 (1.32) 0.05227 (2.22) 0.03646 (1.66) 0.07608 (1.93)
Bond default premium 0.14593 (1.11) 0.15989 (1.38) 0.16811 (1.81) 0.30571 (2.82)
Bond horizon premium 0.07997 (1.55) 0.06818 (1.64) 0.04034 (1.04) 0.03422 (0.77)
R2 0.02 0.05 0.04 0.15

Monthly risk exposures for portfolios of pairs formed and traded according to the ‘‘wait one day’’ rule discussed in the text, over the period between June 1963 and December
2002. The five actors are the three Fama–French factors, Carhart’s Momentum factor, and the Reversal factor discussed in the text. Returns for the portfolios are in excess of
the riskless rate. S&P 500 returns are calculated in excess of Treasury bill returns. The Ibbotson factors are from the Ibbotson EnCorrr analyzer: The U.S. Small stock premium
is the monthly geometric difference between small-company stock total returns and large-company stock total returns. U.S. bond default premium is the monthly geometric
difference between total return to long-term corporate bonds and long-term government bonds. The U.S. bond horizon premium is the monthly geometric difference between
investing in long-term government bonds and U.S. Treasury bills. The t-statistics are in parentheses next to the coefficients and are computed using Newey-West standard errors
with six lags.
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momentum factor in our risk model that is constructed along the lines of

Carhart (1997).

Table 4 demonstrates that only a small portion of the excess returns of

pairs trading can be attributed to their exposures to the five risk factors.

The intercepts of the regressions show that risk-adjusted returns are

significantly positive and lower than the raw excess returns by about
10–20 bp per month. Because pairs strategies are market-neutral, the

exposures to the market are small and with one exception insignificant.

Exposures to the other two Fama–French factors, the difference between

small and big stocks (SMB) and the difference between value and growth

stocks (HML), are not significant and the point estimates alternate in

sign. The exposures to momentum and reversals have the predicted signs,

and more than half are statistically significant. As can be expected, some

of the winner stocks that a pairs strategy shorts are short-term winners,
whereas others are medium-term winners. Similarly, the losers are evenly

divided between short-term and medium-term losers. Overall the expo-

sures are not large enough to explain the average returns to pairs trading.

Table 5
Value at risk (VAR) of pairs trading

Top 5 Top 20 20 after 100 All

A. Monthly var
Mean excess return 0.00745 0.00895 0.00795 0.00715
Standard deviation 0.02101 0.01527 0.01438 0.01577
Serial correlation 0.14 0.24 0.19 0.12
VAR

1% 70.04320 70.01943 70.02236 70.01994
5% 70.02142 70.01002 70.01293 70.00877
10% 70.01516 70.00577 70.00756 70.00614
25% 70.00460 0.00054 70.00145 70.00146

Probability of return below 0 0.35 0.23 0.28 0.32
Minimum historical observation 70.12628 70.08218 70.04266 70.02951

B. Daily var
Mean excess return 0.00033 0.00040 0.00035 0.00027
Standard deviation 0.00492 0.00296 0.00277 0.00169
Serial correlation 70.12 70.06 0.00 0.35
VAR

1% 70.01236 70.00647 70.00653 70.00327
5% 70.00710 70.00398 70.00400 70.00202
10% 70.00504 70.00293 70.00288 70.00149
25% 70.00239 70.00133 70.00130 70.00071

Probability of return below 0 0.47 0.44 0.45 0.46
Minimum historical observation 70.10079 70.06723 70.01987 70.01069

Monthly and daily VAR percentiles of pairs trading strategies between July 1963 and December 2002
(474 months). Pairs are formed over a 12-month period according to a minimum-distance criterion, and
then traded over the subsequent 6-month period. We trade according to the rule that opens a position in a
pair on the day following the day on which the prices of the stocks in the pair diverge by two historical
standard deviations. The ‘‘top n’’ portfolios include the n pairs with least distance measures, and the
portfolio ‘‘101–120’’ includes the 20 pairs after the top 100. The average number of pairs in the all-pair
portfolio is 2057.
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The significance of the risk-adjusted returns indicates that pairs trading is

fundamentally different from simple contrarian strategies based on rever-

sion [Jegadeesh (1990) and Lehmann (1990)]. The next sections provide

further evidence to support this view.

The bottom of Table 4 reports the results of regressing the pairs

returns on an alternative set of risk factors suggested by Ibbotson: the

excess return on the S&P 500, the U.S. small stock premium, the U.S.

bond default premium, and the U.S. bond horizon premium. Although
the risk exposures are generally not significant, the signs of coefficients

are positive across all portfolios. Thus, when corporate bonds increase in

price relative to government bonds, the pairs portfolios make money.

There are a range of possible explanations for this pattern. Relatively

cheaper borrowing rates by arbitrageurs may force stock prices closer to

equilibrium values, or common factors affecting convergence in both

stock and bond markets may be responsible. The portfolios also appear

to be sensitive to shifts in the yield curve, that is, when long-term spreads
decrease, pairs trading is more profitable. At first glance, the sensitivity to

term-structure measures may be explained by the presence of interest rate

sensitive Utility stocks in many of the top pairs. However, interest rate

movements also seem to matter for the more broadly diversified pairs

portfolios. In sum, the pairs portfolios seem to have low exposure to

various sources of systematic risk. The R-squared of most regressions is

low, indicating that the portfolios are nearly factor-neutral. This may be

expected because they are constructed in a way that should essentially
match up economic substitutes.

Table 5 reports both monthly and daily VAR measures to summarize

the quantiles of the empirical distributions of the pairs’ excess returns.

Panel A shows that the worst monthly loss over the almost 40-year

sample period was 12.6% for the top five pairs portfolio, and 8.2% for

the top 20 portfolio. On average, only once in every hundred months did

these portfolios lose more than 4.32 and 1.94%, respectively. Panel B

shows that on its worst day, the top five portfolio recorded a 10.08%
loss, compared to a 6.72% loss of the top 20 portfolio. On average, only

once every hundred days did these portfolios lose more than 1.24% and

0.65%, respectively.

The VAR is useful because it provides a gauge to the potential leverage

that could be applied to these strategies. A five-to-one leverage ratio

applied to the top five pairs would appear to have been adequate to

cover the worst monthly loss in the 40-year period. Although the lessons

of recent history have taught us not to rely too heavily on historical VAR
measures for gauging capital needs for exploiting convergence strategies,

the pairs portfolios seem to be exposed to relatively little risk.

Figure 2 shows the monthly performance of the top 20 pairs, based on

the next-day trading rule. Pairs trading was very profitable in the 1970s
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and 1980s, and then had a span of more modest performance, when the

returns were sometimes negative. Figure 3 compares the cumulative
excess returns of the top 20 one-day-waiting strategy with the cumulative

excess returns of investment in the S&P 500 index. The smooth index of

the pairs trading portfolio contrasts dramatically with the volatility of the

Figure 2
Monthly excess returns of top 20 pairs portfolio
May 1963–December 2002.

Figure 3
Cumulative excess return of top 20 pairs and S&P 500
May 1963–December 2002.
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stock market. Pairs trading performed well over difficult times for U.S.

stocks. When the U.S. stock market suffered a dramatic real decline from

1969 through 1980, the pairs strategy experienced some of its best perfor-

mance. By contrast, in the mid-1990s the market performed exceptionally

well, but pairs trading profits were relatively flat. Perhaps after its dis-

covery in the early 1980s by Tartaglia and others, competition decreased

opportunity. On the other hand, pairs trading might simply be more

profitable in times when the stock market performs poorly.
Two additional explanations may account for the temporal variation in

profitability. The first is the long-term trend in transaction costs over the

history of our sample. The early part of the analysis represents a period

with high fixed commissions. These frictions might have prevented the

rapid convergence of relative prices. The secular decrease in transaction

costs may have attracted more relative-value equity arbitrage. This is

becoming increasingly so with the introduction of more sophisticated

trading technologies and networks. The second explanation may be the
rise in hedge funds in the period since 1989. The TASS hedge fund

database reports that hedge fund assets rose from $4 billion in 1977 to

$137 billion in 2000, with the most dramatic growth after 1992. Although

this database does not capture proprietary trading operations of invest-

ment banks, it does suggest that risk arbitrage activities have grown

significantly in the last decade of our sample period. Of the $137 billion

in hedge fund assets in 2000, $119 billion employed ‘‘Market Neutral’’

‘‘Relative Value’’ or ‘‘Arbitrage’’ strategies, all of which may potentially
impact pairs trading operations. Thus, it is possible that lower transaction

costs and large inflows of investment capital to relative-value arbitrage

have together decreased the rate of return on pairs trading, at least in the

simple form we test in this article. In Section 3.8, we will revisit this issue

and show that in contrast to the raw returns the risk-adjusted return to

pairs trading has been relatively stable over time.

3.6 Pairs trading and contrarian investment
Because pairs trading bets on price reversals, it is an example of a contra-

rian investment strategy. The results of Table 4 showed that the returns to

pairs are positively correlated with—but not explained by—short-term

reversals documented by Lehmann (1990) and Jegadeesh (1990). In this

section we further explore whether our pairs trading strategies are merely

a disguised way of exploiting these previously documented negative auto-

correlations. In particular, we conduct a bootstrap where we compare the

performance of our pairs to random pairs. The starting point of the
bootstrap is the set of historical dates on which the various pairs open.

In each bootstrap we replace the actual stocks with two random securities

with similar prior one-month returns as the stocks in the actual pair.

Similarity is defined as coming from the same decile of previous month’s
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performance. The difference between the actual and the simulated pairs
returns provides an indication of the portion of our pairs return that is

not due to reversion. We bootstrapped the entire set of trading dates 200

times. The results are summarized in Table 6. On average we find that the

returns on the bootstrapped pairs are well below the true pairs returns. In

fact, the excess returns to the simulated pairs are slightly negative, and the

standard deviations of the returns are large relative to the true pairs,

which is a reflection of the fact that the simulated pairs are poorly

matched. The conclusion from the simulations confirms the conclusion
from the factor regressions that the pairs strategy does not merely reflect

one-month mean reversion. In addition, in the next section, we will show

that the long and short portfolios that make up a pair do not provide

equal contributions to the profitability of the strategy. These three find-

ings combined strongly suggest that our pairs trading strategy seems to

capture temporal variation in returns that is different from simple mean

reversion.

3.7 Risk and return of the long and short positions

There are at least three reasons to separately examine the returns to the

long and short portfolios that make up a pairs position. First, the

Table 6
Returns to random pairs sorted on prior one-month return

Portfolio Top 5 Top 20 Top 100–120 All 120

A. No waiting
Fully invested

Mean excess return 70.00137 70.00111 70.00105 70.00113
Standard deviation 0.05521 0.02295 0.02264 0.01200
Median 70.00192 70.00153 70.00156 70.00162

Committed capital
Mean excess return 70.00083 70.00077 70.00089 70.00091
Standard deviation 0.02635 0.01358 0.01443 0.00760
Median 70.00123 70.00100 70.00123 70.00122

B. Wait one day
Fully invested

Mean excess return 70.00177 70.00004 70.00154 70.00156
Standard deviation 0.05966 0.05310 0.02404 0.01213
Median 70.00241 70.00172 70.00206 70.00201

Committed capital
Mean excess return 70.00103 70.00094 70.00112 70.00112
Standard deviation 0.02811 0.01363 0.01449 0.00761
Median 70.00152 70.00118 70.00148 70.00139

Bootstrap of random pairs traded according to the rule that opens a position in a random pair when the
stocks in the true pair diverge by two historical standard deviations and closes the position after the next
crossing of prices. The random stocks are selected within the same last-month performance decile on the
day the position is opened. The top panel gives summary statistics of the monthly excess returns on value-
weighted portfolios of n pairs of stocks where the position is opened immediately. The last column is a
portfolio of all 120 top pairs. The bottom panel summarizes the performance with one day waiting before
the position is opened. The statistics are computed over 200 replications of the bootstrapped sample.
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separate returns provide further insight into the question of mean rever-

sion. If pairs trading simply exploits mean reversion, one would expect

the abnormal returns to the long and short positions to be equal because

the opening of a pair is equally likely to be triggered by either stock.

Second, if the excess returns are predominantly driven by the short

position, it becomes important to examine whether short-sale considera-

tions might prevent arbitrageurs from competing away the profits.

Finally, the risk exposures of the two portfolios can provide further
clues to the reason for the profitability of pairs—for example, the possi-

bility that the long and short portfolios have different exposures to

common nonstationary risk factors such as bankruptcy risk.8 The returns

and the risk exposures of the component portfolios are summarized in

Table 7.

The table demonstrates that much of the pairs risk-adjusted excess

return comes from the short portfolio, which contains the stocks that

have increased in value relative to their counterparts prior to opening of
the pair. By contrast, the alphas of the long portfolio containing the

stocks that decreased in value relative to their counterparts are smaller,

and insignificantly different from zero for the top 5 and top 20 portfolios.

The asymmetry of the results provides further evidence that the returns to

pairs are not due to simple one-month mean reversion. And because

much of the abnormal return comes from the short position, which

experienced an increase in relative value prior to opening, it is unlikely

that the returns are driven by a reward for unrealized bankruptcy risk.
The robustness of our results to the cost of short sales will be discussed in

Section 3.9.

3.8 Subperiod analysis and the presence of a dormant risk factor

Table 8 summarizes the profitability of pairs trading when we split the

sample period at the end of 1988. A comparison between the two top halves

of the two panels shows a drop in the raw excess returns to pairs trading.

For example, the excess return of the top 20 strategy drops from 118 bp per
month to about 38 bp per month. Has increased hedge fund activity

arbitraged away the anomalous behavior of pairs since the pre-1989 per-

iod? Inspection of the risk-adjusted returns shows that this is not the case:

the average risk-adjusted return of the top 20 portfolio drops by about one-

third from 67 to 42 bp per month, but remains significantly positive in both

subperiods (t = 4.41 and 3.77, respectively). Changes in the factor expo-

sures and factor volatilities can explain only part of the lower returns in the

early part of the sample, but not the risk-adjusted returns to pairs trading.
Are the positive risk-adjusted returns to pairs trading a general failure

of our risk model? In other words, are there reasons to believe that the

8 We thank a referee for suggesting this explanation.
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Table 7
Returns to long and short components of pairs

Top 5 Top 20 20 after top 100 All

Portfolio Long Short Long Short Long Short Long Short

Portfolio performance
Mean monthly return 0.01245 0.00501 0.01330 0.00435 0.01458 0.00663 0.01623 0.00908
Standard error (Newey-West) 0.00183 0.00177 0.00179 0.00174 0.00170 0.00165 0.00254 0.00231
Standard deviation 0.03875 0.03259 0.03653 0.03161 0.03437 0.03146 0.05157 0.04601
Monthly serial correlation 0.06 0.11 0.09 0.12 0.13 0.12 0.17 0.16

Regression on Market, SMB, HML,
Momentum, and Reversal factors
Intercept 0.00103 70.00442 0.00243 70.00521 0.00287 70.00426 70.00101 70.00613
t-Statistic 0.47 72.74 1.27 73.35 2.85 74.26 71.32 75.22
U.S. equity risk-premium 0.37415 0.44075 0.47617 0.50772 0.48520 0.56217 0.58571 0.73091
t-Statistic 4.60 6.19 6.68 8.44 10.23 9.74 14.99 12.13
SMB 70.16764 70.12532 70.06506 70.06616 0.01120 0.03453 0.22192 0.29271
t-Statistic 71.74 72.00 70.80 71.22 0.27 0.95 3.45 3.15
HML 0.48401 0.42661 0.52539 0.48025 0.39451 0.41175 0.25732 0.31134
t-Statistic 7.12 6.92 9.36 9.47 9.76 11.54 7.49 8.11
Momentum 70.05430 70.02625 70.04456 0.00361 70.10901 70.00589 70.08832 0.09245
t-Statistic 71.48 70.65 71.21 0.10 73.53 70.21 73.53 2.81
Reversal 0.15854 0.05662 0.09601 0.02365 0.17288 0.07830 0.39208 0.19131
t-Statistic 1.83 1.13 1.26 0.55 4.33 1.90 10.44 2.98
R2 0.39 0.41 0.48 0.49 0.78 0.75 0.97 0.93

Monthly risk profile for the long and short positions of the pairs portfolios formed and traded according to the ‘‘wait one day’’ rule discussed in the text. The returns in the
bottom half of the table are in excess of the 30-day Treasury bill returns. The risk adjustment includes the Fama–French factors, as well as Momentum and the Reversal factors
discussed in the text. The t-statistics are computed using Newey-West standard errors with six lags. Absolute kurtosis is reported.
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risk-adjusted pairs returns are a compensation for an omitted (latent) risk

factor? Inspection of the correlation between disjoint pairs portfolios

provides some support for this view. Moreover, this latent risk factor

seems to have been relatively dormant over the second half of our sample,

which can account for the lower recent profitability of pairs trading. The
full-sample correlation between the excess returns of the top 20 and the

100–120 pairs portfolios is 0.48. Because there is no overlap between the

positions of these portfolios, the correlation indicates the presence of a

Table 8
Subperiod analysis

Portfolio Top 5 Top 20
20 after
top 100 All Factor SD

A. Pre-1989
‘‘Wait one day’’ portfolio performance

Mean excess return 0.01034 0.01181 0.01052 0.00992
Standard deviation 0.02259 0.01689 0.01527 0.01651

Regression on Fama–French factors
Intercept 0.00353 0.00670 0.00710 0.00446
t-Statistic 1.72 4.41 6.54 4.19
U.S. equity risk-premium 70.43395 70.31200 70.28946 70.43429 0.04580
t-Statistic 74.29 73.57 73.80 77.26
SMB: small minus big 70.44181 70.33193 70.27508 70.40184 0.02923
t-Statistic 73.75 72.86 72.86 75.76
HML: high minus low book to market 0.03568 0.03162 70.06840 70.06983 0.02597
t-Statistic 0.64 0.73 71.84 71.97
Momentum 0.01291 70.01630 70.07689 70.15848 0.03506
t-Statistic 0.29 70.50 72.92 75.01
Reversal 0.43575 0.33274 0.28765 0.45222 0.07228
t-Statistic 4.44 3.62 4.05 7.98
R2 0.19 0.23 0.26 0.70

B. Post-1988
‘‘Wait one day’’ portfolio performance

Mean excess return 0.00217 0.00375 0.00327 0.00212
Standard deviation 0.01660 0.00987 0.01121 0.01295

Regression on Fama–French factors
Intercept 0.00337 0.00417 0.00363 70.00065
t-Statistic 2.12 3.77 3.01 70.56
U.S. equity risk-premium 0.07339 0.04804 0.00241 70.06958 0.04390
t-Statistic 1.68 1.81 0.06 72.43
SMB: small minus big 70.00400 0.02888 0.02332 70.06063 0.03856
t-Statistic 70.10 1.32 0.69 72.83
HML: high minus low book to market 0.03441 0.01412 0.01830 70.08202 0.03641
t-Statistic 0.61 0.45 0.50 72.65
Momentum 70.00424 70.02266 70.08840 70.12670 0.04926
t-Statistic 70.13 71.29 74.17 77.59
Reversal 70.06259 70.01727 0.02404 0.18808 0.04448
t-Statistic 71.76 70.67 0.54 5.56
R2 0.02 0.04 0.19 0.64

Monthly risk profile for portfolios of pairs formed and traded according to the ‘‘wait one day’’ rule
discussed in the text, over the two subperiods between July 1963 and December 1988 (Panel A) and
between January 1989 and December 2002 (Panel B). The ‘‘top n’’ portfolios include the n pairs with least
distance measures, and the portfolio ‘‘20 after top 100’’ includes the 20 pairs after the top 100 pairs. The
average number of pairs in the all-pair portfolio is 2057. The t-statistics are computed using Newey-West
correction with six lags for the standard errors.

The Review of Financial Studies / v 19 n 3 2006

822



common factor to the returns. Moreover, the correlation is 0.51 over the

profitable pre-1988 period but much lower (0.18) over the lower excess return

post-1988 period. These correlations are not driven by the 5 ‘‘systematic’’ risk

factors we considered, because the correlations of the residuals from the

factor regressions are very similar to the raw correlations. In particular, the

correlation between the top 20 Fama–French-Momentum-Reversal

(FFMR) residuals and the top 100–120 FFMR residuals is 0.41. The respec-
tive subperiod FFMR correlations are 0.42 and 0.20. This is further illu-

strated in Figure 4, which shows that the rolling 24-month correlation

between the two portfolios was especially high during the pre-1989 period.

These results suggest that there is common component to the profits of

pairs portfolios that is not captured by our conventional measures of sys-

tematic risk. The common component was stronger during the first half of

our sample, which is consistent with higher profits (abnormal returns) than in

the second half of our sample when the factor was more dormant. These
results are consistent with the view that the abnormal returns documented in

this article are indeed a compensation for risk, in particular the reward to

arbitrageurs for enforcing the ‘‘Law of One Price.’’

3.9 Robustness to short-selling costs

Having identified and back-tested a filter rule, and subjected it to a range
of controls for risk, the question of the nature of pairs profits remains.

Why do prices of close economic substitutes diverge and converge? The

Figure 4
Top 20 pairs and 101–120 pairs portfolios
Rolling 24-month correlation of five-factor risk-adjusted excess returns.
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convergence is easier to understand than the divergence, given the natural

arbitrage motivation and the documented existence of relative-value arbi-

trageurs in the U.S. equity market. However, this does not explain why

prices drift away from parity in the first place. One possible explanation is

that prices diverge on random liquidity shocks that cannot be exploited

by professional arbitrageurs because of short-selling costs.9

First, there are explicit short-selling costs in the form of specials.

Second, D’Avolio (2002) argues that short recalls are potentially costly
because they may deprive arbitrageurs of their profits. This opportunity

cost is reinforced by D’Avolio’s findings that short recalls are more

common as the price declines. For example, if the short stock is recalled

when it starts to converge downward, then the pairs position is forced to

close prematurely and the arbitrageur does not capture the profit from the

pair convergence. We perform two tests for robustness of the profits that

corresponds to these two types of short-selling costs.

The first test is motivated by the findings of D’Avolio (2002) and
Geczy et al. (2002) that specials have minimal effect of large stocks.

Correspondingly, we test for robustness of profits by trading pairs that

are formed using only stocks in the top three size deciles.10 The results,

given in Panel A of Table 9, can be directly compared to those in Panel B

of Table 1. The comparison shows that the profits of the top 20 strategy

drop by about 2 bp per month, but increase for the top five portfolios.

Overall, the profits change little and remain highly significant. This

shows that the pairs trading profits are not driven by illiquid stocks
that are likely to be on special.

The second test is motivated by the evidence in Chen et al. (2002) and

D’Avolio (2002) that short recalls are driven by dispersion of opinion. We

use high volume as proxy for divergence of opinion and perform pairs

trading under recalls, where we simulate recalls on the short positions, and

subsequent closing of the pairs position, on days with high volume. High-

volume days are defined as days on which daily volume exceeds average daily

volume over the 18 months (both split-adjusted) by more than one standard
deviation. Panel B of Table 9 summarizes the profits of pairs trading with the

high-volume recalls. The profits decline slightly by 4–13 bp per month,

yet they remain large and positive. For example, the top 20 pairs portfolio

earns an average of 85 bp per month with short recalls, with a Newey-West

t-statistic of 9.07. The results in Panel B can be interpreted as an estimate of

the opportunity cost of short recalls.

9 We are grateful to the editor Maureen O’Hara for pointing out this plausible explanation and for
suggesting the way to test it.

10 Using large liquid stocks also mitigates the problem of stocks that are hard to short and can be
overvalued, see, for example, Jones and Lamont (2002).
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Overall, the small effects confirm that the profits persist when trading

pairs of large stocks as well as when shorts are recalled. These results

show that pairs trading profits are robust to short-selling costs. For

better-positioned investors, for example, large institutions and hedge

funds, the pairs trading profits are likely to remain essentially unaffected

by potential shorting costs. Getczy et al. (2002) argue that for large

traders, who have better access to most stocks at ‘‘wholesale prices,’’

direct shorting costs of the rebate rate on short sales are low (4–15 bp/
year). The main implicit shorting cost stems from limited availability and

is relevant mostly for general retail investors. The impact of such poten-

tial short sales constraints on the profitability of pairs trading by large

investors is mitigated by our use of liquid stocks that trade every day over

a period of one year.

Table 9
Robustness to short-selling costs

Portfolio Top 5 Top 20
20 after
top 100 All

A. Top three deciles
Mean monthly return (fully invested) 0.00835 0.00914 0.00728 0.00690
Standard error (Newey-West) 0.00112 0.00096 0.00075 0.00064
t-Statistic 7.47 9.48 9.66 10.85
Excess return distribution

Median 0.00800 0.00793 0.00614 0.00508
Standard deviation 0.01904 0.01464 0.01579 0.01294
Kurtosis 0.02 0.98 0.80 1.77
Skewness 7.01 8.20 6.46 11.67
Minimum –0.10894 –0.05646 –0.03803 –0.02680
Maximum 0.10144 0.10003 0.10642 0.10478
Observations with excess return < 0 32% 26% 33% 27%

Mean excess return on committed capital 0.00493 0.00514 0.00462 0.00401

B. Short recalls on high volume
Mean monthly return (fully invested) 0.00619 0.00854 0.00665 0.00585
Standard error (Newey-West) 0.00115 0.00094 0.00085 0.00098
t-Statistic 5.39 9.07 7.81 5.95
Excess return distribution

Median 0.00592 0.00703 0.00531 0.00312
Standard deviation 0.02210 0.01488 0.01505 0.01555
Skewness 0.15 0.48 1.03 2.82
Kurtosis 5.39 6.00 7.39 18.98
Minimum –0.09611 –0.06594 –0.04408 –0.03465
Maximum 0.10504 0.07255 0.10084 0.14173
Observations with excess return < 0 39% 26% 34% 37%

Mean excess return on committed capital 0.00304 0.00347 0.00296 0.00202

Summary statistics of the monthly excess returns on portfolios of pairs. We trade according to the rule that
opens a position in a pair when the prices of the stocks in the pair diverge by two historical standard
deviations. Panel B reports the summary statistics for the rule that waits one day before opening and closing
the position. The ‘‘top n’’ portfolios include the n pairs with least distance measures, and the portfolio ‘‘20
after top 100’’ includes the 20 pairs after the top 100 pairs. The average number of pairs in the all-pair
portfolio is 2057. There are 474 monthly observations, from July 1963 through December 2002. The t-
statistics are computed using the Newey-West standard errors with six-lag correction. Absolute kurtosis is
reported.
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4. Conclusion

We examine a hedge fund equity trading strategy based on the notion of

co-integrated prices in a reasonably efficient market, known on Wall

Street as pairs trading. Pairs are stocks that are close substitutes accord-
ing to a minimum-distance criterion using a metric in price space. We find

that trading suitably formed pairs of stocks exhibits profits, which are

robust to conservative estimates of transaction costs. These profits are

uncorrelated to the S&P 500; however, they do exhibit low sensitivity to

the spreads between small and large stocks and between value and growth

stocks in addition to the spread between high- and intermediate-grade

corporate bonds and shifts in the yield curve. In addition to risk and

transaction cost, we rule out several explanations for the pairs trading
profits, including mean reversion as previously documented in the litera-

ture, unrealized bankruptcy risk, and the inability of arbitrageurs to take

advantage of the profits because of short-sale constraints.

One view of the lower profitability of pairs trading in recent year is that

returns are competed away by increased hedge fund activity. The alter-

native view, taken in this article, is that abnormal returns to pairs strate-

gies are a compensation to arbitrageurs for enforcing the ‘‘Law of One

Price.’’ We present two pieces of empirical evidence that supports this
view. First, although raw returns have fallen, the risk-adjusted returns

have continued to persist despite increased hedge fund activity. Second,

our results suggest that the change in risk-adjusted returns of pairs trad-

ing is accompanied by the diminished importance of a common factor

that drives the returns to pairs strategies. A further examination of the

nature of this common factor and its link to the profitability of pairs

trading is an important question for future research.
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