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We give a new sufficient condition for convergence to a Poisson distribution of a sequence of
sums of dependent variables. The condition allows each summand to depend strongly on a few
of the other variables and to depend weakly on the remaining ones.

As a consequence we obtain sufficient conditions for the convergence of point processes,
constructed as sets of (weakly) dependent random points in some space S, to a Poisson process.

The main applications are to random graph theory. In particular, we solve the problem (proposed
by Erdds) of finding the size of the first cycle in a random graph.
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Introduction

It is well known that random variables that can be written as sums of a large
number of indicator (zero-one) variables, each having a small probability of being
non-zero, generally tend to be approximately Poisson distributed [20]. Results of
this type, either limit theorems or quantitative estimates of the distance to a Poisson
distribution, have been proved under various conditions by many authors. In the
present paper two limit theorems of this type are given. In one of them (Theorem
1.2) it is assumed that each of the indicator variables is independent of all but a
relatively small number of the others. Typical examples are U-statistics and some
generalizations thereof. Earlier results of this type, wholly or partly contained in
Theorem 1.2, have been given by Silverman and Brown [21], Eagleson [9], Berman
and Eagleson [4], Barbour and Eagleson [2, 3], Jammalamadaka and Janson [12].

We also give a more general result (Theorem 1.1), partly inspired by the methods
of Barbour[1], where the independence assumption is replaced by a certain condition
saying that the variables are close to being independent. In typical applications (as
in Sections 9 and 10), each variable depends rather strongly on a small number of
the others, and weakly on the remaining ones.

The indicator variables in these theorems are not assumed to be identically
distributed. The dependence assumptions are not stated in terms of “time” or any
other ordering; i.e. they are not of Markov or mixing type.

These theorems have powerful generalizations to point processes. Consider a
large number of weakly dependent random points in some set. We then expect their
distribution to be approximated by a Poisson process. Limit theorems of that type
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are proved in Section 3, using the basic theorems in Section 1 and background
material on point processes collected in Section 2.

Section 4 contains two generalizations of the Poisson convergence theorems in
Section 1, both proved as applications of the theorems in Section 3 on convergence
of point processes. Theorem 4.1 is a vector-valued version of Theorem 1.1, while
Theorem 4.2 gives a limit theorem for sums of more general real-valued (i.e. not
necessarily 0-1) random vanables.

Section 5 discusses the special case of dissociated variables, which are important
for applications. This also illuminates the relation to the earlier results referred to
above.

The second part of the paper gives applications to random graphs. Section 6
contains some pertinent definitions.

Section 7 studies the number and lengths of the cycles in a random graph. One
result (Corollary 7.4) is an exact formula for the asymptotic probability that the
chromatic number of a random graph equals 2.

Section 8 gives a solution to the following problem by Erdos (communicated by
Edgar Palmer to the Second Seminar on Random Graphs in Poznan, August 1985):

What is the size of the first cycle in a random graph?

(Edges are added one by one at random.)

It is shown (Theorem 8.1) that the distribution of the size of the first cycle
converges (as the number of vertices tends to o) to an explicitly given limit
distribution. The average size, however, tend tends to 0.

Isolated cycles are studied in Section 9. It is shown (Corollary 9.4) that usually
they do not appear at all.

We also consider the number of the first cycle (if any) that is isolated. We find
(Theorem 9.2) another unusual asymptotic behaviour: about 42% of the mass
vanishes off to infinity.

Section 10 gives an example of a subgraph such that the number of copies of it
in a random graph is not asymptotically Poisson distributed, although a limit
distribution exists. In this example, the limit distribution can be represented as a
sum of a random number of Poisson variables.

It is also shown that, in contrast, the number of isolated copies of the graph is
asymptotically Poisson distributed.

1. The fundamental Poisson convergence theorem

We consider a triangular array {X,;};. 4, of indicator variables. For convenience,
we will usually omit n from the notations in the sequel, although (usually) the
variables X; and the index set #, as well as other objects such as .’E}k in Theorem
1.1 and D; in Theorem 1.2, depend on n.

We will prove convergence to a Poisson distribution of the sums } X, under
conditions involving modifications i’kj of X, chosen such that }?kj is independent
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of X;. While this makes the conditions somewhat complicated, we will show below
that a simple choice of X’kj gives a corollary (Theorem 1.2) which is easily applied
in many situations, including several of those studied in the references cited earlier.
We will also (in Sections 9 and 10) give applications where the full strength of
Theorem 1.1 is used, and show how )Z’,cj may be chosen in such cases.

Theorem 1.1. Let, for each n, {X;},c; be a (finite or infinite) family of indicator
variables and assume that there exist random variables X,;, j, k€ ¥, such that X is
independent of {X,;}««; for every je ¥ and, as n— oo,

_ZﬁP(X}=1)—>A, where 0< )\ <o, (1.1)
je
ap P(X;=1)-0, (1.2)
jezj' P(X;=1 and there exists k # j with }-(,g- # X, )~ 0, (1.3)
je}:y P(X;=1) - P (there exists k # j with X,; # X,) > 0. (1.4)
Then
Z}Xj—%Po(/\) as n- oo. (1.5)
je

Remark 1.1. The conditions may be formulated in various ways. Since EX;=
P(X;=1), (1.1) may be written

E Y X;= ) EX;-> A, where 0<]\ <. (1.1
jeg JjesF
Since } ,P(X; = 1)< sup;,P(X;=1)Y;P(X;=1), (1.2) is equivalent to
¥ P(X,=1)~0, (12)
JEF

provided (1.1) holds. It is sometimes convenient to write (1.3) as

Y P(X;=1)P(X,;# X, for some k# j| X;=1)-0. (1.3
jed

Furthermore, (1.3) may be replaced by the stronger assumption

Y'Y P(X;=1and X,; # X,) >0 (1.6)

Jnk
or by, cf. (1.3') and (1.1),
sup P(X,; # X, for some k# j|X;=1)-0, (1.7)
j

and (1.4) may be similarly modified.
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Proof. We use Stein’s method, cf. Chen [7]. Let S=) X, S; =Y i« »; Xk, §J = Zkﬁ}z’kj,
@(1)=E exp(itS) and ¢;(t) = E exp(itS;). Since E|S|=ES <, ¢(t) is differenti-
able and

d t . if . i
-%"—‘E(l.S'e S)=1ZE(Xje 5. (1.8)
F
Furthermore, since X is an indicator variable and X; is independent of {i’kj}k, %
|E(X; €")— P(X;=1) '¢,(1)|= | EX; "™ — E(X; &%) (1)
- |EX, eirxi.(eirsj_eirfijﬂ

= ElXj(ei'sf _ei:§i)!

<2P(X;=1and §;# S)). (1.9)
Similarly,
16,(1) = @(1)|=| E(e" =" X)|
<2P(S;# S;+ X;)<2P(S; # S;)) +2P(X; #0). (1.10)
Consequently,
L2205 p(x,= 1) o)

<Y|E(X;e") = P(X;=1) e'g,(1) |+ L P(X; =1)| (1) — ¢ (1)
7§ J
:{-ZZ_P(Xj=l and ka-#Xk for some k # j)
+27¥ P(X;=1)P(X,; # X, for some k#j)+2Y P(X;=1)". (1.11)
J J

The sums on the right hand side tend to zero as n->co by (1.3), (1.4) and (1.2).
Hence, (1.11) together with (1.1) show that

d‘;—(:)—i)t e'o(t)->0 as n->0co, uniformly in (1.12)
Thus,

d : d . .

= (o(1) exp(A(1—¢€))) = (%—ih e”qo(t)) exp(A(1—¢'))~>0

uniformly in 1, whence by integration
o(t) exp(A(1—€"))—1-0, for every t, as n-> .
Consequently, ¢(t)~>exp(A(e' —1)) and S Po(A) as n>c0. [
In the simplest case, {X;} are independent and we may choose )?kj = X, for all k
and j. Then (1.3) and (1.4) are trivially satisfied, and we recover the standard result

that sums of independent indicator variables converge to a Poisson distribution
provided (1.1) and (1.2) holds.
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Of more interest is the following situation. Suppose that X; is independent of all
X, except some (preferably relatively small) set {X,}..p,. We then define

~ Xy, k# DJ.-,
ki =

0 ke D; tL13)
J

and obtain the following result.
Theorem 1.2. Let, for each n, {X;},. s be a family of indicator variables and assume

that for every j € ¥ there exists a subset D; of § (with j € D;) such that X is independent
of {X,: ke D;} and, as n—> o,

Y P(X;=1)->A, where 0<) <, (1.14)
je#

Y Y P(X;=1)P(X,=1)->0, (1.15)
jeS ke D;

Y Y P(X;=1and X,=1)-0. (1.16)

jed ke DA}
Then

Y X;% Po(A) as n-co.
jes

Proof. (1.14) is the same as (1.1). (1.16) is (assuming (1.13)) the same as (1.6),
which implies (1.3). (1.15) is a combination of (1.2") and
Y ¥ P(X;=1)P(X,; # X,) 0.

J=k

Thus (1.1)-(1.4) hold and the conclusion follows by Theorem 1.1. [J

Remark 1.2. (1.14) can be written E} X; - A while (1.16) (which often is the condition
that is most difficult to verify) is equivalent to Var(} X;) > A (assuming (1.14) and
(1.15)). Note also that if the variables X; are equi-distributed (and (1.14) holds with
A >0), (1.15) says that the (average) relative size of D; tends to zero.

Various applications of Theorems 1.1 and 1.2 will be given in later sections. Other
applications include e.g. sums of m-dependent indicator variables (also with multi-
dimensional index sets).

Remark 1.3. A related result, with normal convergence, holds when A =0. Viz., if
(1.1) is replaced by
wu=ES=Y P(X;=1)<o© and up-> as n->x, (1.17)

and (1.2) is replaced by (1.2’) (which no longer is equivalent), then we obtain as
in the proof above

de(t)/dt—iu e'¢(t)=>0 as n—>oo0, uniformly in .
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_;2/2 .

An argument similar to the one above then shows that ¢(/vu) e Vrse , 1.e.

(S—p)/Vu < N(,1) as n->co,
(In fact, it suffices that the left hand sides of (1.2"), (1.3) and (1.4) are o(n'’?).)

Remark 1.4. A vector-valued version of Theorem 1.1 may be proved by the same
method. We will give another proof, based on Theorem 1.1 and the theory of point
processes, in Section 4.

2. Point processes

We review some basic facts on point processes and refer to Kallenberg [14] for
further details. The processes take place in some set ¥ which we assume to be a
locally compact second countable Hausdorff topological space. (For example ¥
may be a closed or open subset of R“) A Radon measure on ¥ is a Borel measure
w such that u(K)<co for every compact K < ¥; we are only interested in such
measures. Point processes are defined as random integer valued Radon measures,
i.e. Radon measures that can be written as

‘5::25)(,) (21)

where X; are random variables with values in &, N is a finite or infinite random
variable, and &, is the Dirac measure

5.(A)=I(xeA), Ac Y. (2.2)

Informally, we may regard ¢ as the random (unordered) set {X;} (but note that
multiple points may occur); £(A) = 3 I(X; € A) is the number of points of this set
that fall in A.

Let A be a Radon measure on &% The Poisson process with intensity A then is
the (unique) point process ¢ such that the random variable £(A) is Poisson distributed
with parameter A(A) for every Borel set A< &, and £(A,), ..., {§(A,) are indepen-
dent for any disjoint Borel sets A,, ..., A,. A simple, but useful, example is when
% is a finite or infinite discrete set; then a Poisson process on & is a collection of
independent Poisson variables.

A \-continuity set is a Borel set A such that A(8#A) =0. Similarly, if ¢ is a point
process, A is a &-continuity set if £(3A)=0 as. If £ is a Poisson process with
intensity A, the &-continuity sets are exactly the A-continuity sets. Note that the
&-continuity sets form a ring.

We will discuss convergence of point processes in two topologies, viz. the vague
topology defined on the set of all Radon measures and the weak topology defined
on the subset of finite measures. We use 2, and 2% to denote convergcnce in
distribution in these topologies, respectively, as n > c0. (The phrase “as n - 0™ will
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usually be omitted from the formulae). The following lemma gives useful characteriz-
ations. (Parts (a) and (c) are contained in Kallenberg [14, Theorems 4.2 and 4.9];
part (b) follows similarly.)

Lemma 2.1. Let & &,, ... be point processes on &.
(@) & =5 £iff (&.(A)), ..., & (A)) S (E(A), ..., E(AL)) for all integers k and
all relatively compact &-continuity sets A, . .., A.
(b) &~ £ iff (£.(A)), ..., &(A)) > (E(A), ..., E(AL)) for all integers k
and all é-continuity sets A,, ..., Ax.
() &~ ¢iff &~ £and £,(%) > &(¥). O

Warning 2.1. The notion of vague convergence depends in an essential manner on
the space &. For example, vague convergence in (0,c0) does not imply vague
convergence in [0,00) (because mass may disappear at 0). Hence some care is
required in specifying & in applications. However, & may always be replaced by a
larger space of which it is a closed subspace, without affecting vague convergence.

If £ is a point process and A a Borel set in &, let A¢ denote the restriction of ¢
to A defined by A¢(B)=£¢(An B), B a Borel set in &. (We thus keep all points in
A and eliminate the others.) Lemma 2.1 easily yields the following.

Lemma 2.2. Let £ &,, ... be point processes on & and A a &-continuity set.

(a) If &~ ¢, then AL, —— AL
(b) If &, L5 £ then A¢, - A
(c) If &~ ¢ then A&, —— AL iff £,(A)> £(A). O

We see from Lemma 2.1 that the vague topology is weaker than the weak topology
since we only get conclusions on the distribution of £,(A) for relatively compact
sets A. It is important for applications to have criteria that enable us to conclude
that £,(A) 2 £(A) (and thus, by Lemma 2.2(c), Aé, 2, A¢) also for sets that are
not relatively compact. The following is a useful criterion. Define the measure E¢,
by (E&,)(B) = E(&,(B)); Eé,<p means E£,(B)< u(B) for every B.

Lemma 2.3. Let & &,,... be point processes on & and let u be a Borel measure such
that E¢, < p for every n. If £, —%> ¢ and A is a é-continuity set with u(A) <0, then

&.(A) S £(A).

Proof. Let K be a compact set in &. Then

lim sup P(£,(A\K)>0) =lim sup P(£&,(A\K)=1)

< lil:x,l_.sc})lp E¢,(A\K)=< u(A\K). (2.2)
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Since w(A)<oo, and ¥ is o-compact, we can choose K such that the right-hand
side is arbitrarily small. The result follows by Kallenberg [14, Theorem 4.9] applied
to A¢, and A& (Alternatively, one may use Billingsley [5, Theorem 4.2].) O

We will also study the behaviour under continuous mappings. Let ¢ be a con-
tinuous mapping of & into &’ (another space of the same type). A Borel measure
w on & induces the measure puy~' on &'. In particular, a point process £=3Y 8y,
induces &' =Y 8,(x,), Which is a point process provided it is Radon (i.e. only a
finite number of points lie in each compact set). The following result is evident.

If £, ¢ then &y — gy (2.3)

The corresponding result for vague convergence, however, holds if ¢ is a proper
map (i.e. the inverse image of a compact set is compact), but in general not otherwise.
Lemma 2.3 yields the following complement.

Lemma 2.4. Let & &,,... be point processes on & and let u be a Borel measure on &
such that E&£, < u for every n. If £, —%> £ and  is a continuous mapping of & into
%' such that py~" is a Radon measure, then £, ' —% gy™'. 0O

(¢47" and &' are point processes because, if K< ¥ is compact, then e.g.
E& ¢ (K)<py ' (K)<oo whence &y '(K) <o as.).

We also consider integration. Note that, if £=} 84, then [fdé= > f(X;) for any
function f.

Lemma 2.5. Let ¢ &,, ... be point processes on ¥.

(a) If £, —% ¢ and w is a Borel measure on & such that E¢, < u for every n, then
[fd&, % [ fdé fors every real-valued continuous function f on & with
Jmin(|f|,1) du <.

(b) If &, =% £ then | fdé, 2 [ d¢ for every real-valued continuous function f.

Proof. (a) If f has compact support, this holds without any u, see e.g. [14, Theorem
4.2]. The general case follows by approximating f by such functions; we omit the
details.

(b) It suffices to prove that the mapping £~ | fd¢ is continuous in the weak
topology, which is easily verified. [

In applications, it is inconvenient to check a condition for all Borel sets; it is
preferable if it suffices to check the condition for some smaller family of sets. We
introduce two types of families that often will do. Choose some separable and
complete metric on &. (This is always possible, and the definitions below do not
depend on the chosen metric.)

A DC-semiring # is a semiring of Borel sets such that for any £ >0, any compact
subset of ¥ may be covered by a finite number of elements of ¥ having diameter
less than &. A DC-ring is a DC-semiring that is a ring.

The family of finite disjoint unions of sets in a given DC-semiring is a DC-ring.
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Examples 2.1. Convenient DC-semirings on R are the families of half-open intervals
{[a, b)} and {(a, b]}. On [0,0) we may e.g. take {[a, b): a=0} and on (0, )
{[a, b): a>0}. On R? we can take the half-open rectangles {[a, b)}.

The following result is useful in applications of Lemmas 2.3-2.5.

Lemma 2.6. Let ¥ be a DC-semiring on &. Let & be a point process on & and p a
Borel measure such that E£(B)< w(B) for every Be $. Then E£< p.

Proof. The class of sets B such that E£(B) < u(B) is closed under disjoint unions.
Hence we may assume that $ is a DC-ring. The result now follows by a monotone
class argument (cf. [14, 1.2 and 15.2.2]). O

Finally, we give a criterion for vague convergence contained in Kallenberg [14,
Theorem 4.7].

Lemma 2.7. Let & &,, ... be point processes on & and assume that ¢ is a.s. simple.
Further, suppose that U is a DC-ring and $ a DC-semiring, both consisting of
&-continuity sets. If

P(£,(U)=0)-»> P(£&(U)=0) for every Ue U
and

lim sup E&,(I)< E£(I)<oo  for every I € 4,

then &, —% ¢ O

3. Convergence to a Poisson process

Let & be as above and consider a sequence &, of point processes on &. Each ¢,
has a representation (2.1); however, for technical reasons, we prefer a representation
with a non-random (finite or infinite, and possibly depending on n) number of
terms. We achieve that by the following device. Let * be a space that contains &
as a subspace and consider representations (2.1) where X; are random variables
with values in ¥*, but 8x, are regarded as measures on &. Thus 8x, =0 if X e PN,
which means that we may add any number of “ghosts” X; with values in ¥*\¥.
Evidently we then may fix the total number of terms (e.g. to be infinite).

Note that the actual values taken by X, outside & are irrelevant, because all
points in ¥*\ & are treated as non-existent. Hence we could fix #* to be an extension
of & by a single (“infinite”’) point, but we will keep the more general version (which
also allows ¥* = & when the total mass of the point process is non-random).

As in Section 1, we present two versions of the limit theorem, one more general
and one simpler that is more convenient for applications.
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Theorem 3.1. Let ¥ be as in Section 2 and let A be a Radon measure on &. Let, for
each n, &, be a point process ¥ ;.4 dx, on &, where {X;}, 4 is a family of random
variables with values in $*> . (§ and X; depend on n.) Assume that, for each n,
there exist random variables X,g, J ke $, wuh values in * such that X; is independent
of {X,g,},(#J Jfor every j € § and, for every U and U’ in a fixed DC-semiring ¥ (on &)
of A-continuity sets, as n - o0,

Y P(X;eU)->A(U), (3.1)
jed

sup P(X;e U)~ 0, (3.2)
jes

Y. P(X;€ U and for some k # j, either X, € U' and X,UE U’

<4 or X, 2 U’ and ij eU')->0, (3.3)
Y. P(X;e U)P (for some k #j, either X, € U’ and XkJ;-E U’

i or X, 2 U' and X,;€ U') > 0. (3.4)

Then ¢, —% £ as n— o, where ¢ is a Poisson process on & with intensity A.

Proof. Let % be the set of finite disjoint unions of relatively compact sets belonging
to J. U is a DC-ring of A-continuity sets, and (3.1)-(3.4) hold for all U, U’ 9.
Hence, if U € U is fixed we may apply Theorem 1.1. to the variables I(X;e U) (and
I(ije U)) and obtain

£(U) =1 I(X;€ U) & Po(A(U)). (35)

In particular, since £(U) has the distribution Po(A(U)),

P(£,(U)=0)>P(¢(U)=0), Ue. (3.6)
Furthermore,
E.f,,(U)zZ_P(X,-e U)=A(U)=E{(U)<oo, Ue. (3.7)

If A is non-atomic, ¢ is a.s. simple and the conclusion follows by Lemma 2.7.

If A has atoms, let { Y}, s be a family of random variables, uniformly distributed
on [0, 1], that are independent of each other and of {X;}. Let £, be the point process
2i8(x,v,) on ¥x[0,1]. Since A xdx is a non-atomic measure on ¥ x [0, 1], the
argument just given (with )Z’,g replaced by (J?kj, Y,) and ¥ replaced by {U x
([a, b)n[0,1]): Ue 4, a <b}) shows that £, —%> ¢’ as n-> oo, where ¢’ is a Poisson
process on ¥ X[0, 1] with intensity A xdx. Since the projection #x[0,1]~> & is
proper, this implies that &, —9> & [0

Theorem 3.2. Let & be as above and let A be a Radon measure on ¥. Let, for each n,
&, be a point process Y ;c 4 8x, on ¥, where {X,},_ 4 is a family of random variables
with values in $* > #. (# and X; depend on n.) Assume that, for each n, for every
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je g there exists a subset D; of $ (with je D;) such that X; is independent of
{X: k& D;}. Assume further that, for every U and U’ in a fixed DC-semiring 9 of
A-continuity sets, as n—> 0,

Y P(X;eU)->A(U), (3.8)
jes

Y Y P(X;eU)P(X,eU')~>0, (3.9)
jef# ke D;

Yy Y P(XjeUandX,cU')>0. (3.10)
jed ke DA}

Then £, —2> £ as n> o0, where ¢ is a Poisson process on ¥ with intensity A.

Proof. We may assume that ¥* # &. Let * be a point in $*\ & and apply Theorem
3.1 with
- Xk, k E Dj.
ki =

*, keD;. 0O (.1

Convergence in the weak topology (on & or on a subset) can be obtained under
suitable conditions by combining these theorems with Lemmas 2.1-2.3. For example:

Corollary 3.1. Assume that the conditions of Theorem 3.1 (or Theorem 3.2) are satisfied
and, furthermore, that A(S)< and that (3.1)-(3.4) ((3.8)-(3.10)) hold also for
U=U'=Y. Then &, S £ as n-> o, where ¢ is a Poisson process with intensity A.

Proof. ¢, —<> ¢ by Theorem 3.1 (3.2), and ¢,(¥) - £(¥) by Theorem 1.1 (1.2). The
result follows by Lemma 2.1(c). O

Corollary 3.2. Assume that the conditions of Theorem 3.1 (or Theorem 3.2) are satisfied
and, furthermore, that u is a Borel measure such that, for every U € $ and every n,

Y P(X;e U)<pu(U). (3.12)
jeF

Then, for every ¢-continuity set A< & with p(A) <o, A¢, =y A (with & as above),
in particular

£.(A) % Po(A(A)). (3.13)

Proof. ¢, —<> £ by Theorem 3.1 (3.2). Lemma 2.6 and (3.12) imply that E{,<p
for every n. Hence the result follows by Lemmas 2.3 and 2.2. [

4. Two corollaries

A theorem yielding convergence of some random variables to a normal distribution
can usually be immediately extended to vector-valued cases by the Cramér-Wold
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device. The Cramér-Wold device fails, however, for Poisson convergence results
like our Theorem 1.1. One way to obtain vector-valued results (i.e. convergence of
joint distributions) is to prove a basic result on convergence to more general infinitely
divisible distributions, such that the Cramér-Wold device applies (e.g. Theorem 4.2
below). Here we will instead use Lemma 2.7 as a substitute for the Cramér-Wold
device by deriving a vector-valued generalization of Theorem 1.1 as a corollary to
Theorem 3.1; in fact, it is essentially the case of a finite set &.

Theorem 4.1. Let, for each n, {X;};.4 be a family of d-dimensional random vectors

(X, ..., X\?") (d is independent of n) and assume that there exist random vectors
Xij, J, k€ #, such that X; is independent of {X,;}««; for every je ¢ and, as n >,
YP(X{"=1)>A;, i=1,...,d, where \;<c, (4.1)
J
sup P(X;#0)->0, (4.2)
j
Y P(X; #0 and there exists k # j with X,; # X,) >0, (4.3)
J
Y P(X,#0) - P (there exists k # j with X,; # X,)~>0, (4.4)
J
Y P(X;2{0,e,,e,,...,e})>0, where e is the ith unit vector. (4.5)
j
Then
Y X=X TR S, L, V) avsosio; (4.6)
J j j

where {Y'"} are independent Poisson distributed random variables with expectations
A,] PO I\d.

Proof. Let & be the finite set {e,,...,e;} of unit vectors in R’ let ¥ be the
DC-semiring of all one-point subsets of &, and let A be the measure YiAb,, on &
Apply Theorem 3.1 (with ¥*=R“) and interpret the result (using Cramér’s
theorem). O

The reader can easily write down the special case that corresponds to Theorems
1.2 and 3.2.

We can also obtain generalizations of Theorems 1.1 and 1.2 where X no longer
are assumed to be indicator variables. This time we give, for a change, only the
version corresponding to Theorem 1.2.

Theorem 4.2. Let A and p be two Borel measures on R\{0} such that
{emin(1, | x|) du(x) <co. Let, for each n, {X;};. s be a family of real-valued random
variables and assume that for every j € § there exists a subset D; of # such that X; is
independent of {X,: k& D;}. (¥, X; and D; may depend on n.) Assume further that
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(3.8)-(3.10) and (3.12) hold for all sets U, U’ of the type (a, b], with 0<a<b or
a<b<0. Then

YX;% Yasn->oo, (4.7)
F
where Y has an infinitely divisible distribution with characteristic function

E(e"y)=exp(f (e'"™-1) d)\(x)). (4.8)

Proof. It follows by Theorem 3.2, with ¥* =R and & =R\{0}, that £, =} 6x, —ds ¢
where £ is a Poisson process on R\{0} with intensity A. By Lemma 2.6, E¢, < u for
every n, whence Lemma 2.5(a), with f(x) = x, yields

Z&=J‘xd§n$fxd§. (4.9)
It is easy to show that the characteristic function of | x d¢ is given by (4.8). [

Theorem 4.2 does not cover all cases of convergence to infinitely divisible distribu-
tions. In particular, note that Y has no normal component. Cf. the related theorems
by Chen [7, Theorem 4.1] and Jammalamadaka and Janson [12, Theorem 3.1]. (In
e.g. the Poisson case, those theorems, however, use stronger conditions than the
ones here.)

5. Dissociated variables

Let m =1 be a fixed integer. Let (for a given n) # be the set of the () unordered
m-tuples J ={j,,...,jm} of distinct positive integers j; < n. We say that {X,},. 4 is
a family of dissociated random variables if each X, is independent of the family
{Xk: KnJ=J} of all variables that are indexed by m-tuples not having any
element in common with J (McGinley and Sibson [17]). (We may similarly consider
some related situations, e.g. when ¢ is the set of ordered m-tuples, or when repetitions
are allowed among j,, ..., j..) We are in particular interested in the sum

S" = E XJ. (5.1)
5
We give two prominent examples.

Example 5.1. U-statistics. Let Y,, Y,,... be independent, identically distributed
random variables and let

X;=8(Ys. - Y), J=Uhseoosim)s (5.2)

where g is a fixed symmetric function of m arguments. Then S, is known as a
U-statistic. We may here let g depend on n, and obtain a “triangular array” of
U -statistics.
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Example 5.2. Incomplete U-statistics. An incomplete U-statistic is obtained by taking
X, as in (5.2), but summing only over a subset (fixed or random) of . This is put
in the form (5.1) by redefining X,: Let X, be as in (5.2) when J belongs to the
select subset of #, and X, =0 otherwise.

The theory of random graphs furnishes other examples of dissociated variables,
see e.g. Sections 6 and 7, and (for a different type of example) Janson [13, the
proofs of Theorems 1 and 3].

Theorem 1.2 (with D, ={K: K nJ # J}) yields the following result by Barbour
and Eagleson [3]. (They used a different method that also gives estimates on the
rate of convergence.)

Corollary 5.1. Let, for each n, {X,} be a family of dissociated indicator variables and
put p, = EX,. Suppose that, as n - o,

Y py=> A, with 0= <, (5.3)
5
Y ppx~0, (5.4)
o<|JnK|
Yy EX, Xy - 0. (5.5)

0<|JnK|<m

Then S, <% Po(A) as n->co. [0

Some special cases had been proved earlier, e.g. in [21] (U-statistics) and [4, 2]
(incomplete U-statistics); [21] and [4] also contain results on convergence to Poisson
processes (special cases of our Theorem 3.2 with & =[0, 0)).

It should be clear that Theorem 1.2 is a natural generalization of Corollary 5.1.
The difference is that we do not assume any special structure on the index set in
Theorem 1.2. This added flexibility is convenient in some applications. For example,
we may study families of dissociated variables for several values of m simultaneously,
or with m = m(n) - co.

6. Random graphs

In the remaining sections, the general results above will be applied to random
graphs. We give here some pertinent definitions, see e.g. Erdos and Renyi [10],
Bollobas [6] or Palmer [19] for further information.

The random graph G,, (0=<p=<1) has n vertices and the (3) possible edges occur
independently of each other, each with probability p.

We will consider the evolution of random graphs when the edges are added (at
random) sequentially. This is best done as follows. Let {T.}, where e ranges over
the set of edges in the complete graph K,, be () independent random variables
with a common continuous distribution on [0, o) (or, for some problems, on
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(=00, 00)). Let G,(t) be the random graph with n vertices and all edges e for which
T.<1 Hence T, is interpreted as the time the edge e appears.

G,(t) is a random graph G,, with p= P(T,<1); the construction above nests
G,, for different values of p. Furthermore, as t increases, new edges are added (at
random) at the random times {T;}\2, (the order statistics of {7,}), which are a.s.
distinct. Hence the random graph G, 5 (0< N =<(3)), which has n vertices and N
edges (all possible sets of N edges having the same probability), can be constructed
as G,(Tn,)- Hence results for both G,, and G, y can be obtained from results for
the process G,(1).

For the applications in the following sections, we let T, be uniformly distributed
on [0, n]. (We would obtain the same results with the exponential distribution
Exp(n), a choice that has some advantages but gives slightly more complicated
formulae.) We also define, for any subgraph H < G,, T,; =max{T,: ec H}, i.e. the
time at which the subgraph H appears. Thus, if H has | H || edges,

P(Ty<t)=(t/n)"l o=<t<n (6.1)

The statistic that counts the number of subgraphs of the random graph G,,, that
are isomorphic to a given graph can be written as a sum of dissociated variables as
in Section 5 (with m equal to the order of the given graph), whence we may apply
our theorems. (Nowicki [18] makes a different approach that has the same effect;
he writes the subgraph count statistic as an incomplete U-statistic based on the (3)
indicator variables I (edge e exists).) Theorem 1.2 (or Corollary 5.1) yields Poisson
convergence results, under appropriate conditions on p, for the number of copies
of any strictly balanced graph in G, ,. (We may also consider a family of balanced
graphs, or let the graph grow slowly with n.) See Bollobas [6] and Karonski [15]
for definitions and earlier proofs of such results. (The simplest cases are already in
Erdos and Renyi [10].) We will in the remaining sections give some slightly more
complicated examples, where the theorems in Section 3 are useful.

7. Cycles

Let, for each n, # =3 ¢, where §, is the set of cycles of length I in the complete
graph K,. A cycle in #, can be represented as a sequence of / distinct vertices in
K, by choosing a starting point and a direction. Since that choice may be made in
1-2 ways,

1
#é‘:=§(ﬂ);- (7.1)

Let ¥ =[0,0)x {3, 4, 5, . ..}; thus & is the disjoint union of infinitely many half-lines
%, 1=3. Define, for any cycle J€ #,

X, =(T,,1) when Je g, (7.2)
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where T is as in Section 6. Let &, =} 5 8x,. Thus, £,([0, t]x{3}), £,([0, t]x{4}),...
are the numbers of cycles of length 3,4,..., respectively in the random graph
G.(t1)=G,,, with p=1t/n (t<n). The idea of introducing the space & is that it
allows us to consider cycles of all lengths simultaneously.

It is evident from the definitions that, if J € ¢,

P(X,€[0,)x{l}) = P(T, <t)=(t/n), t=n, (7.3)

and thus, as n—-> 0,
S P(X, €[0, )X =3 - - -=#F- (1/n) > 1. (7.4)
3 2 21

Consequently, we define a Radon measure A on & by A([0, 1) x{I}) = F,(t), t=0,
I=3, with

1
F;(r)=§ t', t=0; (7.5)
i.e. A equals fi(t) dt on &, where
d _
)= F(1)=3"", 1=0. (7.6)

We will show that the conditions of Theorem 3.2 are satisfied.

Let, for each cycle J, D, be the set of all cycles with at least one edge in common
with J. Then X, and {Xx: K ¢ D,} are independent.

Let #={[a, b)x{l},0<a<b<co, [=3}. (A setin J is thus a half-open interval
on one of the half-lines in &.) It is easily seen that £ is a DC-semiring on . Clearly,
4 consists of A-continuity sets. (3.8) holds by (7.4) and additivity.

It remains to verify (3.9) and (3.10). Since their left-hand sides are monotone in
U and U, it suffices to consider the case U =[0, t) x{l}, U'=[0, t) x{l'} for t>0
and [, I'=3 (possibly equal). It then follows by (7.3), since any K € D, n #, has at
least two vertices in common with J, whence there are at most I°n" 2 such K, that
the left-hand side of (3.9) is O(n~?). This proves (3.9); for (3.10) we have to be a
tiny bit more careful.

Let, for 1I=m=I[-1, D,,, be the set of all cycles K € _#, that have exactly m
edges in common with J. Since each such K has at least m +1 vertices in common
with J,

Y P(X,;eUand XgeU')
KeD\{J}

-1
Y Y P(Ty<tand Tg<t)

m=1 KeDy,,

I

-1 I-1

Y Y P(T,ux<t)=Y #D;n.-(t/n)*""

m=1 D, m=1

{H( ¢ )( . )E(_‘.)M-mio( ) asnsco,  (17)
121: m+1/\I'=-m—1/2l' \n = - ’ ’
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for every J € #,. (3.10) follows by (7.1). We have proved
Theorem 7.1. £, —> £ where £ is a Poisson process on & with intensity A. [

Note that £ can be regarded as a collection of independent Poisson processes on
[0, 00) with the intensities f3(1), f4(1), ... given by (7.6).
Furthermore, by (7.1) (cf. (7.4)),

;@ P(X;e[a, b)x{l})=#% - ((b/n) —(a/n)")<A([a, b) x{I}). (7.8)
By Lemma 2.6, with u = A,

E¢, <)\ for every n, (7.9)

and Corollary 3.2 yields the following extension of Theorem 7.1.

Theorem 7.2. If A is a A-continuity set in & with A(A) <0, then A¢, hLN A¢, in
particular

£ (A)S Po(A(A). O (7.10)

Remark 7.1. It follows easily that (7.9) holds also when A(A) =0, in the sense that
£.(A) = 0.

Let C,(G) denote the number of cycles of length [ in the graph G. Theorem 7.1
(or (7.2)) immediately yields

c,<cn,c,.,)=f,,([o,c]x{f})*i»Po(%c‘) as n>0, 0<c<co.  (7.11)

More generally, we obtain the following result by Erdds and Rényi [10].

Corollary 7.1. Let 0<c<o00. If n-> and np - c, then

1
C(G,,) > PO(E c*). (7.12)
If n>o0 and 2N /n- ¢, then
d ]' I
C;(GR‘N) EE PO("z'_IC ). (?13)

Proof. Observe that np > ¢ and &, —— £ implies
& ([0, np]x{1}) % £([0, c1x{1}),

which yields (7.12). (7.13) follows similarly because C,(G, n) = &,.([0, T(ny]1x{I})
(see Section 6), and Tn, = c¢. O
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Note that (7.12) can be proved directly using Theorem 1.2; (7.13) can be proved
using Theorem 1.1 (see Barbour [1] for a similar argument in a related situation),
but the method above seems simpler. Theorem 7.1 adds the information that C,(G,,)
(or C(G, n)) for different values of / are asymptotically independent [6]. Lemma
2.5 (or Theorem 4.2) gives the asymptotic distribution of the number of vertices in
cycles when ¢ <1.

Since

Y Fi(t)=—3log(1—1t)—3t—31° <o (7.14)
3
for 0<t<1, Theorem 7.2 yields (cf. [10])

Corollary 7.2. If n>0c0 and np—>c, 0<c<1, then
The number of cycles in G, ,<> Po(—3log(1—c)~ic—1c?). (7.15)
In particular, for the probability that G, is a forest,

P(there are no cycles in G,,,) > (1—c)"/?e*/>*/4 0O (7.16)

A corresponding result holds for G, . It follows also, by Theorem 7.2 or Lemma
2.4, that the times the successive cycles (of any length) appear, asymptotically form
a Poisson process on [0, 1) with intensity 35 A,(1) =3t*/(1—1). The limit process
has a.s. infinite mass on [0, 1), in particular we see that if np—> c=1, then P(G,,
has cycles) > 1 [10]. We also obtain

Corollary 7.3. If Ny is the number of edges when the first cycle appears, then
2N /n2> Z as n-> o, where Z has the distribution

P(Z<t)=1-(1-1)?e”>"% o0<i=<1. 0O (7.17)

Of course, corresponding results hold for cycles with lengths in a given subset of

{3,4,...}. In particular, this gives a result on the chromatic number x(G, ) of the
random graphs.

Corollary 74. If n>00, N=1 and 2N/n- c with 0<c<1, then

1-c\V*
P(X(Gn.~)=2)—’(l+c) 6%, (7.18)

Proof. Since N=1, x(G, ~)=2. On the other hand, x(G,n)=3 iff G, has a
cycle of odd length, and the number of such cycles converge in distribution to a
Poisson distribution with expectation

Y F(c)=-c/2—3log(1—c)+ilog(1+¢c). O

fodd
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The same result holds for G,, provided np—~>c<1 and n’p- 0 so that P(no
edge) - 0. The assumptions in Corollary 7.4 imply that P(x(G,n)<3)>1as n->
(at least when ¢ <1), see [10], whence the asymptotic distribution of x(G, n) is
completely known for these cases. No corresponding exact result is known for larger
values of c, but a lot of information exists, see McDiarmid [16].

8. The first cycle

Andiam, che la via lunga ne sospigne.
Cosi si mise a cosi mi fe’ entrare.
Nel primo cerchio che I'abisso cigne.
[8, IV. 22-24]

We are now prepared to solve the problem by Erdés stated in the introduction.

Theorem 8.1. Let L, denote the length of the first cycle that appears when edges are
randomly added between n vertices. Then

L, L asn-x, (8.1)

where L is a random variable with the distribution

P(L=I)=%J Q-2 e 8y, 1=3,4,... . (8.2)

(1]

Le. P(L,=1)- p, as n- 0, with p,= P(L=1) given by (8.2).

Proof. We may assume that the edges are added at random times as in Section 6,
because these times do not enter the statement of the theorem. We continue to use
the notation of Section 7. If 7 is any integer-valued Radon mesure on &, let ¢(7n)
be the second coordinate of the first point in 7, if such a point exists. More formally,
©(m) =1 if there exists t=0 such that n([0, t]x{l/})=1 and 7([0, t]x{k})=0 for
every k#I; if no such t exists we put ¢(n)=0. Hence L,=¢(¢,), and we put
L=¢(&). It is easily seen that ¢(£¢)>0 a.s. and, using simple properties of the
Poisson process (and (7.14)),

P((p(§)=!)=j fi(1) e 55 gy
0

1
=J‘ %ta‘-l(l_I)I/Zer/2+;2/4dr’ f-_-3,4, )
0

Consequently, it only remains to verify that ¢(&,) <4 o(&). Unfortunately, this does
not follow directly from Theorem 7.1, because the functional ¢ is not vaguely
continuous. One way around this obstacle is as follows.
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Let /' ={3,4, ..., 0} be the one-point compactification of A'={3,4, ...}, and let
F=[0,1)xN. Let £ and £, be the restrictions of ¢ and &, to [0, 1) x ., regarded as
point processes on #. By Lemmas 2.2(a) and 2.4 (with u = A, cf. (7.9), and ¢ the
identity mapping), £, —%> £ Definining ¢ as above also for integer valued Radon
measures on &, it is easily seen that ¢ is vaguely continuous at any 7 such
that ¢(7n)#0. (If / and t are as in the definition of ¢, then for some t'>1, {n"
2'([0, t") x{I}) = n'([0, ']x N} =1} is a neighbourhood of 7 where ¢ is constant.)
Since ¢(&)#0 as., ¢(£,) % ¢(£) by Billingsley [5, Theorem 5.1]. Finally, ¢(£) =
(&) a.s. and

P(p(&) # ¢(&))=P(p(£&)=0)=P(&([0,1)x ¥)=0)>0
(by Remark 7.1). Hence ¢(&,) 4 o(¢) by Cramér’s theorem. [

Remark 8.1. The reason for introducing & in this proof is that it contains more
compact sets than & or [0, 1) X ¥, whence its vague topology is stronger. Cf. Warning
2.1. In fact, the proof can be reformulated to involve point processes on & only,
and the topology “weak convergence on [0, 7,] X N for every 1,<1” (cf. Theorem
7.2), but we prefer to remain within the framework of Section 2. (An alternative
proof, which fixes I and then maps [0,1) x A to [0, 1) x{0, 1} by ¢(1, k)= (1, 8y),
using Lemma 2.4, is also possible.)

Some numerical values are given in Table 8.1.
Comparing (8.2) to the beta-integral, we see that

P(L=D)~cl7? asl>o (8.3)
(with ¢ =1+ e”*=0.94), whence
P(L>1)~2cl™"* as 1. (8.4)

In particular, EL =oco0.

Table 8.1
The asymptotic distribution of the length of the
first cycle
1 P(L=1) P(L<1)
3 0.1216 0.1216
4 0.0849 0.2065
5 0.0638 0.2704
6 0.0503 0.3207
7 0.0410 0.3617
8 0.0343 0.3961
9 0.0293 0.4253
10 0.0254 0.4507
20 0.0096 0.5973
50 0.0026 0.7391

100 0.0009 0.8140




S. Janson |/ Poisson convergence 21

Fatou’s lemma shows that EL, - o0 as n = 00, but our methods give no information
on the rate of growth of EL,. (EL, is obviously finite, because L, < n.) We thus
have the somewhat unexpected situation that the average length of the first cycle
tends to infinity with n, while the distribution of the length converges (without any
normalization).

Philippe Flajolet [11] has found the asymptotic value of EL,, which turns out to
be O(n'/®), by a combinatorial method.

The asymptotic distribution of the number of edges required to complete the first
cycle was given in Corollary 7.3. It should be obvious how to find the asymptotic
joint distribution of the required number of edges and the length of the first cycle.
(They are not asymptotically independent. Cycles that come early tend to be smaller
than cycles that are late.)

Furthermore, we may study the second cycle, etc. In fact, if the lengths of the
consecutive cycles are denoted L =L,, L, LY, ..., the following result comes
forth.

Theorem 8.2. If m=1andl,,..., 1, =3, then

m-—1
P(LP=b,...,Li"=l,)=> TI @(h+...+5) 7" Pus.. 41 (8.5)
j=1
with p, given by (8.2).

Proof. For simplicity we take m = 2. The same method as above yields by (7.5) and
(7.6), with F(1)=Y3 Fi(1),

P(LM=1,LP=] )->” L) (1) e™ T de
=J F()f,(1) e " dt
]

t)e F® r—— P
21,,[ f:.-uz( Je d 21, Pi+1,- O

Several curious consequences follow. The cycles tend to increase in size, e.g. if
L<b,
P(LV =1 LP=L)/P(LY =1, LP=1)->bL/1,>1,
whence
lim P(LY < L)y > lim P(LY) > LP).
Also,
lim P(L{™ =1)~c,(log )™"'/P? as I»>.

n=-oc
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On the other hand, the asymptotic probabilities decrease with /, so the most probable
length of L™ (at least for large n) is 3 for every m. Note also that P(L\" = 1| L{"+
L =k)- c,/I and that (by summing in (8.5) with m =2)

PI= (21)‘1 Y Dk
1+3

Finally, we remark that the method above applies to some other types of random
graphs as well. For example, for random directed graphs without loops (the n(n—1)
edges being added in random order), the analogue of Theorem 7.1 holds with
F(t)=1'/1 and f;(t)=1t""", where now /=2. Hence Theorem 8.1 holds with (8.2)
replaced by

1 oo 1
P =J fi(1) exp(—Z Fk(r)) dt =J ' (1-1)e'dt, 1=2,3,....
0 2 0
(pi~e/I? as 1> 0.) For random directed graphs with loops,

1
p,zI ' A=) dt=1/1(1+1), 1=1,2,....

0

In both cases, Theorem 8.2 holds (with these p,) if the factor 2 is deleted from (8.5).

9. Isolated cycles

We will now study isolated cycles in the random graphs. For simplicity, we fix
the length I (=3), although we might as well have treated all lengths simultaneously
as in Section 7. Hence we let ¥ be the set of cycles of length I in the complete
graph K, (this set was denoted %, in Section 7). Let ¥ =0, o) X[0, ) and define
for any J € ¢,

U, =min{T,: e is an edge not in J, but with at least one
endpoint in J}, (9.1)

X,=(T,, U,), (9.2)

and write, as usually, &, =) 5 8x,. Thus, if J is an isolated cycle at some stage of
the development, U, is the time it stops being one. The number of isolated cycles
in G, , equals £,([0, np] X (np, ©)). We will use Theorem 3.1 with the DC-semiring

F={[a,b)x[c,d):0<sa<b<, 0<c<d<oo}.

Since the variables T, and U, are independent for every J,
Y P(X,€[0,1)x[0,u))=#¢ - P(T,<t)- P(U,<u)
K

1 t ! u {n=1Y+I(1-3)/2
=—(m)l=)(1-{1-=
21(")’(::) ( ( n) )

1
—>~2—I t'(1—-e™™) as n>o. (9.3)
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By additivity, (3.1) holds for U € # and the measure A given by
1
A([0, )x[0, u)) =~ t'(1=e™™), Lu=0, (9:4)
i.e.
I =1 _—lu
dhzir e “dtdu, tu=0. (9.5)

(3.2) is obvious. We define X",U as follows. Let

ﬁx, =min{T,: e is an edge, not in K, with at least
one endpoint in K and no endpoint in J}, (9-6)

. {(TK, Uyx,) when J and K are disjoint,
Xks =

9.7
* when J and K have a common vertex, 7

where * is any point in ¥*\ & (¥* can be any set which strictly contains &). Then
X, is independent of {Xx,} for every J. In order to verify (3.3), it suffices to show
that

Y'Y P(X, e U and either X, € U' and X, 2 U or X, € U’ and Xy, € U)>0,

K#=J

(9-8)

when U =[a, b)X[c,d), U =[a’,b")x[c',d"). We divide this sum into two parts.
The sum, Y)Y say, over all J and K that have a common vertex is (because then
X.'KJ' =% ¢Z U’)

YS' P(X,€ U and Xg € U')<YY' P(T,<b and Tx <b') |
<3¥Y' P(T,; x <max(b, b)), (9.9)

which is O(1/n) by an argument similar to (7.7). The sum, }.)." say, over all disjoint
pairs J, K in (9.8) is at most

YY" P(X, € U and Ty €[a’, b') and U # Uy,)
<YY" P(T,<b and Ty <b’ and U # Ux;). (9.10)

For any disjoint J and K, the three events {7, <b}, {Tx <b'} and {Ux # Ug,} are
independent. Furthermore (a.s.), Ux # Uk, iff Ux = T, for some edge e that connects
K to J. By symmetry,

P(Ug # Uxy) = P/(I(n=D+1(1-3)/2)<1/(n-1).
Thus the right-hand sum in (9.10) equals
!

n—1

b\'[b

YL P(T; <b)P(Tx <b)P(Ux # ﬁw)s(ﬁ "I)z(;)l(?)l
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as n - 00, This proves (3.3), and (3.4) is proved similarly. Thus Theorem 3.1 applies.
Furthermore, if n>3, E{, has a density which is concentrated on {(, u): u<n}
and there equal to (cf. (9.3))

L.« TN Kn—d+0-3)/2) [, wy'etu-suan
2" 5 (1-3)

n

n n n
l 2
e —nl—-12=
=— rf le (nl Vu/n
2
é_leiz+]ti—l e—m.
2

Thus Corollary 3.2 also applies, with 1 a constant (depending on [) times A, and
we obtain the following result.

Theorem 9.1. £, —% £ as n—>0, where ¢ is a Poisson process on ¥ =[0,0)>
with  intensity dA=3t'""'e™dtdu If Ac¥ and A(A)<co, then
£(A) % Po(A(A). O

Taking A =[0, c]x (¢, ], we obtain the following result by Erdds and Rényi [10].

Corollary 9.1. If np- ¢, 0<c <0, then the number of isolated cycles of length | in
G, , converges in distribution to Po(c'e™/21). O

Taking A ={(t, u): 0=t <u <0}, we count the isolated cycles that appear at some
time when the edges are added one by one.

Corollary 9.2. The number of isolated cycles of length | that appear during the evolution
converges in distribution to Po((I1—1)!/21'). In particular, the probability that no
isolated cycles of length | appear converges to exp(—(1—1)!/21").

[+ o}

I
Proof. ” Et"‘e"“du=%J e de=17'1-1). O
<u

0

As was said earlier, we can also consider isolated cycles of different lengths
simultaneously. (Not surprisingly, the joint distributions are asymptotically indepen-
dent.) Summing over all lengths, we obtain (using Lemma 2.3) asymptotic Poisson
distributions for the total number of isolated cycles. In particular, the following
results hold; we omit the details.

Corollary 9.3. If n—> 00 and np- ¢, 0<c<co, then the number of isolated cycles in
G, , converges in distribution to

Po(—3log(l1—ce ) —3¢ e “—1cte ). 0
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Corollary 9.4. The probability that no isolated cycle ever appears during the evolution
converges to

exp(—): %I_*(l-—l)!) =(.947. O
3

Isolated cycles are not very common.
It is also possible to combine the methods of this section and the preceding one,
taking e.g. ¥=[0,1) x[0,0) x N (with N as earlier). We then obtain e.g.

[e's) 1
P(the first cycle is isolated) > ¥ J Il et —)M2 o2 Y gy
I=3Jo

1
=J (1—1e7) 7' (1=1)"2 e 7% d1 ~0.026. (9.11)
0

Hence, the conditional probability that the first cycle is isolated given that some
cycle is, is close to 3.

More generally, we can watch the cycles appear as the graph evolves, number
then consecutively (resolving ties e.g. randomly), and see which ones of them (if
any) that are isolated when they appear. In particular, let us condition on the event
that some isolated cycle appears (which has probability =0.05 by Corollary 9.4),
and define N, as the number of the first (and usually only) isolated cycle (i.e. the
first cycle that is isolated when it appears). The following surprising result then holds.

Theorem 9.2. There exist positive numbers a,, k=1, 2, ... given by (9.18) below such
that

P (The kth cycle is the first isolated cycle)> a, as n- . (9.12)

However, Y5 a is strictly less than b =1im . P (some isolated cycle appears). Hence

P(N,=k)»>a,/b>0 asn-> (9.13)

for every k=1, but {N,} does not converge in distribution because part of the mass
vanishes off to infinity.

The numbers a, converge rapidly to zero; in fact a, ~ const. - 37 as may be shown
by computing ¥ a,z* by (9.18) and using residue calculus. The theorem thus implies
that a large part of the mass of the distribution of N, is concentrated on the first
few values of k, and that the rest is spread out with a very slowly decreasing tail.
In other other words, isolated cycles (if they appear at all) tend to be very early or
very late. Numerical values are given in Table 9.1.
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Proof. We will be somewhat sketchy. Let A be as in (9.5) (although / now is variable)
and let £~ Po()\) and &, have their usual meanings, so that &, —<> £ Let, for
0<t<l,

A ={(s,u,)eF:s<t and s < u}
and

B, ={(s,u,l)e¥:s<t and u<s}.

Then £,(A,) is the number of isolated cycles (of any lengths) that appear before
time ¢ and &,(B,) is the number of non-isolated cycles that appear before . Define

g(t)= § W e =t =), (9.14)
=3

G(r)=J g(s) ds, (9.15)
0

F()=¥ F(1)=—1log(1—1)—k—1r (9.16)
1=3

Then F(1)=A(A, U B,) is the asymptotic expected number of cycles before time ¢,
and G(t)=A(A,) is the asymptotic expected number of isolated cycles before time
t. It also follows that, cf. Corollary 9.4,

b =1—-exp(—G(0)). (9.17)
Since A(A,)= G(t) and A(B,) = F(t)— G(1), standard arguments yield

P(The kth cycle is the first isolated one and it appears before time 1)

-*J P(£(A)=0 and £(B)=(k-1)g(1)dr

. J] e~G" (F(1) - G(‘))k_l e—(F{r)—G(r))g(r) dt.

0 (k—1)!

Since P(The kth cycle appears after time 1) = 0, see Corollary 7.2, this implies (9.12)
with

_ : 1 _ k-1 ——F(t)
ak_L (k—l)!(F(t) G(1))" e "g(r) dt. (9.18)

The proof is completed by noting that

1

oo 1
Zak=[ eF("*G("e‘F“)g(r)dr=J e °"G'(1) dt
1

0 0

=1—e‘6“)<1—e_6(°°)=b. D
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Table 9.1

The improper limits of the (improper) uncondi-
tional distribution and the (proper) conditional
distribution of the number of the first isolated

cycle

k a, ag/b
1 0.0261 0.491
2 0.0035 0.066
3 0.0008 0.016
4 0.0002 0.004
5 0.0001 0.001
6 0.0000 0.000
sum 0.0307 0.579

A numerical integration gives G(1)=0.0312, and thus ) a, =0.0307, while b=
1 —exp(—0.0545)=0.0531. Hence about 42% of the mass of the distribution of N,
vanishes off to infinity.

10. A non-Poisson limit

In this section we for simplicity study only G,, with p=c/n, where ¢ is fixed,
0<c<co. Fix I=3, and let H be the comet-like graph with /+1 vertices and [/+1
edges consisting of a cycle of length [ and a single edge from the cycle to the last
vertex. H is balanced but not strictly balanced. Let Y, be the number of subgraphs
of G, , that are isomorphic to H. It is easily seen that EY, =3(n) .., p" "' >3

Theorem 10.1. With notations as above,
Y,$LY asn-oo, (10.1)

where Y has an infinitely divisible distribution with the characteristic function

E(e“y):exp(‘g} c’(exp(k‘(e"—l))—])). (102)

In other words,

H &

N
Y=Y Z, (10.3)

where N ~ Po((1/21)c') and Z,, Z,, . . .~ Po(lc), all being independent. In particular,

P( Y, = 0) & e—(l—c_"‘)f:"/?.!. (10.4)
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Proof. Let again ¢ be the set of cycles of length L. Let #=1{0,1,2,...} and $* = % U
{*}. Define
*, JZG,, (i.e. T, >¢)
X;=9{m, if Jc G,, and exactly m edges in Gz (10.5)
have exactly one endpoint in J,

and, as always, £, =) 8y,. Then

Y,= Y XJ=J' XdE. (10.6)
&

X,e¥

Define X, =*if K& G, , or K nJ #§, and otherwise X, = the number of edges
in G,, with one endpoint in K and the other neither in K nor J. It is easily seen
that the assumptions in Theorem 3.1 hold with £ the set of singletons in & and the
measure A given by

A{m}=— m—e , m=0. (10.7)

£ £, (10.8)

Furthermore, £,(¥) is the number of cycles of length I in G, ,, whence £,(¥) —=° £(¥)
by Corollary 7.1. Consequently, Lemma 2.1(c) yields

wd

Sm—>r.&, (10.9)

whence, by Lemma 2.5(b),
Y,,=j xdg,,—d»J.xdf. (10.10)

This proves (10.1) with Y = [ x d¢. The expressions (10.2), (10.3), (10.4) follow by
properties of the Poisson process; €.g.

P(Y =0)=P(£(F\{0}) =0) =exp(-A(£\{0})). O

Similar, but more complicated, results may be obtained for some other non-strictly
balanced graphs. For example, if we proceed as above but take

.9"={(m1,.‘.,m;)el"; Oﬂmlémz-_g. . 'Em,}

and let X, count the number of edges from each vertex in J to the complement of
J, we see that the number of subgraphs of G,, that consist of a cycle of length I
with two tails (of length 1) attached to the same vertex converges in distribution to
Y Xi(%59), where N is as before and W, ~ Po(c), all being independent. See also
Bollobas [6, Chapter 1V.2] for related results.
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It should be clear why we do not get Poisson convergence in this case (and for
other graphs that are not strictly balanced). The reason is that two different copies
of H that share a common cycle will appear in G, , with a rather strong correlation;
once the cycle exists it is easy to add several tails to it. In fact, it is easy to see that
Var(Y,)~ EY,- (1+Ic).

No such problem exists, however, if we only count isolated copies of H, and we
have the following result. A similar result holds for the number of isolated copies
of any connected graph, although the only interesting cases are trees and graphs
with exactly one cycle.

Theorem 10.2. The number of isolated subgraphs of G, , that are isomorphic to H
converges in distribution to Po(3¢"" e ") as n > .

Proof. Let # be the set of all copies of H in the complete graph K, and let X, =1
(J is an isolated subgraph of G, ). Let X, =1 (K and J are disjoint and K is an
isolated subgraph of G, ,), where G, , is the subgraph of G, , obtained by removing
the vertices of J and all edges incident upon them. The result follows easily
by Theorem 1.1; note that (1.3) now is trivial because X; =1 and K # J imply
X =Xg. O
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