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Abstract

A new approach to Poisson approximation is proposed. The basic idea is very simple and based

on properties of the Charlier polynomials and the Parseval identity. Such an approach quickly leads

to new effective bounds for several Poisson approximation problems. A selected survey on diverse

Poisson approximation results is also given.
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1 Introduction
Poisson approximation to many discrete distributions (notably the Poisson-binomial distribution) has re-

ceived extensive attention in the literature and many different approaches have been proposed. The main

problem is to study the closeness between the discrete distribution in question and a suitably chosen Pois-

son distribution. Applications in diverse problems also stimulated much of its recent interest among prob-

abilists and scientists in applied disciplines. We propose in this paper a new, self-contained approach

to Poisson approximation, which leads readily to many new effective bounds for several distances studied

before, including total variation, Kolmogorov, Wasserstein, Kullback-Leibler, point metric, and χ2; see be-

low for more information and references. In addition to the application to these distances, we also attempt

to survey most of the quantitative results we collected for the Poisson approximation distances discussed

in this paper.

1.1 A historical account with brief review of results
We start with a brief historical account of Poisson approximation, focusing particular on the evolution of

the total variation distance; a more detailed, technical discussion will be given in Section 6. For other

surveys, see [38, 9, 4, 22, 72].
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The early history of Poisson approximation. Poisson distribution appeared naturally as the limit of

the sum of a large number of independent trials each with very small probability of success. Such a limit

form, being the most primitive version of Poisson approximation, dates back to at least de Moivre’s work

[32] in the early eighteenth century and Poisson’s book [61] in the nineteenth century. Haight [38] writes:

“. . . although Poisson (or de Moivre) discovered the mathematical expression (1.1-1) [which is e−λλk/k!],
Bortkiewicz discovered the probability distribution (1.1-1).” And according to Good [37], “perhaps the

Poisson distribution should have been named after von Bortkiewicz (1898) because he was the first to write

extensively about rare events whereas Poisson added little to what de Moivre had said on the matter and

was probably aware of de Moivre’s work;” see also Seneta’s account in [74] on Abbe’s work. In addition

to Bortkiewicz’s book [17], another important contribution to the early history of Poisson approximation

was made by Charlier [21] for his type B expansion, which will play a crucial role in our development of

arguments.

The next half a century or so after Bortkiewicz and Charlier then witnessed an increase of interests in

the properties and applications of the Poisson distribution and Charlier’s expansion. In particular, Jordan

[47] proved the orthogonality of the Charlier polynomials with respect to the Poisson measure, and con-

sidered a formal expansion pair, expressing the Taylor coefficients of a given function in terms of series

of Charlier polynomials and vice versa. A sufficient condition justifying the validity of such an expansion

pair was later on provided by Uspensky [83]; he also derived very precise estimates for the coefficients in

the case of binomial distribution. His complex-analytic approach was later on extended by Shorgin [80] to

the more general Poisson-binomial distribution (each trial with a different probability; see next paragraph).

Schmidt [73] then gives a sufficient and necessary condition for justifying the Charlier-Jordan expansion;

see also Boas [13] and the references therein. Prohorov [65] was the first to study, using elementary argu-

ments, the total variation distance between binomial and Poisson distributions, thus upgrading the classical

limit theorem to an approximation theorem.

From classical to modern. However, a large portion of the development of modern theory of Poisson ap-

proximation deviates significantly from the classical line, and much of its modern interest can be attributed

to the pioneering paper by Le Cam [54], extending the previous study by Prohorov [65] for binomial dis-

tribution. Le Cam considered particularly the sum Sn of n independent Bernoulli random variables with

parameters p1, p2, . . . , pn, respectively, and proved that the total variation distance

dTV (L (Sn), P(λ)) :=
1

2

∑
j�0

∣∣∣∣P(Sn = j) − e−λ λj

j!

∣∣∣∣
between the distribution of Sn (often referred to as the Poisson-binomial distribution) and that of a Poisson

with mean λ :=
∑

1�j�n pj is bounded above by

dTV (L (Sn), P(λ)) � 8θ,

whenever p∗ := maxj pj � 1/4, where θ := λ2/λ, λ2 :=
∑

1�j�n p2
j . He also proved in the same paper

the following inequality, now often referred to under his name,

dTV (L (Sn), P(λ)) � λ2. (1.1)

These results were later on further improved in the literature and the approach he used became the source

of developments of more advanced tools; see Table 1.1 for a selected list of known results of the simplest

form dTV � cθ.
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Author(s) Year dTV � Assumption Approach

Le Cam 1960 8θ p∗ � 1
4

Operator and Fourier

Kerstan 1964 1.05θ p∗ � 1
4

Operator and Fourier

Chen 1974 5θ Chen-Stein

Barbour and Hall 1984 θ Chen-Stein

Presman 1985 2.08θ Fourier

Daley and Vere-Jones 1988 0.71θ p∗ � 1
4

Fourier

Table 1: Some results of the form dTV := dTV (L (Sn), P(λ)) � cθ. Here θ := λ2/λ and p∗ := maxj pj .
It is known that dTV (L (Sn), P(λ)) ∼ θ/

√
2πe when θ → 0; see Deheuvels and Pfeifer [30] or Hwang

[43]. Numerically, 1/
√

2πe ≈ 0.242.

Form Table 1.1, we should point out that the leading constant in the first-order estimate for dTV is often

less important than the generality of the approach used, although the pursuit for optimal leading constant is

of independent interest per se. One reason is that if an approach is quickly amended for obtaining higher-

order estimates, then one can push the calculations further by obtaining more terms in the asymptotic

expansions with smaller and smaller errors, so that the implied constants in the error terms matter less (the

derivation of which often involves detailed calculus).

On the other hand, estimates for the total variation distance between the distribution of Sn and a suitably

chosen Poisson distribution has been the subject of many papers in the last five decades. Other forms in the

literature include dTV � ϕ(θ), dTV � ϕ(θ, maxj pj), dTV � ϕ(θ, λ), . . . , for certain functionals ϕ (ϕ not

the same for each occurrence). Thus it is often difficult to compare these results; further complications arise

because some metrics are related to others by simple inequalities and the results for one can be transferred

to the others; also the complexity of the diverse methods of proof is not easily compared. Despite these,

we quickly review those that are pertinent to ours, a more detailed, technical comparative discussion for

some of these will be given later; the special case of binomial distribution will however not be compared

separately; see, for example, Prohorov [65], Vervaat [84], Romanowska [67], Matsunawa [56], Pfeifer

[59], Kennedy and Quine [48], Poor [63].

Kerstan [49] refined some results of Le Cam [54] on dTV by a similar approach. He also derived

a second-order estimate. Herrmann [39] further extended results in Kerstan [49] in two directions: to

sums of random variables each assuming finitely many integer values and, in addition to higher-order

estimates from the Charlier expansion, to signed measures whose generating functions are of the forms

exp(
∑

1�j�s(−1)j−1λj(z − 1)j/j). We will comment on Kerstan’s and Herrmann’s second-order esti-

mates later. As far as we are aware, Herrmann [39] was the first to use such signed measures for Poisson

approximation problems, although such approximations are later on referred to as Kornya-Presman or

Kornya-type approximations, the two references being Kornya [52] and Presman [64]. Note that the idea

of using other signed measures (binomial) were already discussed in Le Cam [54]. Serfling [75] extended

Le Cam’s inequality (1.1) to dependent cases; see also [76]. Chen [23] proposed a new approach to Poisson

approximation, based on Stein’s method of normal approximation (see Stein [78]).

From 1980 on, most of the approaches proposed previously for Poisson approximation problems re-

ceived much more attention and were further developed and refined. Among these, the Chen-Stein method
(with or without couplings) is undoubtedly the most widely used and the most fruitful one. It is readily

amended for dealing with dependent situations, but leads usually to less precise bounds for numerical pur-

poses. On the other hand, direct or indirect classical Fourier analysis, although involving less probability

ingredient and relying on more explicit forms of generating functions, often gives better numerical bounds.
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For these and other approaches (including semigroup with Fourier analysis, information-theoretic), see

Deheuvels and Pfeifer [28], Stein [78], Aldous (1989), Barbour et al. [9], Steele [81], Janson [46], Roos

[69, 70], Kontoyiannis et al. [51] and the references therein.

1.2 Our new approach
The new approach we are developing in this paper starts from the integral representation for a given

sequence {An}n�0 (satisfying certain conditions specified in the next section)

∑
n�0

∣∣∣∣∣ An

e−λ λn

n!

∣∣∣∣∣
2

e−λ λn

n!
=

∫ ∞

0

e−rI(
√

r/λ) dr, (1.2)

where λ > 0 and

I(r) :=
1

2π

∫ π

−π

∣∣∣∣∣e−λreit
∑
j�0

Aj(1 + reit)j

∣∣∣∣∣
2

dt.

Note that I(r) =
∑

n�0 |an|2r2n, where an denotes the coefficient of zn in the Taylor expansion of

e−λz
∑

j�0 Aj(1 + z)j . This means that (1.2) can be written in the form

∑
n�0

|An|2
e−λ λn

n!

=
∑
n�0

|an|2 n!

λn
,

which, as far as we are aware, already appeared in the paper Pollaczek-Geiringer [62], but no further use

of it has been discussed; see also Jacob [45], Schmidt [73], Siegmund-Schultze [77] and the references

cited there. Also the series on the right-hand side is in almost all cases we are considering less useful than

the integral in 1.2.

The seemingly strange and complicated starting point (1.2) turns out to be very useful for develop-

ing effective tools for most Poisson approximation problems. Other ingredients required are surprisingly

simple, with very little use of complex analysis. A typical result is of the form

dTV (L (Sn), P(λ)) � (
√

e − 1)θ√
2(1 − θ)3/2

,

where (
√

e − 1)/
√

2 ≈ 0.46; see Theorem 3.4. The relation (1.2), which will be proved below, is based

on the orthogonality of Charlier polynomials and Parseval identity; thus we call it the Charlier-Parseval
identity.

Other features of our approach are: first, it reduces the estimate of the probability distances to that

of certain integral representations with a similar form to the right-hand side of (1.2), and thus being of

certain Tauberian character; second, it can be readily extended to derive asymptotic expansions; third, the

use of the correspondence between Charlier polynomials and Poisson distribution can be quickly amended

for other families of orthogonal polynomials and their corresponding probability distributions; fourth, the

same idea used applies equally well to the de-Poissonization procedure, and leads to some interesting new

results, details being discussed elsewhere.

Organization of the paper. This paper is organized as follows. We begin with the development of our

approach in the next section. Then except for Section 6, which is focusing on reviewing and comparing

with known results, the next three sections consist of applications of our Charlier-Parseval approach: Sec-

tion 3 to several distances of Poisson approximation to Sn for large λ, Section 4 to second order estimates,

Section 5 to approximations by signed measures.
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2 The new Charlier-Parseval approach
Crucial to the development our approach is the use of Charlier polynomials, so we first derive a few

properties of Charlier polynomials we will need.

2.1 Definition and basic properties of Charlier polynomials
The Charlier polynomials Ck(λ, n) are defined by

∑
n�0

Ck(λ, n)
λn

n!
zn = (z − 1)keλz (k = 0, 1, . . . ). (2.1)

Multiplying both sides by z − 1, we see that

λn−1

(n − 1)!
Ck(λ, n − 1) − λn

n!
Ck(λ, n) =

λn

n!
Ck+1(λ, n), (2.2)

which implies that the Charlier polynomials ϕk(n) := Ck(λ, n) are solutions to the system of difference

equations xϕk(x − 1) − λϕk(x) = λϕk+1(x), with the initial condition ϕ0(x) ≡ 1. In particular,

C1(λ, n) =
n − λ

λ
and C2(λ, n) =

n2 − (2λ + 1)n + λ2

λ2
. (2.3)

An alternative expression for Ck(λ, n) is given by

λn

n!
Ck(λ, n) = eλ dk

dλk
e−λ λn

n!
,

which follows from substituting the relation (z − 1)keλz = eλ(dk/dλk) eλ(z−1) into (2.1).

Since by (2.1)

Ck(λ, n)
λn

n!
= [zn](z − 1)keλz, (2.4)

where [zn]φ(z) denotes the coefficient of zn in the Taylor expansion of φ(z), we have, for each fixed n,

λn

n!

∑
k�0

λk

k!
Ck(λ, n)wk = [zn]

∑
k�0

λk

k!
wk(z − 1)keλz

= [zn]e−λw+zλ(w+1)

=
λn

n!
(1 + w)me−λw.

It follows that ∑
n�0

Cn(λ, k)
λn

n!
wn = (1 + w)ke−λw.

Comparing this relation with (2.1), we obtain the property Ck(λ, n) = (−1)n+kCn(λ, k), for all k, n � 0.

Another important property we will need is the following orthogonality relation (see [79, p. 35]).
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Lemma 2.1. The Charlier polynomials are orthogonal with respect to the Poisson measure e−λλn/n!,
namely, ∑

n�0

Ck(λ, n)C�(λ, n)e−λ λn

n!
= δk,�

k!

λk
, (2.5)

where δa,b denotes the Kronecker symbol.

For self-containedness and in view of the importance of this orthogonality relation to our analysis

below, we give here a proof similar to the original one by Jordan [47].

Proof. We start from the expansion

Ck(λ, n) =
∑

0�j�k

(
k

j

)
(−1)k−j n(n − 1) · · · (n − j + 1)

λj
, (2.6)

which follows directly from (2.4). Differentiating both sides of (2.1) j times with respect to z and substi-

tuting z = 1, we get

∑
n�0

e−λ λn

n!
Ck(λ, n)n(n − 1) · · · (n − j + 1) =

{
j! if j = k;

0 if j < k,

which means that the Charlier polynomials Ck(λ, x) are orthogonal to any falling factorials of the form

x(x − 1) · · · (x − j + 1) with j < k with respect to the Poisson measure. Now without loss of generality,

we may assume that 	 � k. Then applying (2.6), we get

∑
n�0

e−λ λn

n!
Ck(λ, n)C�(λ, n) =

∑
0�j��

(
	

j

)
(−1)�−jλ−j

∑
n�0

e−λ λn

n!
Ck(λ, n)n(n − 1) · · · (n − j + 1)

=
∑

0�j��

(
	

j

)
(−1)�−jλ−jδk,jk!

= δk,�
k!

λk
.

This completes the proof.

2.2 The Charlier-Parseval identity
Assume that we have a generating function

F (z) =
∑
n�0

Anzn,

which can be written in the form

F (z) = eλ(z−1)f(z). (2.7)

Let

f(z) =
∑
j�0

aj(z − 1)j.
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Then, by (2.4), we have formally the Charlier-Jordan expansion

An = e−λ λn

n!

∑
j�0

ajCj(λ, n), (2.8)

and we expect that An will be close to e−λλn/n! if f(z) is close to 1, or, alternatively, if a0 is close to 1 and

all other aj’s are close to 0. The following identity provides our first step in quantifying such a heuristic.

Proposition 2.2 (Charlier-Parseval identity). Assume that f(z) is analytic in the whole complex plane and
satisfies

|f(z)| = O
(
eH|z−1|2

)
, (2.9)

as |z| → ∞. Then for any λ > 2H

∑
n�0

∣∣∣∣∣ An

e−λ λn

n!

∣∣∣∣∣
2

e−λ λn

n!
=

∫ ∞

0

I(
√

r/λ)e−r dr, (2.10)

where

I(r) :=
1

2π

∫ π

−π

|f(1 + reit)|2 dt. (2.11)

Proof. Since by definition I(r) =
∑

j�0 |aj|2r2j and the condition (2.9) implies the convergence of the

series
∑

j�0 |aj|2j!/λj , it follows that∫ ∞

0

I
(√

r/λ
)

e−r dr =
∑
j�0

|aj|2 j!

λj
. (2.12)

Both the series and the integral are convergent because, by (2.9), I(r) = O(e2Hr2
).

Again by definition ∑
n�0

Anzn = eλ(z−1)
∑
j�0

aj(z − 1)j.

Taking coefficient of zn on both sides, we obtain (2.8), which can be written as

An

e−λ λn

n!

=
∑
j�0

ajCj(λ, n),

where the convergence of the above series is pointwise. But the convergence of the series in (2.12) implies

that the series on the right side also converges in L2-norm with respect to the Poisson measure e−λλn/n!.
Thus the Proposition follows from (2.5).

In the special cases when F (z) = (z − 1)keλ(z−1), or An = Ck(λ, n)e−λλn/n!, we have the identity∑
n�0

e−λ λn

n!
|Ck(λ, n)|2 = k!λ−k (k = 0, 1, . . . ),

which is nothing but (2.5) with k = 	. This implies that∑
n�0

e−λ λn

n!
|Ck(λ, n)| �

√
k!λ−k/2 (k = 0, 1, . . . ). (2.13)
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2.3 A probabilistic interpretation of the Charlier-Parseval identity
Assume that F (z) is a probability generating function of some non-negative integer valued random variable

X having the form

F (z) :=
∑
m�0

P(X = m)zm = eλ(z−1)
∑
j�0

aj(z − 1)j.

Applying the Charlier-Parseval identity (2.10) and (2.12) to F gives

∑
m�0

∣∣∣∣∣P(X = m)

e−λ λm

m!

− 1

∣∣∣∣∣
2

e−λ λm

m!
=

∑
j�1

j!

λj
|aj|2,

provided that both series converge. In view of the orthogonality relations (2.5), the coefficients aj can be

expressed as

aj =
λj

j!

∑
m�0

P(X = m)Cj(λ, m) =
λj

j!
ECj(λ, X).

Thus ∑
m�0

∣∣∣∣∣P(X = m)

e−λ λm

m!

− 1

∣∣∣∣∣
2

e−λ λm

m!
=

∑
j�1

λj

j!

∣∣ECj(λ, X)
∣∣2.

This identity relates the closeness of X to Poisson measure by means of the moments of X since the

quantity ECj(λ, X) is a linear combination of the moments of X .

On the other hand, it is also clear, by Cauchy-Schwarz inequality, that the series on the right-hand side

satisfies ∑
j�1

λj

j!

∣∣ECj(λ, X)
∣∣2 = sup

(
E

∑
j�1 ajCj(λ, X)

)2

∑
j�1 a2

jj!/λ
j

,

where the supremum is taken over all real sequences {aj}j�1 such that
∑

j�1 a2
jj!/λ

j < ∞. Let

g(x) :=
∑
j�1

ajCj(λ, x).

Then

sup

(
E

∑
j�1 ajCj(λ, X)

)2

∑
j�1 a2

jj!/λ
j

= sup
Eg(ζ)=0

(
Eg(X)

)2

Eg(ζ)2
,

where ζ is a Poisson random variable with mean λ.

Applying the difference equation (2.2) for Charlier polynomials and taking into account that a0 =
Eg(X) = 0. we then have

g(X) =
1

λ

∑
j�1

ajE
(
XCj−1(λ, X − 1) − λCj−1(λ, X)

)
=

1

λ

(
Xh(X − 1) − λh(X)

)
,

where h(x) =
∑

j�1 akCj−1(λ, x). Thus we can write

(∑
m�0

∣∣∣∣∣P(X = m)

e−λ λm

m!

− 1

∣∣∣∣∣
2

e−λ λm

m!

)1/2

= sup E
(
Xh(X − 1) − λh(X)

)
,
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the supremum being taken over all functions h such that E
(
ζh(ζ − 1) − λh(ζ)

)2
= 1. The right-hand

side of the last expression is reminiscent of the Chen-Stein equation; see the book [9]; see also Goldstein

and Reinert [36] and the references therein for the connection between orthogonal polynomials and Stein’s

method.

2.4 Asymptotic forms of the Charlier-Parseval identity
The identity (2.10) can be readily extended to the following effective (or asymptotic) versions for large λ.

Proposition 2.3 (Asymptotic forms of the Charlier-Parseval identity). Let F (z) and f(z) be defined as
above. Assume that f is an entire function and satisfies the condition

|f(z)| � KeH|z−1|2 , (2.14)

for all z ∈ C, with some positive constants K and H . Then uniformly for all N � 0 and λ � (2 + ε)H
with ε > 0

∑
n�0

∣∣∣∣∣ An

e−λ λn

n!

−
∑

0�j�N

ajCj(λ, n)

∣∣∣∣∣
2

e−λ λn

n!
� K2 2 + ε

ε

(
(2 + ε)H

λ

)N+1

, (2.15)

∑
n�0

∣∣∣∣∣An − e−λ λn

n!

∑
0�j�N

ajCj(λ, n)

∣∣∣∣∣ � K

√
2 + ε

ε

(
(2 + ε)H

λ

)(N+1)/2

, (2.16)

and uniformly for all n � 0∣∣∣∣∣An − e−λ λn

n!

( ∑
0�j�N

ajCj(λ, n)

)∣∣∣∣∣ � K
2 + ε

ε
· 1√

λ

(
(2 + ε)H

λ

)(N+1)/2

. (2.17)

Proof. Applying (2.10) with λ = (2+ε)H and using the upper bound I(r) � K2e2Hr2
(by (2.14)), we get∑

j�0

|aj|2j!(
(2 + ε)H

)j =

∫ ∞

0

I

(√
r

(2 + ε)H

)
e−r dr

� K2

∫ ∞

0

e−r(1−2/(2+ε)) dr

= K2 2 + ε

ε
.

Applying again Proposition 2.2 but to the function f(z) = g(z)−∑
0�j�N aj(z − 1)j and using the above

estimate for λ � (2 + ε)H , we get

∑
n�0

∣∣∣∣∣ An

e−λ λn

n!

−
∑

0�j�N

ajCj(λ, n)

∣∣∣∣∣
2

e−λ λn

n!
=

∑
j>N

|aj|2 j!

λj

� 1

λN+1

∑
j>N

|aj|2j!(
(2 + ε)H

)j−(N+1)

=

(
(2 + ε)H

)N+1

λN+1

∑
j>N

|aj|2j!(
(2 + ε)H

)j

� K2 2 + ε

ε

(
(2 + ε)H

λ

)N+1

.
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Thus (2.15) follows and the estimate (2.16) is an immediate consequence of Cauchy-Schwarz inequality.

For (2.17), we apply Proposition 2.2 to the function

(1 − z)

(
f(z) −

∑
0�j�N

aj(z − 1)j

)
,

and obtain ∑
n�0

∣∣∣∣∣An − An−1

e−λ λn

n!

−
∑

0�j�N

ajCj+1(λ, n)

∣∣∣∣∣
2

e−λ λn

n!
=

∑
j>N

|aj|2(j + 1)!

λj+1
.

By partial summation, (2.2) and Cauchy-Schwarz inequality∣∣∣∣∣An − e−λ λn

n!

( ∑
0�j�N

ajCj(λ, n)

)∣∣∣∣∣ �
∑

0�m�n

∣∣∣∣∣Am − Am−1 − e−λ λm

m!

( ∑
0�j�N

ajCj+1(λ, m)

)∣∣∣∣∣
�

⎛
⎝∑

m�0

∣∣∣∣∣Am − Am−1

e−λ λm

m!

−
∑

0�j�N

ajCj+1(λ, n)

∣∣∣∣∣
2

e−λ λm

m!

⎞
⎠

1/2

=

(∑
j>N

|aj|2(j + 1)!

λj+1

)1/2

. (2.18)

Now for λ � (2 + ε)H

∑
n�0

|an|2(n + 1)!

λN+1
=

1

λ

∫ ∞

0

I
(√

r/λ
)

re−r dr

� K2

λ

∫ ∞

0

e−r(1−2H/λ)r dr

=
K2

λ(1 − 2H/λ)2
.

Thus (2.17) follows from substituting this bound into (2.18).

2.5 Some useful estimates of Tauberian type
We now derive a few other effective bounds for certain partial sums or series by applying the Charlier-

Parseval bounds we derived above; these bounds are more suitable for use for the diverse Poisson approxi-

mation distances we will consider. They are the types of results that have more or less the flavor of typical

Tauberian theorems.

Assume that ζλ is a Poisson(λ) distribution. Denote by

Z(n) = min {P(ζλ � n), P(ζλ > n)} .

It is clear that Z(n) � 1/2.
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Proposition 2.4. Let F, f, An, an and I be defined as in (2.7) and (2.11). Assume that f(z) is an entire
function and satisfies the condition (2.9). Then for λ > 2H the following inequalities hold. For n � 0,

∑
n�0

|An| �
(∫ ∞

0

I(
√

r/λ)e−r dr

)1/2

, (2.19)

|An| � 1√
λ

(∫ ∞

0

I(
√

r/λ)re−r dr

)1/2 √
Z(n). (2.20)

If we additionally assume that F (1) = 0, then for n � 0,

∑
n�0

|A0 + A1 + · · · + An| �
√

λ

(∫ ∞

0

I(
√

r/λ)r−1e−r dr

)1/2

, (2.21)

|A0 + A1 + · · · + An| �
(∫ ∞

0

I(
√

r/λ)e−r dr

)1/2 √
Z(n). (2.22)

Proof. By Cauchy-Schwarz inequality

∑
n�0

|An| =
∑
n�0

|An|
e−λ λn

n!

(
e−λ λn

n!

)1/2 (
e−λ λn

n!

)1/2

�

⎛
⎝∑

n�0

∣∣∣∣∣ An

e−λ λn

n!

∣∣∣∣∣
2

e−λ λn

n!

⎞
⎠

1/2

.

The upper bound (2.19) then follows from (2.10).

The third inequality (2.21) is proved by applying (2.19) to the function F1(z) := F (z)/(1 − z). Note

that the condition F (1) = 0 implies that F1(z) is regular at z = 1. With this F1, (2.19) now has the form

∑
n�0

|A0 + A1 + · · · + An| �
(∫ ∞

0

I1(
√

r/λ)e−r dr

)1/2

,

where

I1(r) =
1

2πr2

∫ π

−π

|f(1 + reit)|2 dt = I(r)/r2,

and (2.21) follows.

For the fourth inequality (2.22), we start from applying the Cauchy-Schwarz inequality, giving

|A0 + A1 + · · · + An| �

⎛
⎝∑

j�0

∣∣∣∣∣ Aj

e−λ λj

j!

∣∣∣∣∣
2

e−λ λj

j!

⎞
⎠

1/2 ( ∑
0�j�n

e−λ λj

j!

)1/2

. (2.23)

On the other hand, the condition F (1) = 0 implies that
∑

j�0 Aj = 0. Consequently,

|A0 + A1 + · · · + An| = |An+1 + An+2 + · · · |

�

⎛
⎝∑

j�0

∣∣∣∣∣ Aj

e−λ λj

j!

∣∣∣∣∣
2

e−λ λj

j!

⎞
⎠

1/2 (∑
j>n

e−λ λj

j!

)1/2

. (2.24)

Taking the minimum of the two upper bounds (2.23) and (2.24), we obtain (2.22).

Finally, the second inequality (2.20) follows from (2.22) by applying it to the generating function

(1 − z)F (z) instead of F (z).
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3 Applications. I. Distances for Poisson approximation
We apply in this section the diverse tools based on the Charlier-Parseval identity and derive bounds for the

closeness between the Poisson-binomial distribution and a Poisson distribution with the same mean. We

need a few simple inequalities.

3.1 Lemmas
Lemma 3.1. The inequalities

|(1 + z)e−z| � e|z|
2/2 (3.1)∣∣∣∣∣(1 + z)e−z +

∑
0�j�m

j − 1

j!
(−z)j

∣∣∣∣∣ � cm|z|m+1e|z|
2/2, (3.2)

hold for all z ∈ C, where m � 1 and

cm :=
1

m!

∫ 1

0

et2/2(1 − t)m−1(m − 1 + t)dt. (3.3)

Proof. Write z = reit, where r > 0 and t ∈ R. Then, by 1 + x � ex for x ∈ R,

|(1 + z)e−z| =
√

1 + 2r cos t + r2 e−r cos t

� er cos t+r2/2−r cos t

= er2/2.

For (3.2), we start with the relation

ez −
∑
j<m

zj

j!
=

zm

(m − 1)!

∫ 1

0

etz(1 − t)m−1dt,

and deduce that

(1 − z)ez +
∑

0�j�m

j − 1

j!
zj = −zm+1

m!

∫ 1

0

etz(1 − t)m−1(m − 1 + t)dt,

for m � 1. Thus (3.2) follows from the inequality |tz| � |z|2/2 + t2/2.

Remark 3.2. Note that in the proof of (3.2), we have the inequality

1 + (x − 1)ex

x2ex2/2
� c1 =

√
e − 1 = 0.64872 . . . (x ∈ R),

which can easily be sharpened, by elementary calculus, to

1 + (x − 1)ex

x2ex2/2
� 0.63236 . . . .

But this improvement over c1 is marginal, so we retain the simpler upper bound c1 in the following use.

The next lemma is crucial in applying our Charlier-Parseval bounds derived above.
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Lemma 3.3. The inequality ∣∣∣∣∣
∏

1�k�n

(1 + vk)e
−vk − 1

∣∣∣∣∣ � c1V2e
V2/2, (3.4)

holds for any complex numbers {vk}, where

Vm :=
∑

1�k�n

|vk|m. (3.5)

Proof. By partial summation

∏
1�k�n

ξk −
∏

1�k�n

ηk =
∑

1�k�n

(ξk − ηk)

( ∏
1�j<k

ξj

) ( ∏
k<j�n

ηj

)
, (3.6)

for nonzero {ξk} and {ηk}. Applying this formula, we get∏
1�k�n

(1 + vk)e
−vk − 1 =

∑
1�k�n

(
(1 + vk)e

−vk − 1
) ∏

1�j<k

(1 + vj)e
−vj .

By the two inequalities (3.1) and (3.2) with m = 1, we then obtain∣∣∣∣∣
∏

1�k�n

(1 + vk)e
−vk − 1

∣∣∣∣∣ � c1

∑
1�k�n

|vk|2
∏

1�j<k

e|vj |2/2,

and (3.4) follows.

3.2 New results
We are ready to apply in this section the tools we developed above to derive bounds for several Poisson

approximation distances.

Let

Sn := X1 + X2 + · · · + Xn,

where the Xj’s are independent Bernoulli random variables with

P(Xj = 1) = 1 − P(Xj = 0) = pj (1 � j � n).

Then, here and throughout this section,

F (z) :=
∑

0�m�n

P(Sn = m)zm =
∏

1�j�n

(qj + pjz), (3.7)

where qj := 1 − pj . Define λm :=
∑

1�j�n pm
j , λ = λ1 and θ := λ2/λ1.

Let P(λ) denote a Poisson distribution with mean λ.

Theorem 3.4. We have the following estimates: (i) for the χ2-distance

dχ2(L (Sn), P(λ)) :=
∑
m�0

∣∣∣∣∣P(Sn = m)

e−λ λm

m!

− 1

∣∣∣∣∣
2

e−λ λm

m!
� 2c2

1θ
2

(1 − θ)3
;
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(ii) for the total variation distance

dTV (L (Sn), P(λ)) :=
1

2

∑
m�0

∣∣∣∣P(Sn = m) − e−λ λm

m!

∣∣∣∣ � c1θ√
2(1 − θ)3/2

;

and (iii) for the Wasserstein (or Fortet-Mourier) distance

dW (L (Sn), P(λ)) :=
∑
m�0

∣∣∣∣∣P(Sn � m) −
∑
j�m

e−λ λj

j!

∣∣∣∣∣ � c1λ2√
λ(1 − θ)

.

We also have the following non-uniform bounds for m � 0: (iv) for the Kolmogorov distance∣∣∣∣∣P(Sn � m) −
∑
j�m

e−λ λj

j!

∣∣∣∣∣ �
√

2c1θ

(1 − θ)3/2

√
Z(m);

and (v) for the point metric ∣∣∣∣P(Sn = m) − e−λ λm

m!

∣∣∣∣ �
√

6c1θ

(1 − θ)2
√

λ

√
Z(m).

Proof. For (i), we apply (2.10) to the function F (z)− eλ(z−1) and use the inequality (3.4) with vj = pjre
it

to estimate the integral I . This yields

I(r) =
1

2π

∫ π

−π

∣∣∣∣∣
∏

1�j�n

(1 + pjre
it)e−pjreit − 1

∣∣∣∣∣
2

dt

� c2
1λ

2
2r

4eλ2r2

(3.8)

hence ∫ ∞

0

I(
√

r/λ)e−r dr � c2
1θ

2

∫ ∞

0

r2e−r(1−θ) dr

=
2c2

1θ
2

(1 − θ)3
,

and the estimate in (i) for the χ2-distance follows.

Similarly, the inequalities in (ii) and in (iv) follow from substituting the estimate (3.8) into the two

inequalities (2.19) and (2.22) respectively.

As to the non-uniform estimate in (v) for the point metric, we have, again, by (3.8),∫ ∞

0

I(
√

r/λ)re−r dr � c2
1θ

2

∫ ∞

0

r3e−r(1−θ) dr

� 6c2
1θ

2

(1 − θ)4
.

Substituting this estimate in (2.20) gives the inequality in (v).
Finally, the upper bound in (iii) for dW is derived similarly by the inequality (2.21) using again (3.8)∫ ∞

0

r−1e−rI(
√

r/λ) dr � c2
1θ

2

(1 − θ)2
.

This completes the proof of the theorem.
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The reason of studying the χ2-distance (also referred to as the quadratic divergence) is at least twofold

in addition to its applications in real problems. First, it is structurally simpler than most other distances

because it satisfies the following identity.

Corollary 3.5. Let {aj} be given by

F (z) − eλ(z−1) = eλ(z−1)
∑
j�2

aj(z − 1)j, (3.9)

where F is given in (3.7). Then the χ2-distance satisfies the identity

dχ2(L (Sn), P(λ)) =
∑
j�2

j!

λj
|aj|2. (3.10)

Proof. By (3.9), we have

P(Sn = m) − e−λ λm

m!
= e−λ λm

m!

∑
j�2

ajCj(λ, m). (3.11)

Then (3.10) follows from (2.12).

Second, the χ2-distance is often used to provide bounds for other distances; see [14]. An example is as

follows.

Corollary 3.6. The information divergence (or the Kullback-Leibner divergence) satisfies

dKL(L (Sn), P(λ)) :=
∑
m�0

P(Sn = m) log

(
P(Sn = m)

e−λ λm

m!

)
� 2c2

1θ
2

(1 − θ)3
. (3.12)

Proof. Given two sequences of non-negative real numbers xj and yj such that

x0 + x1 + · · · = 1 and y0 + y1 + · · · = 1.

By the elementary inequality log x � x − 1, we obtain

∑
n�0

yn log
yn

xn

�
∑
n�0

yn

(
yn

xn

− 1

)
=

∑
n�0

y2
n

xn

− 1 =
∑
n�0

xn

(
yn

xn

− 1

)2

.

Thus dKL � dχ2 . Now (3.12) follows from applying this inequality with xm = e−λλm/m! and ym =
P(Sn = m) and then using the inequality in (i) of Theorem 3.4.

Since Z(m) � 1/2, from the two non-uniform estimates (iv) and (v) of Theorem 3.4, we easily obtain

that the Kolmogorov distance satisfies

dK(L (Sn), P(λ)) := sup
m

∣∣∣∣∣P(Sn � m) − e−λ
∑

0�j�m

λj

j!

∣∣∣∣∣ � c1θ

(1 − θ)3/2
;

and the point metric is bounded above by

dP (L (Sn), P(λ)) := sup
m

∣∣∣∣P(Sn = m) − e−λ λm

m!

∣∣∣∣ �
√

3c1θ√
λ (1 − θ)2

.

Note that the estimate so obtained for the Kolmogorov distance is worse than that obtained by the simple

relation dK � dTV and the estimate (ii) of Theorem 3.4.

The quantity Z(m) can be readily bounded above by the following estimate; see also [9, p. 259] or

[44].
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Lemma 3.7.
Z(m) � e−(m−λ)2/(2(m+λ)).

Proof. Let r = m/λ. If m � λ, then

Z(m) � P(ζλ � m) � r−meλ(r−1) = e−λψ(m/λ),

where ψ(x) := 1 − x + x log x. We now prove that

ψ(x) � (1 − x)2

2(1 + x)
(x > 0), (3.13)

or, equivalently, ∫ x

0

log(1 + t)dt � x2

2(2 + x)
(x > −1).

To prove (3.13), observe first that log(1 + t) � t/(1 + t) for t > −1 since
∫ t

0
log(1 + v)dv � 0. Then∫ x

0

log(1 + t)dt �
∫ x

0

t

1 + t
dt,

which is bounded below by x2/(2(2 + x)) by considering the two cases x � 0 and x ∈ (−1, 0]. Thus, by

(3.13),

Z(m) � e−(m−λ)2/(2(m+λ)).

Similarly, if m � λ, then r < 1, and

Z(m) � P (ξλ � m) � r−meλ(r−1) = e−λψ(m/λ) � e−(m−λ)2/(2(m+λ)).

4 Applications. II. Second-order estimates
We show in this section that the same approach we developed above can be readily extended for obtaining

higher order estimates. For simplicity, we consider only the second-order estimates for which we need

only to refine Lemma 3.3. From the formal expansion (3.11), we expect that

P(Sn = m) − e−λ λm

m!
≈ a2e

−λ λm

m!
C2(λ, m) + smaller order terms,

where a2 = −λ2/2, and the error terms for Poisson approximation would be smaller if we take the term

a2e
−λλmC2(λ, m)/m! into account.

Lemma 4.1. For any complex numbers {vk}, the following inequality holds∣∣∣∣∣
∏

1�k�n

(1 + vk)e
−vk − 1 +

1

2

∑
1�k�n

v2
k

∣∣∣∣∣ �
(c1

4
V 2

2 + c2V3

)
eV2/2, (4.1)

where Vm is defined in (3.5), c1 =
√

e − 1 and (see (3.3))

c2 =
1

2

∫ 1

0

et2/2(1 − t2)dt ≈ 0.3706.
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Proof. By (3.6),∏
1�k�n

(1 + vk)e
−vk − 1 +

1

2

∑
1�k�n

v2
k =

∑
1�k�n

(
(1 + vk)e

−vk − 1 +
v2

k

2

) ∏
1�j<k

(1 + vj)e
−vj

− 1

2

∑
1�k�n

v2
k

( ∏
1�j<k

(1 + vk)e
−vk − 1

)
.

By (3.1), (3.2) with m = 2 and (3.4), we then obtain∣∣∣∣∣
∏

1�k�n

(1 + vk)e
−vk − 1 +

1

2

∑
1�k�n

v2
k

∣∣∣∣∣ � c2

∑
1�k�n

|vk|3 exp

(
1

2

∑
1�j�k

|vj|2
)

+
c1

2

∑
1�k�n

|vk|2
∑
j<k

|vj|2 exp

(
1

2

∑
1�j<k

|vj|2
)

,

and (4.1) follows.

For simplicity, let

P1(z) := eλ(z−1)

(
1 − λ2

2
(z − 1)2

)
.

Then

[zm]P1(z) = e−λ λm

m!

(
1 − λ2

2
C2(m, λ)

)
, (4.2)

[zm]
P1(z)

1 − z
=

∑
j�m

e−λ λj

j!
+

λ2

2
C1(m, λ)e−λ λm

m!
,

where C1, C2 are given in (2.3).

With the inequality (4.1) and Proposition 2.4, we can now refine Theorem 3.4 as follows.

Theorem 4.2. For θ < 1, we have the following second-order estimates for χ2-, total variation and
Wasserstein distances, respectively,

∑
m�0

(P(Sn = m) − [zm]P1(z))2

e−λ λm

m!

�
( √

3 c1θ
2

√
2(1 − θ)5/2

+

√
6 c2λ3

λ3/2(1 − θ)2

)2

,

1

2

∑
m�0

|P(Sn = m) − [zm]P1(z)| �
√

3 c1θ
2

2
√

2(1 − θ)5/2
+

√
3 c2λ3√

2λ3/2(1 − θ)2
,

∑
m�0

∣∣∣∣P(Sn � m) − [zm]
P1(z)

1 − z

∣∣∣∣ �
√

λ

( √
3c1θ

2

2
√

2(1 − θ)2
+

√
2 c2λ3

λ3/2(1 − θ)3/2

)
;

and the second-order non-uniform estimates for Kolmogorov distance and point metric, respectively,∣∣∣∣P(Sn � m) − [zm]
P1(z)

1 − z

∣∣∣∣ �
√

Z(m)

( √
3 c1θ

2

√
2(1 − θ)5/2

+

√
6 c2λ3

λ3/2(1 − θ)2

)
,

|P(Sn = m) − [zm]P1(z)| �
√

Z(m)

λ

( √
15 c1θ

2

√
2(1 − θ)3

+
2
√

6 c2λ3

λ3/2(1 − θ)5/2

)
.
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Proof. Let

F (z) =
∏

1�j�n

(1 + pj(z − 1)) − eλ(z−1)

(
1 − λ2

2
(z − 1)2

)
.

Take vj = pj(z − 1) in inequality (4.1). Then∣∣∣∣∣
∏

1�j�n

(1 + pj(z − 1))e−pj(z−1) − 1 − λ2

2
(z − 1)2

∣∣∣∣∣ �
(c1

4
λ2

2|z − 1|4 + c2λ3|z − 1|3
)

e
λ2
2
|z−1|2 .

It follows that

I(r) �
(c1

4
λ2

2r
4 + c2λ3r

3
)2

eλ2r2

. (4.3)

Substituting this upper bound into the identity (2.10) and using the relation (4.2), we obtain(∑
m�0

(P(Sn = m) − [zm]P1(z))2

e−λ λm

m!

)1/2

�
(∫ ∞

0

(
c1

4
θ2r2 +

c2λ3

λ3/2
r3/2

)2

e−(1−θ)r dr

)1/2

� c1

4
θ2

(∫ ∞

0

r4e−(1−θ)r dr

)1/2

+
c2λ3

λ3/2

(∫ ∞

0

r3e−(1−θ)r dr

)1/2

=
c1

4
θ2 ·

√
24

(1 − θ)5/2
+

c2λ3

λ3/2
·

√
6

(1 − θ)2
,

where we used the Minkowsky inequality. This proves the second-order estimate for the χ2-distance.

Similarly, the corresponding estimates for the total variation distance and the (non-uniform estimate of

the) Kolmogorov distance follow from (4.3) and the two inequalities (2.19) and (2.22), respectively.

For the point metric, we have, using again (4.3) and the inequality (2.20),√
λ

Z(m)
|P(Sn = m) − [zm]P1(z)|

�
(∫ ∞

0

(
c1

4
θ2r2 +

c2λ3

λ3/2
r3/2

)2

re−(1−θ)r dr

)1/2

� c1

4
θ2

(∫ ∞

0

r5e−(1−θ)r dr

)1/2

+
c2λ3

λ3/2

(∫ ∞

0

r4e−(1−θ)r dr

)1/2

=

√
15 c1θ

2

√
2(1 − θ)3

+
2
√

6 c2λ3

λ3/2(1 − θ)5/2
.

Finally, the second-order estimate for the Wasserstein distance follows from (4.3) and the inequality (2.21)

λ−1/2
∑
m�0

∣∣∣∣P(Sn � m) − [zm]
P1(z)

1 − z

∣∣∣∣
�

(∫ ∞

0

(
c1

4
θ2r2 +

c2λ3

λ3/2
r3/2

)2

r−1e−(1−θ)r dr

)1/2

� c1

4
θ2

(∫ ∞

0

r3e−(1−θ)r dr

)1/2

+
c2λ3

λ3/2

(∫ ∞

0

r2e−(1−θ)r dr

)1/2

.
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Corollary 4.3. The total variation distance between the distribution of Sn and a Poisson distribution of
mean λ satisfies, for θ < 1,

dTV (Sn,P(λ)) � θ

23/2
+

√
3 c1θ

2

2
√

2(1 − θ)5/2
+

√
3 c2λ3√

2λ3/2(1 − θ)2
. (4.4)

Proof. By (2.13) with k = 2, we have

1

2

∑
m�0

e−λ λm

m!
|C2(λ, m)| � 1√

2λ
,

and (4.4) follows from the second-order estimate for the total variation distance in Theorem 4.2.

Remark 4.4. One can easily derive, by the difference equation (2.2) of Charlier polynomials with k = 1,

that (see for example [43])

1

2

∑
m�0

e−λ λm

m!
|C2(λ, m)| = e−λ

(
λm+−1

m+!
(m+ − λ) +

λm−−1

m−!
(λ − m−)

)
,

where m± := 	λ + 1
2
±

√
λ + 1

4

. Asymptotically, for large λ,

1

2

∑
m�0

e−λ λm

m!
|C2(λ, m)| =

√
2√

πe λ

(
1 + O

(
λ−1

))
.

By a detailed calculus, Roos [70] showed that

1

2

∑
m�0

e−λ λm

m!
|C2(λ, m)| � 3

2eλ
, (4.5)

where numerically {
1√
2
,

3

2e
,

√
2√
πe

}
≈ {0.707, 0.552, 0.484} .

Of course, we can apply Roos’s inequality (4.5) and replace the constant 1/23/2 ≈ 0.354 . . . by 3/(4e) ≈
0.276 . . . in the first term of our inequality (4.4).

Corollary 4.5. The χ2-distance satisfies

dχ2(L (Sn), P(λ)) =
θ2

2

(
1 + O

(
θ

(1 − θ)5

))
. (4.6)

Proof. Note that

0 �
∑
m�0

(P(Sn = m) − [zm]P1(z))2

e−λ λm

m!

=
∑
m�0

(
P(Sn = m) − e−λ λm

m!

)2

e−λ λm

m!

− θ2

2
.

This identity together with the first estimate of Theorem 4.2 and an observation that λ3 � λ
3/2
2 yields

(4.6).
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Remark 4.6. An alternative way to prove (4.6) is to use the identity (3.10) and apply the estimate for the

coefficients aj derived in Shorgin [80]

|aj| �
(

eλ2

j

)j/2

(j � 2), (4.7)

and obtain

∑
j�3

j!

λj
|aj|2 �

∑
j�3

j!(e/j)jθj = O

(∑
j�3

j1/2θj

)
,

by Stirling’s formula j! = O(j1/2(j/e)j), j � 1. This and a2 = −λ2/2 give

dχ2(L (Sn), P(λ)) =
θ2

2

(
1 + O

(
θ

(1 − θ)3/2

))
. (4.8)

For a further refinement of (4.6), see Corollary 5.3. Note that (4.8) implies that

dKL(L (Sn), P(λ)) � θ2

2

(
1 + O

(
θ

(1 − θ)3/2

))
.

5 Applications. III. Approximations by signed measures
Since the probability generating function of Sn can be represented as

EzSn = exp

(∑
j�1

(−1)j−1

j
λj(z − 1)j

)
,

it is well-known since Herrmann [39] that smaller error terms can be achieved if we use finite number of

terms in the exponent to approximate EzSn; namely,

EzSn ≈ exp

( ∑
1�j�k

(−1)j−1

j
λj(z − 1)j

)
,

for k � 1. Anther advantage of such approximations is that the remainder terms tend to zero not only

when θ → 0 but also when λ → ∞ (while θ remaining, say less than 1 − ε, ε > 0 being a small number).

This gives rise to Poisson approximation via signed measures (sometimes also referred to as compound

Poisson approximations); see Cekanavicius [18], Roos [71], Barbour et al. [5] for more information.

Although these approximations are not probability generating functions for k � 2, they can numeri-

cally and asymptotically be readily computed. Indeed, for k = 2

[zm]eλ(z−1)−λ2(z−1)2/2 = e−λ−λ2/2 λ
m/2
2

m!
Hm

(
λ + λ2√

λ2

)
,

where the Hm(x)’s are the Hermite polynomials.
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5.1 Approximation by eλ(z−1)−λ2(z−1)2/2

We consider the simplest case of such forms when k = 2.

Lemma 5.1. The inequality∣∣∣∣∣
∏

1�k�n

(1 + vk)e
−vk − exp

(
−1

2

∑
1�k�n

v2
k

)∣∣∣∣∣ �
(

c2V3 +
1

8
V4

)
eV2/2 (5.1)

holds for any complex numbers {vk}, where Vm is given in (3.5) and c2 in (3.3).

Proof. Again by (3.6),∏
1�k�n

(1 + vk)e
−vk −

∏
1�k�n

e−v2
k/2

=
∑

1�k�n

(
(1 + vk)e

−vk − e−v2
k/2

) ( ∏
1�j<k

(1 + vj)e
−vj

) ( ∏
k<j�n

e−v2
j /2

)
.

Now ∣∣∣(1 + z)e−z − e−z2/2
∣∣∣ =

∣∣∣∣(1 + z)e−z − 1 +
z2

2
−

(
e−z2/2 − 1 +

z2

2

)∣∣∣∣
=

∣∣∣∣−z3

2

∫ 1

0

(1 − t2)e−tzdt − z4

4

∫ 1

0

(1 − t)e−tz2/2dt

∣∣∣∣
� c2|z|3e|z|2/2 +

|z|4
8

e|z|
2/2.

This and the inequality (3.1) yield (5.1).

Let

P2(z) := eλ(z−1)−λ2(z−1)2/2.

Theorem 5.2. Assume that θ < 1. Then

∑
m�0

(P(Sn = m) − [zm]P2(z))2

e−λ λm

m!

� λ2
3

λ3

( √
6 c2

(1 − θ)2
+

√
3θ

2
√

2(1 − θ)5/2

)2

,

∑
m�0

|P(Sn = m) − [zm]P2(z)| � λ3

λ3/2

( √
6 c2

(1 − θ)2
+

√
3θ

2
√

2(1 − θ)5/2

)
,

∑
m�0

∣∣∣∣P(Sn � m) − [zm]
P2(z)

1 − z

∣∣∣∣ � λ3

λ

( √
2 c2

(1 − θ)3/2
+

√
3θ

4
√

2(1 − θ)2

)
,

∣∣∣∣P(Sn � m) − [zm]
P2(z)

1 − z

∣∣∣∣ � λ3

λ3/2

√
Z(m)

( √
6 c2

(1 − θ)2
+

√
3θ

2
√

2(1 − θ)5/2

)
,

|P(Sn = m) − [zm]P2(z)| � λ3

λ2

√
Z(m)

(
2
√

6 c2

(1 − θ)5/2
+

√
15θ

2
√

2(1 − θ)3

)
.
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Proof. All estimates follow similarly as the proof of Theorem 3.4 but with

F (z) =
∏

1�j�n

(1 + pj(z − 1)) − eλ(z−1)−λ2(z−1)2/2.

For the first two estimates of the theorem, we apply the inequality (5.1), which gives

I(r) �
(

c2λ3r
3 +

1

8
λ4r

4

)2

eλ2r2

.

By the inequality λ4 � λ3

√
λ2, we obtain(∑

m�0

(P(Sn = m) − [zm]P2(z))2

e−λ λm

m!

)1/2

� λ3

λ3/2

⎛
⎝∫ ∞

0

(
c2r

3/2 +

√
θ

8
r2

)2

e−(1−θ)r2

⎞
⎠

1/2

� λ3

λ3/2

(
c2

√
6

(1 − θ)2
+

√
24θ

8(1 − θ)5/2

)
.

Then we apply Proposition 2.4. The other estimates are similarly proved.

Lemma 5.3. For any θ < 1, we have

∑
m�0

(
e−λ λm

m!
− [zm]P2(z)

)2

e−λ λm

m!

=
1√

1 − θ2
− 1. (5.2)

Proof. Applying (2.10) and (2.12) to the function

F (z) = eλ(z−1) − P2(z) = eλ(z−1)

(∑
k�1

(
λ2

2

)k
(z − 1)2k

k!

)
,

we obtain ∑
m�0

(
e−λ λm

m!
− [zm]P2(z)

)2

e−λ λm

m!

=
∑
k�1

(
θ

2

)2k
(2k)!

(k!)2
=

1√
1 − θ2

− 1.

Corollary 5.4. For θ < 1,∣∣∣∣∣∣
(∑

m�0

(
P(Sn = m) − e−λ λm

m!

)2

e−λ λm

m!

)1/2

−
(

1√
1 − θ2

− 1

)1/2

∣∣∣∣∣∣ � λ3

λ3/2

(
c2

√
6

(1 − θ)2
+

√
24θ

8(1 − θ)5/2

)
. (5.3)

Proof. By applying the Minkowsky inequality and the first estimate of Theorem 5.2, we obtain∣∣∣∣∣∣
(∑

m�0

(
P(Sn = m) − e−λ λm

m!

)2

e−λ λm

m!

)1/2

−
(∑

m�0

(
e−λ λm

m!
− [zm]P2(z)

)2

e−λ λm

m!

)1/2
∣∣∣∣∣∣

�
(∑

m�0

(P(Sn = m) − [zm]P2(z))2

e−λ λm

m!

)1/2

� λ3

λ3/2

(
c2

√
6

(1 − θ)2
+

√
24θ

8(1 − θ)5/2

)
.

Consequently, by (5.2), we obtain (5.3).
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Note that (5.3) implies that, for all θ < 1,

dχ2(L (Sn), P(λ)) =

(
1√

1 − θ2
− 1

) (
1 + O

(
λ3

λ2

√
λ(1 − θ)5

))
.

On the other hand, by the inequality dχ2 � 4d2
TV (which following from (2.12) and (2.19)), we obtain

another upper bound for dTV .

Corollary 5.5. For θ < 1,

dTV (Sn,P(λ)) � 1

2

(
1√

1 − θ2
− 1

)1/2

+
λ3

λ3/2

(
c2

√
6

2(1 − θ)2
+

√
24θ

16(1 − θ)5/2

)
.

6 Comparative discussions
We review briefly some known results in the literature and compare them in this section. For simplicity,

we write d∗ for d∗(L (Sn), P(λ)) throughout this section, where d∗ represents one of the distances we

discuss.

Among the five measures of closeness of Poisson approximation {dχ2 , dTV , dW , dK , dP}, the estimation

of the three {dχ2 , dK , dP} is generally simpler in complexity since they can all be easily bounded above

by explicit summation or integral representations: see (3.10) for dχ2 , (6.2) for dK and (6.3) for dP .

In addition to the Poisson approximations to L (Sn) we consider in this paper, many other different

types of approximations to L (Sn) were proposed in the literature; these include Poisson with different

mean, compound Poisson, translated Poisson, large deviations, other perturbations of Poisson, binomial,

compound binomial, etc. They are too numerous to be listed and compared here; see, for example, Barbour

et al. [9], Roos [69, 72], Barbour and Chryssaphinou [7], Barbour and Chen [6], Röllin [66] and the

references therein.

6.1 The χ2-distance and the Kullback-Leibner divergence
Borisov and Vorozheı̌kin [14] showed that dχ2 ∼ θ2/2 under the assumption that θ = o(λ−1/7). They

also derived in the same paper the identity (3.10) in the special case when all pj’s are equal. More refined

estimates were then given. The estimate (4.6) we obtained is more general and stronger.

The Kullback-Leibner divergence has been widely studied in the information-theoretic literature and

many results are known. The connection between dTV and dKL for general distributions also received

much attention since they can be used to bridge results in probability theory and in information theory;

see the survey paper Fedotov et al. [34] for more information and references. One such tool studied is

Pinsker’s inequality dTV �
√

dKL/2 (see [34]). Note that in the case of Sn, this inequality implies that

dTV �
√

dχ2/2, while we have dTV �
√

dχ2/2 by (2.12) and (2.19).

Kontoyiannis et al. [51] recently proved, by an information-theoretic approach, that

dKL � 1

λ

∑
1�j�n

p3
j

1 − pj

.

The right-hand side in the above inequality is, by Cauchy-Schwarz inequality, always larger than θ2, pro-

vided that at least one of the pj’s is nonzero, and can be considerably larger than our estimate (3.12) for

23



certain cases. Indeed, take for example pj = 1/
√

j + 1. Then

dKL � 1

λ

∑
1�j�n

p3
j

1 − pj

� 1√
n

,

where the symbol “an � bn” means that an is asymptotically of the same order as bn. Our result (3.12)

yields in this case the estimate

dKL � 2c2
1θ

2

(1 − θ)3
� log2 n

n
.

6.2 The total variation distance
We mentioned in Introduction some results in Le Cam [54] and other refinements in the literature of the

form dTV � cθ. We briefly review and compare here other results for dTV .

First- and second-order estimates. Kerstan [49], in addition to proving that dTV � 0.6θ (which was

later on corrected to 1.05 by Barbour and Hall [8]), he also proved the second-order estimate

∑
j�0

∣∣∣∣P(Sn = j) − e−λ λj

j!

(
1 − λ2

2
C2(λ, j)

)∣∣∣∣ � 1.3
λ3

λ
+ 3.9θ2.

Similar estimates were derived later in Herrmann [39], Chen [23], Barbour and Hall [8]. The order of the

error terms is however not optimal for large λ; see Theorem 4.2.

Many fine estimates were obtained in the series of papers by Deheuvels, Pfeifer and their co-authors.

In particular, Deheuvels and Pfeifer [30] proved dTV � θ/(1 − √
2θ) for θ < 1/2 and the second-order

estimate ∑
j�0

∣∣∣∣P(Sn = j) − e−λ λj

j!

(
1 − λ2

2
C2(λ, j)

)∣∣∣∣ � (2θ)3/2

1 −√
2θ

,

for θ < 1/2, the order of the error terms being tight. For many other estimates (including higher-order

ones), see [30, 31]. Their approach is based on a semi-group formulation, followed by applying the fine

estimates of Shorgin [80], which in turn were obtained by the complex-analytic approach of Uspensky

[83]. Following a similar approach, Witte [86] gives an upper bound of the form

dTV � e2p∗θ√
2π(1 − 2e2p∗θ)

,

for θ < 1
2
e−2p∗ , as well as other more complicated ones. Another very different form for dTV can be found

in Weba [85], which results from combining several known estimates.

By refining further Deheuvels and Pfeifer’s approach, Roos [69, 70] deduced several precise estimates

for dTV and other distances. In particular, he showed that

dTV �
(

3

4e
+

7(3 − 2
√

θ)

6(1 −√
θ)2

√
θ

)
θ,

when θ < 1; see [70] and the references therein. The proof of this estimate is based on a second-order

approximation; see (4.5).
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Note that since dTV � 1, any result of the form dTV � ϕ(θ)θ for θ � θ1, θ1 ∈ (0, 1), also leads to an

upper bound of the form dTV � cθ, where

c = sup
0�t�θ0

ϕ(t),

θ0 := min{θ1, θ2}, θ2 ∈ (0, 1) solving the equation tϕ(t) = 1.

Higher-order approximations based on Charlier expansion are studied in Herrmann [39], Barbour [3],

Deheuvels and Pfeifer [30], Barbour et al. [9], Roos [69, 71].

Approximations by signed measures. Herrmann [39] proved that, when specializing to the case of Sn,∑
m�0

∣∣∣P(Sn = m) − [zm]eλ(z−1)−λ2(z−1)2/2
∣∣∣ = O

(
λ3

λ

)
,

the rate being λ1/2 away from optimal; see Theorem 5.2. Presman [64] considered the binomial case and

derived an optimal error bound. Kruopis [53] extended further Presman’s analysis and derived∑
m�0

∣∣∣P(Sn = m) − [zm]eλ(z−1)−λ2(z−1)2/2
∣∣∣

� 10�λ3 min
{
1.2σ−3 + 4.2λ2σ

−6, 2 + σ2 + 3.4λ2

}
,

where σ :=
√

λ − λ2 and

� := max
1�j�n

sup
0�t�1

e2pjt(1−pjt), (6.1)

which was in turn refined by Borovkov [15]. Hipp [41] discussed similar expansions for compound Poisson

distributions and attributed the idea to Kornya [52], but his bounds are weaker for large λ in the special

case of Sn; see also Čekanavičius [18]. Barbour and Xia [11] proved, as a special case of their general

results, that∑
m�0

∣∣∣P(Sn = m) − [zm]eλ(z−1)−λ2(z−1)2/2
∣∣∣ � 4λ3

λ3/2(1 − 2θ)
√

1 − θ − maxj pj(1 − pj)/λ
,

when θ < 1/2. An extensive study was carried out by Čekanavičius in a series of papers dealing

mainly with Kolmogorov’s problem of approximating convolutions by infinitely divisible distributions;

see Čekanavičius [18, 19] and the references cited there. Approximation results using signed compound

measures under more general settings than Sn are derived in Borovkov and Pfeifer [16], Roos [71, 72] and

Čekanavičius [19], Barbour et al. [5].

Other uniform asymptotic approximations. The estimate dTV ∼ θ/
√

2πe holds whenever θ → 0. A

uniform estimate of the form

dTV = θJ(θ)
(
1 + O

(
λ−1

))
,

as λ → ∞, was recently derived in [44], where

J(θ) :=
1

θ

(
Φ

(√
1

θ
log

1

1 − θ

)
− Φ

(√
1 − θ

θ
log

1

1 − θ

))
,

Φ being the standard normal distribution function. Other more general and more uniform approximations

were also derived in [44].
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6.3 The Wasserstein distance
Deheuvels and Pfeifer [30] proved the asymptotic equivalent dW ∼ λ2/

√
2πλ, when λ2/

√
λ → ∞, im-

proving earlier results in Deheuvels and Pfeifer [29]. They also obtained many other estimates, including

the following second-order one ∣∣∣∣dW − λ2e
−λ λ�λ�

�λ
!
∣∣∣∣ � 25/2λ1/2θ3/2

1 −√
2θ

,

for |θ| � 1/2. Then Witte [86] gave the bound

dW � −
√

eλ

2
√

2π
log

(
1 − 2e2p∗θ

)
,

for θ < 1
2
e−2p∗ . Xia [87] showed that dW � λ2/

√
λ(1 − θ); see also Barbour and Xia [12] for the

estimate dW � 8λ2/(3
√

2eλ). The strongest results including more precise higher-order approximations

were derived by Roos (1999, 2001), where, in particular,

dW �
(

1√
2e

+
8(2 − θ)

5(1 −√
θ)2

√
θ

)
λ2√
λ

.

For other results in connection with Wasserstein metrics, see Deheuvels et al. [27], Hwang [43],

Čekanavičius and Kruopis [20].

6.4 The Kolmogorov distance
It is known, by definition and Newton’s inequality (see Comtet [24, p. 270] or Pitman [60]), that dK �
dTV � 2dK ; see Daley and Vere-Jones [26], Ehm [33], Roos [70]. Thus all upper estimates for dTV

translate directly to those for dK and vice versa. Also many approximation results in probability theory for

sums of independent random variables apply to Sn. Both types of results are not listed and discussed here;

see for example Arak and Zaı̆tsev [2].

Up to now, we only consider non-uniform bounds for dK . However, effective uniform bounds can be

easily derived based on the Fourier inversion formula

dK = sup
m

∣∣∣∣∣ 1

2π

∫ π

−π

e−imt EeitSn − eλ(eit−1)

1 − eit
dt

∣∣∣∣∣
� 1

2π

∫ π

−π

eλ(cos t−1)

|1 − eit|

∣∣∣∣∣
∏

1�j�n

(
1 + pj(e

it − 1)
)
e−pj(e

it−1) − 1

∣∣∣∣∣ dt. (6.2)

From (6.2) and (3.4), we have

dK � c1

π
λ2

∫ π

0

∣∣1 − eit
∣∣ e−σ2(1−cos t)dt,

which, by the simple inequalities |1 − eit| � |t| and 1 − cos t � 2t2/π2 for t ∈ [−π, π], leads to

dK � c1

π
λ2

∫ ∞

0

te−2σ2t2/π2

dt =
c1πθ

4(1 − θ)
,
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where c1π/4 ≈ 0.51. Although this bound is worse than some known ones such as dK � 0.36θ in

Daley and Vere-Jones [26], its derivation is very simple and self-contained, the order being also tight.

Furthermore, the leading constant c1π/4 can be lowered, say to 0.363c1 < 0.24, by a more careful analysis

but we are not pursuing this further here. Note that it is known that dK ∼ θ/(2
√

2πe), as θ = o(1), see

Deheuvels and Pfeifer [30], Hwang [43], where 1/(2
√

2πe) ≈ 0.121.

In a little known paper, Makabe [55] gives a systematic study of dK using standard Fourier analysis,

improving earlier results by Kolmogorov [50], Le Cam [54], Hodges and Le Cam [42]. In particular, he

first derived a second-order estimate from which he deduced that dK � 3.7θ and

dK � θ

2
+ O

(
θ2 + p∗θ

)
.

For p∗ < 1/5, he also provided a one-page proof of

dK � 5θ

4(1 − 2p∗ − 5θ/2)
� 25θ

12 − 50θ
.

A Le Cam-type inequality of the form dK � 2λ2/π was given in Franken [35], which was later refined

to dK � λ2/2 in Serfling [76]; see also Daley [25]. Franken [35] also proves the estimate

dK � c

π

(
1 − e−λ(1−θ)

) θ

1 − θ
,

for an explicitly given c, as well as higher-order terms for dK based on Charlier expansions. His bound

together with dK � 1 implies dK � 1.9θ, improving previous estimates by Le Cam and Makabe.

Shorgin [80] derived an asymptotic expansion for the distribution of Sn; in particular, as a simple

application of his bounds for |aj| (see (3.9)) and |Ck(λ, m)|,

dK �
(

1

2
+

√
π

8

)
θ

1 −√
θ
,

where 1/2 +
√

π/8 ≈ 1.31. In Hipp [40], the upper bound

dK � π

4λ(1 − θ)

∑
1�j�n

p2
j

1 − pj

,

was given, so that if p∗ � 1/4, then

dK � πθ

3(1 − θ)
� 1.05θ

1 − θ
.

A bound of the form

dK � 2

π
min

{ √
eθ

2(1 − θ)
, λ2

}
was given in Kruopis [53], where he also derived

sup
m

∣∣∣∣P(Sn � m) − [zm]
P2(z)

1 − z

∣∣∣∣ � 2

3
�λ3 min

{
1√

πλ3/2(1 − θ)3/2
, 1

}
,

where � is defined in (6.1). Deheuvels and Pfeifer deduced several estimates for dK ; in particular (see

[30, 31])

sup
m

∣∣∣∣P(Sn � m) − [zm]
P1(z)

1 − z

∣∣∣∣ � 5

3

(
θ2

(1 −√
θ)

+
λ3

λ3/2

)
;
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Note that this can also be written as∣∣∣∣dK − θ

2
e−λ max

{
λ�+

	+!
(	+ − λ),

λ�−

	−!
(λ − 	−)

}∣∣∣∣ � 5

3

(
θ2

(1 −√
θ)

+
λ3

λ3/2

)
,

where 	± := 	λ + 1/2 ± √
λ + 1/4
.

Witte [86] then derived the estimate

dK �
√

e(1 +
√

π/2)e2p∗

2
√

2π(1 − e2p∗θ)
θ,

for θ < e−p∗; see also Weba [85]. Roos [69, 70] gives, among several other fine estimates,

dK �
(

1

2e
+

6

5(1 −√
θ)

√
θ

)
θ.

Non-uniform estimates are derived in Teerapabolarn and Neammanee [82] for general dependent sum-

mands, which is of the form in the case of Sn∣∣∣∣∣P(Sn � m) − e−λ
∑

0�j�m

λj

j!

∣∣∣∣∣ �
(
1 − e−λ

)
θ min

{
1,

eλ

m + 1

}
,

generally weaker than our bounds in Theorems 3.4 and 4.2.

6.5 The point probabilities
As for dK above, the point metric can also be readily estimated by using the integral representation

dP � 1

2π

∫ π

−π

eλ(cos t−1)

∣∣∣∣∣
∏

1�j�n

(
1 + pj(e

it − 1)
)
e−pj(e

it−1) − 1

∣∣∣∣∣ dt, (6.3)

and (3.4), and we obtain for example

dP � c1π
5/2θ

8
√

2λ(1 − θ)3/2
.

Classical local limit theorems for probabilities of moderate or large deviations can also be used to give

effective bounds for the point metric dP := maxm |P(Sn = m)− e−λλm/m!|; they are not discussed here.

Results for dP were derived in Franken [35] but are too complicated to be described here. Kruopis [53]

gives the estimate

dP � min

{ √
eθ√

πλ(1 − θ)3/2
, λ2

}
,

as well as

sup
m

|P(Sn = m) − [zm]P2(z)| � 8�

3π
λ3 min

{
1

λ2(1 − θ)2
,
4

3

}
.

Barbour and Jensen [10] derived an asymptotic expansion; see also [3].

Asymptotically, as θ → 0,

dP ∼ θ

2
√

2πλ
,
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see Roos [68], where he also derived a second-order estimate for dP , which was later refined in [69, 70].

In particular,

dP �
(

1

2

(
3

2e

)3/2

+
6 − 4

√
θ

3(1 −√
θ)2

√
θ

)
θ√
λ

.

A non-uniform bound was given in Neammanee [57, 58] of the form∣∣∣∣P(Sn = m) − e−λ λm

m!

∣∣∣∣ � min
{
m−1, λ−1

}
λ2,

whenever λ � 1.
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[79] SZEGÖ, G. (1939). Orthogonal Polynomials. American Mathematical Society, New York.

[80] SHORGIN, S. Y. (1977). Approximation of a generalized Binomial distribution. Theory Probab. Appl.
22 846–850.

[81] STEELE, J. M. (1994). Le Cam’s inequality and Poisson approximations. Amer. Math. Monthly 101
48–54.

[82] TEERAPABOLARN, K. AND NEAMMANEE, K. (2006). Poisson approximation for sums of depen-

dent Bernoulli random variables. Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 22 87–99.

33



[83] USPENSKY, J. V. (1931). On Ch. Jordan’s series for probability. Ann. Math. 32 306–312.

[84] VERVAAT, W. (1969). Upper bounds for the distance in total variation between the binomial or

negative binomial and the Poisson distribution. Statist. Neerlandica 23 79–86.

[85] WEBA, M. (1999). Bounds for the total variation distance between the binomial and the poisson

distribution in the case of medium-sized success probabilities. J. Appl. Probab. 36 97–104.

[86] WITTE, H.-J. (1990). A unification of some approaches to Poisson approximation. J. Appl. Probab.
27 611–621.

[87] XIA, A. (1997). On the rate of Poisson process approximation to a Bernoulli process. J. Appl. Probab.
34 898–907.

34


