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A NEW APPROACH TO STRONG EMBEDDINGS

SOURAV CHATTERJEE

Abstract. We revisit strong approximation theory from a new per-
spective, culminating in a proof of the Komlós-Major-Tusnády embed-
ding theorem for the simple random walk. The proof is almost entirely
based on a series of soft arguments and easy inequalities. The new tech-
nique, inspired by Stein’s method of normal approximation, is applicable
to any setting where Stein’s method works. In particular, one can hope
to take it beyond sums of independent random variables.

1. Introduction

Let ε1, ε2, . . . be i.i.d. random variables with E(ε1) = 0 and E(ε21) = 1.
For each k, let

Sk =

k∑

i=1

εi.

Suppose we want to construct a standard Brownian motion (Bt)t≥0 on the
same probability space so as to minimize the growth rate of

(1) max
1≤k≤n

|Sk −Bk|.

Since Sn and Bn both grow like
√
n, one would typically like to have the

above quantity growing like o(
√
n), and preferably, as slowly as possible.

This is the classical problem of coupling a random walk with a Brownian
motion, usually called an ‘embedding problem’ because the most common
approach is to start with a Brownian motion and somehow extract the ran-
dom walk as a process embedded in the Brownian motion.

The study of such embeddings began with the works of Skorohod [19, 20]
and Strassen [22], who showed that under the condition E(ε41) < ∞, it

is possible to make (1) grow like n1/4(log n)1/2(log log n)1/4. In fact, this
was shown to be the best possible rate under the finite fourth moment
assumption by Kiefer [12].

For a long time, this remained the best available result in spite of numer-
ous efforts by a formidable list of authors to improve on Skorohod’s idea.
For a detailed account of these activities, see the comprehensive recent sur-
vey of Ob lój [16] and the bibliography of the monograph by Csörgő and
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Révész [6]. Therefore it came as a great surprise when Komlós, Major, and
Tusnády [13], almost fifteen years after Skorohod’s original work, proved by
a completely different argument that one can actually have

max
k≤n

|Sk −Bk| = O(log n)

when ε1 has a finite moment generating function in a neighborhood of zero.
Moreover, they showed that this is the best possible result that one can hope
for in this situation.

Theorem 1.1 (Komlós-Major-Tusnády [13]). Let ε1, ε2, . . . be i.i.d. random
variables with E(ε1) = 0, E(ε21) = 1, and E exp θ|ε1| < ∞ for some θ > 0.

For each k, let Sk :=
∑k

i=1 εi. Then for any n, it is possible to construct
a version of (Sk)0≤k≤n and a standard Brownian motion (Bt)0≤t≤n on the
same probability space such that for all x ≥ 0,

P
(
max
k≤n

|Sk −Bk| ≥ C log n+ x
)
≤ Ke−λx,

where C, K, and λ do not depend on n.

The paper [13] also contains another very important result, a similar em-
bedding theorem for uniform empirical processes. However, this will not be
discussed in this article. See the recent articles by Mason [15] and Csörgő [4]
as well as the book [5] for more on the KMT embedding theorem for empir-
ical procceses.

One problem with the proof of Theorem 1.1, besides being technically
difficult, is that it is very hard to generalize. Indeed, even the most basic
extension to the case of non-identically distributed summands by Sakha-
nenko [17] is so complex that some researchers are hesitant to use it (see
also Shao [18]). A nearly optimal multivariate version of the KMT theorem
was proved by Einmahl [10]; the optimal result was obtained by Zaitsev [23]
at the end of an extraordinary amount of hard work. More recently, Zaitsev
has established multivariate versions of Sakhanenko’s theorem [24, 25, 26].
For further details and references, let us refer to the survey article by Zait-
sev [27] in the Proceedings of the ICM 2002.

The investigation in this paper is targeted towards a more conceptual
understanding of the problem that may allow one to go beyond sums of in-
dependent random variables. It begins with the following abstract method
of coupling an arbitrary random variable W with a Gaussian random vari-
able Z so that W − Z has exponentially decaying tails at the appropriate
scale. (Such a coupling will henceforth be called a strong coupling, to dis-
tinguish it from the ‘weak’ couplings given by bounds on total variation or
Wasserstein metrics.)

Theorem 1.2. Suppose W is a random variable with E(W ) = 0 and finite
second moment. Let T be another random variable, defined on the same
probability space as W , such that whenever ϕ is a Lipschitz function and ϕ′
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is a derivative of ϕ a.e., we have

(2) E(Wϕ(W )) = E(ϕ′(W )T ).

Suppose |T | is almost surely bounded by a constant. Then, given any σ2 > 0,
we can construct Z ∼ N(0, σ2) on the same probability space such that for
any θ ∈ R,

E exp(θ|W − Z|) ≤ 2 E exp

(
2θ2(T − σ2)2

σ2

)
.

Let us make a definition here, for the sake of convenience. Whenever
(W,T ) is a pair of random variables satisfying (2), we will say that T is a
Stein coefficient for W .

The key idea, inspired by Stein’s method of normal approximation [21],
is that if T ≃ σ2 with high probability, then one can expect that W is
approximately Gaussian with mean zero and variance σ2. This conclusion
is heuristically justified because a random variable Z follows the N(0, σ2)
distribution if and only if E(Zϕ(Z)) = σ2E(ϕ′(Z)) for all continuously dif-
ferentiable ϕ such that E|ϕ′(Z)| <∞. Stein’s method is a process of getting
rigorous bounds out of this heuristic.

However, classical Stein’s method can only give bounds on quantities like

sup
f∈F

|Ef(W ) − Ef(Z)|,

for various classes of functions F . This includes, for example, bounds on the
total variation distance and the Wasserstein distance, and the Berry-Esséen
bounds. Theorem 1.2 seems to be of a fundamentally different nature.

To see how Stein coefficients can be constructed in a large array of situ-
ations, let us consider a few examples.

Example 1. Suppose X is a random variable with E(X) = 0, E(X2) <
∞, and following a density ρ that is positive on an interval (bounded or
unbounded) and zero outside. Let

(3) h(x) :=

∫∞
x yρ(y)dy

ρ(x)

on the support of ρ. Then, assuming ideal conditions and applying inte-
gration by parts, we have E(Xϕ(X)) = E(ϕ′(X)h(X)) for all Lipschitz ϕ.
Thus, h(X) is a Stein coefficient for X. The above computation is carried
out more precisely in Lemma 2.3 in Section 2.

Example 2. Suppose X1, . . . ,Xn are i.i.d. copies of the random variable X
from the above example, and let W = 1√

n

∑n
i=1Xi. Then by Example 1,

E(Wϕ(W )) =
1√
n

n∑

i=1

E(Xiϕ(W ))

=
1

n

n∑

i=1

E(h(Xi)ϕ
′(W )) = E

(
ϕ′(W )

1

n

n∑

i=1

h(Xi)

)
.
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Thus, 1
n

∑
i h(Xi) is a Stein coefficient for W . Note that this becomes more

and more like a constant as n increases, and so we can use Theorem 1.2 to
get more and more accurate couplings.

Example 3. Suppose ε1, . . . , εn are i.i.d. symmetric ±1-valued r.v. Let
Sn =

∑n
i=1 εi. Let Y ∼ Uniform[−1, 1]. Let Wn = Sn + Y . Let

Tn = n− SnY +
1 − Y 2

2
.

It will be shown in the proof of Theorem 3.1 in Section 3 that Tn is a Stein
coefficient for Wn. (The construction of this Tn is somewhat ad hoc. The
author has not yet found a general technique for smoothening of discrete
random variables in a way that can automatically generate a Stein coeffi-
cient.) Letting σ2 = n, Lemma 1.2 tells us that it is possible to construct
Zn ∼ N(0, n) such that

E exp(θ|Wn − Zn|) ≤ 2 E exp

(
2θ2(Tn − n)2

n

)
.

Since Tn = n + O(
√
n) and |Wn − Sn| ≤ 1, it is now clear how to use

Theorem 1.2 to construct Sn and Zn on the same probability space such
that irrespective of n,

E exp(θ|Sn − Zn|) ≤ C

for some fixed constants θ and C. By Markov’s inequality, for all x ≥ 0,

P(|Sn − Zn| ≥ x) ≤ Ce−θx.

This is the first step in our proof of the KMT embedding theorem for the
simple random walk.

Example 4. Suppose X = (X1, . . . ,Xn) is a vector of i.i.d. standard Gauss-
ian random variables. Let W = f(X), where f is absolutely continuous.
Suppose E(W ) = 0. Let X′ = (X ′

1, . . . ,X
′
n) be an independent copy of X.

Let

T =

∫ 1

0

1

2
√
t

n∑

i=1

∂f

∂xi
(X)

∂f

∂xi
(
√

1 − tX +
√
tX′)dt.

Then one can show that T is a Stein coefficient for W (see [3], Lemma 5.3).
This has been used to prove CLTs for linear statistics of eigenvalues of
random matrices [3].

Example 5. Theorem 1.2 can be used to construct strong couplings for
sums of dependent random variables. An example of such a result is the
following.

Theorem 1.3. Suppose X1, . . . ,Xn,Xn+1 are i.i.d. random variables with
mean zero, variance 1, and probability density ρ. Suppose ρ is bounded above
and below by positive constants on a compact interval, and zero outside. Let
Sn :=

∑n
i=1XiXi+1. Then it is possible to construct Sn and a Gaussian
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random variable Zn ∼ N(0, n) on the same probability space such that for
all x ≥ 0,

P(|Sn − Zn| ≥ x) ≤ e−C(ρ)x,

where C(ρ) is a positive constant depending only on the density ρ (and not
on n).

The process {Sn}, upon proper scaling, is sometimes called the ‘autocor-
relation process’ for the sequence {Xn}. It may be possible to use the above
result to prove a KMT type coupling for autocorrelation processes. The
proof of Theorem 1.3 is short enough to be presented right here.

Proof of Theorem 1.3. Let X0 ≡ 0. Let h be defined as in (3). Then note
that for any ϕ, the definition of h and Example 1 show that

E(Snϕ(Sn)) =

n∑

i=1

E(XiXi+1ϕ(Sn))

=

n∑

i=1

E(Xi+1(Xi−1 +Xi+1)h(Xi)ϕ
′(Sn)).

This shows that if

Di := h(Xi)Xi+1(Xi−1 +Xi+1),

then Tn :=
∑n

i=1Di is a Stein coefficient for Sn. Now, for any 1 ≤ i ≤ n,

E(Di − 1 | X1, . . . ,Xi−1) = E(h(Xi))E(X2
i+1) − 1 = 0,

since E(h(Xi)) = E(X2
i ) = 1. Moreover it is easy to show that by the

assumed conditions on ρ that |Di| is almost surely bounded by a constant
depending on ρ. Therefore by the Azuma-Hoeffding inequality [11, 1] for
sums of bounded martingale differences, we get that for each α ∈ R,

E(eα(Tn−n)) ≤ eC1(ρ)α2n

where C1(ρ) is some constant depending only on ρ. Thus if Z is a standard
Gaussian random variable, independent of all else, then for any α ∈ R

E(eαZ(Tn−n)/
√
n) ≤ E(eC1(ρ)Z2α2

).

Therefore choosing α = C2(ρ) small enough, one gets

E(eC2(ρ)Z(Tn−n)/
√
n) ≤ 2.

On the other hand, first conditioning on Tn we get

E(eC2(ρ)Z(Tn−n)/
√
n) = E(eC2(ρ)2(Tn−n)2/2n).

By Theorem 1.2, this completes the proof. �

Sketch of the proof of Theorem 1.2. (Full details are given in Section 2.)
First, let h(W ) := E(T |W ). Then h(W ) is again a Stein coefficient for W .
Moreover, one can show that the function h is non-negative a.e. on the
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support of W . It is not difficult to verify that to prove Theorem 1.2 it
suffices to construct a coupling such that for all θ,

E exp(θ|W − Z|) ≤ 2 E exp
(
2θ2

(√
h(W ) − σ

)2)
.

Fix a function r : R2 → R. For f ∈ C2(R2), let

Lf(x, y) := h(x)
∂2f

∂x2
+ 2r(x, y)

∂2f

∂x∂y
+ σ2

∂2f

∂y2
− x

∂f

∂x
− y

∂f

∂y
.

Suppose there exists a probability measure µ on R
2 such that for all f ,

(4)

∫

R2

Lf dµ = 0.

The main idea is as follows: every choice of r that admits a µ satisfying (4)
gives a coupling of W and Z. Indeed, suppose µ is as above and (X,Y ) is
a random vector with law µ. Take any Φ ∈ C2(R), and let ϕ = Φ′. Putting
f(x, y) = Φ(x) in (4) gives

E(h(X)ϕ′(X)) = E(Xϕ(X)).

Since this holds for all ϕ (which is a property that characterizes W ) it is
possible to argue that X must have the same law as W . Similarly, putting
f(x, y) = Φ(y), we get E(Y ϕ(Y )) = σ2E(ϕ′(Y )), and thus, Y ∼ N(0, σ2).
Note that this argument did not depend on the choice of r at all, except
through the assumption that there exists a µ satisfying (4).

Now the question is, for what choices of r does there exist a µ satisfy-
ing (4)? In Lemma 2.1 it is proved that this is possible whenever the matrix

(
h(x) r(x, y)
r(x, y) σ2

)

is positive semidefinite for all (x, y), plus some extra conditions. Note that
this is the same as saying that the operator L is elliptic.

Intuitively, the ‘best’ coupling of W and Z is obtained when the choice of
r(x, y) is such that the matrix displayed above is the ‘most singular’. This
choice is given by the geometric mean

r(x, y) = σ
√
h(x).

With this choice of r and f(x, y) = 1
2k (x − y)2k (where k is an arbitrary

positive integer), a small computation gives

Lf(x, y) = (2k − 1)(x− y)2k−2(
√
h(x) − σ)2 − (x− y)2k.

Since (4) holds for this f , we get

E(X − Y )2k = (2k − 1)E((X − Y )2k−2(
√
h(X) − σ)2)

≤ (2k − 1)(E(X − Y )2k)(k−1)/k(E(
√
h(X) − σ)2k)1/k.

This gives

E(X − Y )2k ≤ (2k − 1)kE(
√
h(X) − σ)2k.

It is now easy to complete the proof by combining over k ≥ 1.
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The KMT theorem for the SRW. As an application of Theorem 1.2,
we give a new proof of Theorem 1.1 for the simple random walk. Although
this is just a special case of the full theorem, it is important in its own
right due to the importance of the SRW in various areas of science and
mathematics. For instance, within the last ten years, the KMT embedding
for the SRW played a pivotal role in the solution of a series of long-standing
open questions about the simple random walk by the quartet of authors
Dembo, Peres, Rosen, and Zeitouni [7, 8].

The proof of the KMT theorem for the SRW is obtained using a combina-
tion of Theorem 1.2, Example 3, and an induction argument. The induction
step involves proving the following theorem about sums of exchangeable
binary variables. This seems to be a new result.

Theorem 1.4. There exist positive universal constants C, K and λ0 such
that the following is true. Take any integer n ≥ 2. Suppose ε1, . . . , εn are

exchangeable ±1 random variables. For k = 0, 1, . . . , n, let Sk =
∑k

i=1 εi
and let Wk = Sk − k

nSn. It is possible to construct a version of W0, . . . ,Wn

and a standard Brownian bridge (B̃t)0≤t≤1 on the same probability space
such that for any 0 < λ < λ0,

E exp(λmax
k≤n

|Wk −
√
nB̃k/n|) ≤ exp(C log n)E exp

(
Kλ2S2

n

n

)
.

Note that by Example 2, it is possible to use Theorem 1.2 and induction
whenever the summands have a density with respect to Lebesgue measure
and the function h is reasonably well-behaved. This holds, for instance, for
log-concave densities, or densities of the type considered in Theorem 1.3.
In such cases it is not very difficult (although technically messier than the
binary case) to prove a version of Theorem 1.4 using the method of this
paper. However, we do not know yet how to use Theorem 1.2 to prove
the KMT theorem in its full generality, because we do not know how to
generalize the smoothing technique of Example 3.

The theorem that we prove about the KMT coupling for the SRW, stated
below, is somewhat stronger than existing results.

Theorem 1.5. Let ε1, ε2, . . . be i.i.d. symmetric ±1-valued random vari-

ables. For each k, let Sk :=
∑k

i=1 εi. It is possible to construct a version of
the sequence (Sk)k≥0 and a standard Brownian motion (Bt)t≥0 on the same
probability space such that for all n and all x ≥ 0,

P
(
max
k≤n

|Sk −Bk| ≥ C log n+ x
)
≤ Ke−λx,

where C, K, and λ do not depend on n.

The above result is stronger than the corresponding statement about the
SRW implied by Theorem 1.1 because it gives a single coupling for the
whole process, instead of giving different couplings for different n. Such
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results have been recently established in the KMT theorem for summands
with finite pth moment [14, 28].

The paper is organized as follows. In Section 2, we prove Theorem 1.2.
Two versions of Example 3 are worked out in Section 3. The main induction
step, which proves Theorem 1.4, is carried out in Section 4. Finally, the proof
of Theorem 1.5 is completed in Section 5.

2. Proof of Theorem 1.2

The proof will proceed as a sequence of lemmas. The lemmas will not be
used in the subsequent sections, and only Theorem 1.2 is relevant for the
future steps.

Lemma 2.1. Let n be a positive integer, and suppose A is a continuous
map from R

n into the set of n × n positive semidefinite matrices. Suppose
there exists a constant b ≥ 0 such that for all x ∈ R

n,

‖A(x)‖ ≤ b.

Then there exists a probability measure µ on R
n such that if X is a random

vector following the law µ, then

(5) E exp
〈
θ,X

〉
≤ exp(b‖θ‖2)

for all θ ∈ R
n, and

(6) E
〈
X,∇f(X)

〉
= ETr(A(X) Hess f(X))

for all f ∈ C2(Rn) such that the expectations E|f(X)|2, E‖∇f(X)‖2, and
E|Tr(A(X) Hess f(X))| are finite. Here ∇f and Hess f denote the gradient
and Hessian of f , and Tr stands for the trace of a matrix.

Proof. Let K denote the set of all probability measures µ on R
n satisfying

∫
xµ(dx) = 0 and

∫
exp〈θ, x〉µ(dx) ≤ exp(b‖θ‖2) for all θ ∈ R

n.

It is easy to see by the Skorokhod representation theorem and Fatou’s lemma
that K is a (nonempty) compact subset of the space V of all finite signed
measures on R

n equipped with the topology of weak-* convergence (that is,
the locally convex Hausdorff topology generated by the separating family
of seminorms |µ|f := |

∫
fdµ|, where f ranges over all continuous functions

with compact support). Also, obviously, K is convex.
Now fix ε ∈ (0, 1). Define a map Tε : K → V as follows. Given µ ∈ K, let

X and Z be two independent random vectors, defined on some probability
space, with X ∼ µ and Z following the standard gaussian law on R

n. Let
Tεµ be the law of the random vector

(1 − ε)X +
√

2εA(X)Z,
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where
√
A(X) denotes the positive semidefinite square root of the matrix

A(X). Then for any θ ∈ R
n,

∫
exp 〈θ, x〉Tεµ(dx) = E exp

〈
θ, (1 − ε)X +

√
2εA(X)Z

〉

= E exp
(〈
θ, (1 − ε)X

〉
+ ε

〈
θ,A(X)θ

〉)

≤ exp(bε‖θ‖2)E exp
〈
θ, (1 − ε)X

〉

≤ exp(bε‖θ‖2 + b(1 − ε)2‖θ‖2).

For ε ∈ (0, 1), 1−ε+ε2 ≤ 1. Hence, bε+b(1−ε)2 ≤ b, and therefore Tε maps

K into K. Since A is a continuous map, and the transformation A 7→
√
A is

continuous (see e.g. [2], page 290, equation (X.2)), it is easy to see that Tε is
continuous under the weak-* topology. Hence, by the Schauder-Tychonoff
fixed point theorem for locally convex topological vector spaces (see e.g. [9],
Chapter V, 10.5), we see that Tε must have a fixed point in K. For each
ε ∈ (0, 1), let µε be a fixed point of Tε, and let Xε denote a random vector
following the law µε.

Now take any f ∈ C2(Rn) with ∇f and Hess f bounded and uniformly
continuous. Fix ε ∈ (0, 1), and let

Yε = −εXε +
√

2εA(Xε)Z.

By the definition of Tεµ, note that

(7) E
(
f(Xε + Yε) − f(Xε)

)
= 0.

Now let

Rε = f(Xε + Yε) − f(Xε) −
〈
Yε,∇f(Xε)

〉
− 1

2

〈
Yε,Hess f(Xε)Yε

〉
.

First, note that

(8) E
〈
Yε,∇f(Xε)

〉
= −εE

〈
Xε,∇f(Xε)

〉
.

By the definition of K, all moments of ‖Xε‖ are bounded by constants that
do not depend on ε. Hence, as ε→ 0, we have

E
〈
Yε,Hess f(Xε)Yε

〉
= 2εETr(

√
A(Xε) Hess f(Xε)

√
A(Xε)) +O(ε3/2)

= 2εETr(A(Xε) Hess f(Xε)) +O(ε3/2).

(9)

Now, by the boundedness and uniform continuity of Hess f , one can see that

|Rε| ≤ ‖Yε‖2δ(‖Yε‖),

where δ : [0,∞) → [0,∞) is a bounded function satisfying limt→0 δ(t) = 0.
Now, by the nature of K, it is easy to verify that the moments of ε−1‖Yε‖2
can be bounded by constants that do not depend on ε. Combining this
with the above-mentioned properties of δ and the fact that ‖Yε‖ → 0 in
probability as ε→ 0, we get

(10) lim
ε→0

ε−1
E|Rε| = 0.



10 SOURAV CHATTERJEE

Now let µ be a cluster point of the collection {µε}0<ε<1 as ε → 0, and let
X denote a random variable following the law µ. Such a cluster point exists
because K is a compact set. By uniform integrability, equations (7), (8),
(9), (10), and the continuity of A, we get

E
〈
X,∇f(X)

〉
= ETr(A(X) Hess f(X)).

This completes the proof for f ∈ C2(Rn) with ∇f and Hess f bounded and
uniformly continuous. Next, take any f ∈ C2(Rn). Let g : Rn → [0, 1] be
a C∞ function such that g(x) = 1 if ‖x‖ ≤ 1 and g(x) = 0 if ‖x‖ ≥ 2.
For each a > 1, let fa(x) = f(x)g(a−1x). Then fa ∈ C2 with ∇fa and
Hess fa bounded and uniformly continuous. Moreover, fa and its derivatives
converge pointwise to those of f as a→ ∞, as is seen from the expressions

∂fa
∂xi

=
∂f

∂xi
(x)g(a−1x) + a−1f(x)

∂g

∂xi
(a−1x),

∂2fa
∂xi∂xj

=
∂2f

∂xi∂xj
(x)g(a−1x) + a−1 ∂f

∂xi
(x)

∂g

∂xj
(a−1x)

+ a−1 ∂f

∂xj
(x)

∂g

∂xi
(a−1x) + a−2f(x)

∂2g

∂xi∂xj
(a−1x).

Since E‖X‖2 < ∞ and ‖A(x)‖ ≤ b, the above expressions also show that
if the expectations E|f(X)|2, E‖∇f(X)‖2, and E|Tr(A(X) Hess f(X))| are
finite, then we can apply the dominated convergence theorem to conclude
that

lim
a→∞

E
〈
X,∇fa(X)

〉
= E

〈
X,∇f(X)

〉
and

lim
a→∞

ETr(A(X) Hess fa(X)) = ETr(A(X) Hess f(X)).

This completes the proof. �

Lemma 2.2. Let A and X be as in Lemma 2.1. Take any 1 ≤ i < j ≤ n.
Let

vij(x) := aii(x) + ajj(x) − 2aij(x),

where aij denotes the (i, j)th element of A. Then for all θ ∈ R,

E exp(θ|Xi −Xj |) ≤ 2E exp(2θ2vij(X)).

Proof. Take any positive integer k. Define f : Rn → R as

f(x) := (xi − xj)
2k.

Then a simple calculation shows that
〈
x,∇f(x)

〉
= 2k(xi − xj)

2k,

and

Tr(A(x) Hess f(x)) = 2k(2k − 1)(xi − xj)
2k−2vij(x).
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The positive definiteness of A shows that vij is everywhere nonnegative. An
application of Hölder’s inequality now gives

E|Tr(A(X) Hess f(X))| ≤ 2k(2k − 1)
(
E(Xi −Xj)

2k
)k−1

k

(
Evij(X)k

) 1

k .

From the identity (6) we can now conclude that

E(Xi −Xj)
2k ≤ (2k − 1)

(
E(Xi −Xj)

2k
)k−1

k

(
Evij(X)k

) 1

k .

This shows that

E(Xi −Xj)
2k ≤ (2k − 1)kEvij(X)k.

To complete the proof, note that

E exp(θ|Xi −Xj |) ≤ 2E cosh(θ(Xi −Xj))

= 2

∞∑

k=0

θ2kE(Xi −Xj)
2k

(2k)!

≤ 2 + 2

∞∑

k=1

(2k − 1)kθ2kE(vij(X)k)

(2k)!
.

By the slightly crude but easy inequality

(2k − 1)k

(2k)!
≤ 2k

k!
,

the proof is done. �

Lemma 2.3. Suppose ρ is a probability density function on R which is
positive on an interval (bounded or unbounded) and zero outside. Suppose∫∞
−∞ xρ(x)dx = 0. For each x in the support of ρ, let

h(x) :=

∫∞
x yρ(y)dy

ρ(x)
.

Outside the support, let h ≡ 0. Let X be a random variable with density ρ
and finite second moment. Then

(11) E(Xϕ(X)) = E(h(X)ϕ′(X))

for each absolutely continuous ϕ such that both sides are well defined and
E|h(X)ϕ(X)| < ∞. Moreover, if h1 is another function satisfying (11) for
all Lipschitz ϕ, then h1 = h a.e. on the support of ρ.

Conversely, if Y is a random variable such that (11) holds with Y in
place of X, for all ϕ such that |ϕ(x)|, |xϕ(x)|, and |h(x)ϕ′(x)| are uniformly
bounded, then Y must have the density ρ.

Proof. Let u(x) = h(x)ρ(x). Note that u is continuous, positive on the
support of ρ, and limx→−∞ u(x) = limx→∞ u(x) = 0 since

u(x) =

∫ ∞

x
yρ(y)dy = −

∫ x

−∞
yρ(y)dy.
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Note that the above identity holds because
∫∞
−∞ xρ(x)dx = 0. Again, by the

assumption that E(X2) <∞, it is easy to verify that

E(h(X)) =

∫ ∞

−∞
u(x)dx = E(X2) <∞.

When ϕ is a bounded Lipschitz function, then (11) is just the integration
by parts identity

∫ ∞

−∞
xϕ(x)ρ(x)dx =

∫ ∞

−∞
ϕ′(x)u(x)dx.

Now take any absolutely continuous ϕ and a C∞ map g : R → [0, 1] such
that g(x) = 1 on [−1, 1] and g(x) = 0 outside [−2, 2]. For each a > 1, let

ϕa(x) := ϕ(x)g(a−1x).

Then

ϕ′
a(x) = ϕ′(x)g(a−1x) + a−1ϕ(x)g′(a−1x).

It is easy to see that ϕa and ϕ′
a are bounded, and they converge to ϕ and

ϕ′ pointwise as a→ ∞. Moreover, |xϕa(x)| ≤ |xϕ(x)| and

|h(x)ϕ′
a(x)| ≤ |h(x)ϕ′(x)| + a−1‖g′‖∞|h(x)ϕ(x)|.

Since we have assumed that E|Xϕ(X)|, E|h(X)ϕ′(X)|, and E|h(X)ϕ(X)| are
finite, we can now apply the dominated convergence theorem to conclude
that (11) holds for ϕ.

Suppose h1 is another function satisfying (11) for all Lipschitz ϕ and
E(X2) <∞. Let ϕ(x) be a Lipschitz function such that ϕ′(x) = sign(h1(x)−
h(x)). Then

0 = E(ϕ′(X)(h1(X) − h(X))) = E|h1(X) − h(X)|.
This shows that h1 = h a.e. on the support of ρ.

For the converse, let X have density ρ and take any bounded continuous
function v : R → R, let m = Ev(X), and define

ϕ(x) :=
1

u(x)

∫ x

−∞
ρ(y)(v(y) −m)dy = − 1

u(x)

∫ ∞

x
ρ(y)(v(y) −m)dy

on the support of ρ. Since u is nonzero and absolutely continuous everywhere
on the support of ρ, therefore ϕ is well-defined and absolutely continuous.
Next, we prove that |xϕ(x)| is uniformly bounded. If x ≥ 0, then

|xϕ(x)| =

∣∣∣∣
x

u(x)

∫ ∞

x
ρ(y)(v(y) −m)dy

∣∣∣∣

≤ 2‖v‖∞
|u(x)|

∫ ∞

x
yρ(y)dy = 2‖v‖∞.

Similarly, the same bound holds for x < 0. A direct verification shows that

h(x)ϕ′(x) − xϕ(x) = v(x) −m.
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Thus, |h(x)ϕ′(x)| is uniformly bounded. Finally, by the continuity of ϕ,
|ϕ(x)| ≤ sup|t|≤1 |ϕ(t)| + |xϕ(x)| is also uniformly bounded.

So, if Y is a random variable such that (11) holds for Y in place of X and
every ϕ such that |ϕ(x)|, |xϕ(x)|, and |h(x)ϕ′(x)| are uniformly bounded,
then

Ev(Y ) − Ev(X) = E(v(Y ) −m) = E(h(Y )ϕ′(Y ) − Y ϕ(Y )) = 0.

Thus, Y must have the same distribution as X. �

Proof of Theorem 1.2. First, assume W has a density ρ with respect to
Lebesgue measure which is positive and continuous everywhere. Define h in
terms of ρ as in the statement of Lemma 2.3. Then by the second assertion
of Lemma 2.3,

h(w) = E(T |W = w) a.s.

Note that h is nonnegative by definition. So we can define a function A from
R
2 into the set of 2 × 2 positive semidefinite matrices as

A(x1, x2) :=

(
h(x1) σ

√
h(x1)

σ
√
h(x1) σ2

)
.

Note that A(x1, x2) does not depend on x2 at all. It is easy to see that A is
positive semidefinite. Also, since ρ is assumed to be continuous, therefore so
are h and A. Since T is bounded by a constant, so is h. Let X = (X1,X2) be
a random vector satisfying (5) and (6) of Lemma 2.1 with this A. Take any
absolutely continuous ϕ : R → R such that |ϕ(x)|, |xϕ(x)|, and |h(x)ϕ′(x)|
are uniformly bounded. Let Φ denote an antiderivative of ϕ, i.e. a function
such that Φ′ = ϕ. We can assume that Φ(0) = 0. Define f : R2 → R as
f(x1, x2) := Φ(x1). Then for some constant C, for all x1, x2,

|f(x1, x2)| ≤ C|x1|, ‖∇f(x1, x2)‖ ≤ C,

and |Tr(A(x1, x2) Hess f(x1, x2))| ≤ C.

Thus, we can apply Lemma 2.1 to conclude that for this f ,

E
〈
X,∇f(X)

〉
= ETr(A(X) Hess f(X)),

which can be written as

E(X1ϕ(X1)) = E(h(X1)ϕ′(X1)).

Since this holds for all ϕ such that |ϕ(x)|, |xϕ(x)|, and |h(x)ϕ′(x)| are uni-
formly bounded, Lemma 2.3 tells us that X1 must have the same distribution
as W .

Similarly, taking any ϕ such that |ϕ(x)|, |xϕ(x)|, and |ϕ′(x)| are uniformly
bounded, letting Φ be an antiderivative of ϕ, and putting f(x1, x2) = Φ(x2),
we see that

E(X2ϕ(X2)) = σ2E(ϕ′(X2)),
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which implies that X2 ∼ N(0, σ2). We now wish to apply Lemma 2.2 to the
pair (X1,X2). Note that

v12(x1, x2) = h(x1) + σ2 − 2σ
√
h(x1) =

(√
h(x1) − σ

)2

Since h(x1) ≥ 0, we have

(√
h(x1) − σ

)2
=

(
h(x1) − σ2

)2
(√

h(x1) + σ
)2 ≤

(
h(x1) − σ2

)2

σ2
.

Since h(X1) has the same distribution as h(W ), and h(W ) = E(T |W ),
the required bound can now be obtained using Lemma 2.2 and Jensen’s
inequality.

So we have finished the proof when W has a probability density ρ with
respect to Lebesgue measure which is positive and continuous everywhere.
Let us now drop that assumption, but keep all others. For each ε > 0,
let Wε := W + εY , where Y is an independent standard gaussian random
variable. If ν denotes the law of W on the real line, then Wε has the
probability density function

ρε(x) =

∫ ∞

−∞

e−(x−y)2/2ε2

√
2πε

dν(y).

From the above representation, it is easy to deduce that ρε is positive and
continuous everywhere. Again, note that for any Lipschitz ϕ,

E(Wεϕ(Wε)) = E(Wϕ(W + εY )) + εE(Y ϕ(W + εY ))

= E(Tϕ′(W + εY )) + ε2E(ϕ′(W + εY ))

= E((T + ε2)ϕ′(Wε)).

(Note that in the second step, we required that (2) holds for any derivative
of ϕ instead of just one.) Thus, by what we have already proved, we can
construct a version of Wε and a N(0, σ2 +ε2) r.v. Zε on the same probability
space such that for all θ,

E exp(θ|Wε − Zε|) ≤ 2E exp

(
2θ2(T − σ2)2

σ2 + ε2

)
.

Let µε be the law of the pair (Wε, Zε) on R
2. Clearly, {µε}ε>0 is a tight

family. Let µ0 be a cluster point as ε → 0, and let (W0, Z0) ∼ µ0. Then
W0 has the same distribution as W , and Z0 ∼ N(0, σ2). By the Skorokhod
representation, Fatou’s lemma, and the monotone convergence theorem, it
is clear that

E exp(θ|W0 − Z0|) ≤ lim inf
ε→0

E exp(θ|Wε − Zε|) ≤ 2E exp

(
2θ2(T − σ2)2

σ2

)
.

This completes the proof. �
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3. Elaborations on Example 3

The goal of this section is to prove the following two theorems. The first
one is simply Example 3 from Section 1. The second one can be called a
conditional version of the same thing (which is harder to prove).

Theorem 3.1. There exist universal constants κ and θ0 > 0 such that the
following is true. Let n be a positive integer and let ε1, . . . , εn be i.i.d. sym-
metric ±1 random variables. Let Sn =

∑n
i=1 εi. It is possible to construct a

version of Sn and Zn ∼ N(0, n) on the same probability space such that

E exp(θ0|Sn − Zn|) ≤ κ.

Note that by Markov’s inequality, this implies exponentially decaying tails
for |Sn − Zn|, with a rate of decay that does not depend on n.

Theorem 3.2. Let ε1, . . . , εn be n arbitrary elements of {−1, 1}. Let π
be a uniform random permutation of {1, . . . , n}. For each 1 ≤ k ≤ n, let

Sk =
∑k

ℓ=1 επ(ℓ), and let

Wk = Sk −
kSn
n
.

There exist universal constants c > 1 and θ0 > 0 satisfying the following.
Take any n ≥ 3, any possible value of Sn, and any n/3 ≤ k ≤ 2n/3. It
is possible to construct a version of Wk and a gaussian random variable Zk

with mean 0 and variance k(n−k)/n on the same probability space such that
for any θ ≤ θ0,

E exp(θ|Wk − Zk|) ≤ exp

(
1 +

cθ2S2
n

n

)
.

Both of the above theorems will be proved using Theorem 1.2. We proceed
as before in a sequence of lemmas that are otherwise irrelevant for the rest
of the manuscript (except Lemma 3.5, which has an important application
later on).

Lemma 3.3. Suppose X and Y are two independent random variables, with
X following the symmetric distribution on {−1, 1} and Y following the uni-
form distribution on [−1, 1]. Then for any Lipschitz ϕ, we have

E(Xϕ(X + Y )) = E((1 −XY )ϕ′(X + Y )),

and

E(Y ϕ(X + Y )) =
1

2
E((1 − Y 2)ϕ′(X + Y )).

Proof. We have

E((1 −XY )ϕ′(X + Y )) =
1

4

∫ 1

−1
(1 + y)ϕ′(−1 + y)dy

+
1

4

∫ 1

−1
(1 − y)ϕ′(1 + y)dy.
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Integrating by parts, we see that
∫ 1

−1
(1 + y)ϕ′(−1 + y)dy = 2ϕ(0) −

∫ 1

−1
ϕ(−1 + y)dy,

and
∫ 1

−1
(1 − y)ϕ′(1 + y)dy = −2ϕ(0) +

∫ 1

−1
ϕ(1 + y)dy.

Adding up, we get

E((1 −XY )ϕ′(X + Y )) =
1

4

∫ 1

−1
ϕ(1 + y)dy − 1

4

∫ 1

−1
ϕ(−1 + y)dy

= E(Xϕ(X + Y )).

For the second part, just observe that for any x, integration by parts gives

1

2

∫ 1

−1
yϕ(x + y)dy =

1

2

∫ 1

−1

1 − y2

2
ϕ′(x + y)dy.

This completes the proof. �

Proof of Theorem 3.1. For simplicity, let us write S for Sn. Let Y be a
random variable independent of ε1, . . . , εn and uniformly distributed on the
interval [−1, 1]. Suppose we are given the values of ε1, . . . , εn−1. Let E

−

denote the conditional expectation given this information. Let

S− =

n−1∑

i=1

εi, X = εn.

Then Lemma 3.3 gives

E
−(Xϕ(S− +X + Y )) = E

−((1 −XY )ϕ′(S + Y ))

= E
−((1 − εnY )ϕ′(S + Y )).

Taking expectation on both sides we get

E(εnϕ(S + Y )) = E((1 − εnY )ϕ′(S + Y )).

By symmetry, this gives

E(Sϕ(S + Y )) = E((n− SY )ϕ′(S + Y )).

Again, by Lemma 3.3, we have

E(Y ϕ(S + Y )) =
1

2
E((1 − Y 2)ϕ′(S + Y )).

Thus, putting S̃ = S + Y and

T = n− SY +
1 − Y 2

2
,

we have

(12) E(S̃ϕ(S̃)) = E(Tϕ′(S̃)).
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Let σ2 = n. Then

(T − σ2)2

σ2
≤ 2S2 + 1

2

n
.

Now, clearly, E(S̃) = 0 and E(S̃2) < ∞. The equation (12) holds and the
random variable T is a.s. bounded. Therefore, all conditions for applying

Theorem 1.2 to S̃ are met, and hence we can conclude that it is possible

to construct a version of S̃ and a N(0, σ2) random variable Z on the same
space such that for all θ,

E exp(θ|S̃ − Z|) ≤ 2E exp(2θ2σ−2(T − σ2)2).

Since the value of S is determined if we know S̃, we can now construct a

version of S on the same probability space satisfying |S − S̃| ≤ 1. It follows
that

E exp(θ|S − Z|) ≤ 2E exp(|θ| + 2θ2σ−2(T − σ2)2).

Using the bound on (T − σ2)2/σ2 obtained above, we have

E exp(θ|S − Z|) ≤ 2 exp(|θ| + θ2/n)E exp(4θ2S2/n).

To complete the argument, note that if V is a standard gaussian r.v., inde-
pendent of S, then

E exp(4θ2S2/n) = E exp(
√

8θV S/
√
n)

= E(E(exp(
√

8θV ε1/
√
n)|V )n)

= E(coshn(
√

8θV/
√
n)).

Using the simple inequality coshx ≤ expx2, this gives

(13) E exp(4θ2S2/n) ≤ E exp(8θ2V 2) =
1√

1 − 16θ2
if 16θ2 < 1.

The conclusion now follows by choosing θ0 sufficiently small. �

Lemma 3.4. Let all notation be as in the statement of Theorem 3.2. Then
for any θ ∈ R and any 1 ≤ k ≤ n, we have

E exp(θWk/
√
k) ≤ exp θ2.

Remark. Note that the bound does not depend on the value of Sn. This is
crucial for the next lemma and the induction step later on. Heuristically,
this phenomenon is not mysterious because the centered process (Wk)k≤n

has maximum freedom to fluctuate when Sn = 0.

Proof. Fix k, and let m(θ) := E exp(θWk/
√
k). Since Wk is a bounded

random variable, there is no problem in showing that m is differentiable and

m′(θ) =
1√
k
E(Wk exp(θWk/

√
k)).
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Now note that

1

n

k∑

i=1

n∑

j=k+1

(επ(i) − επ(j)) =
(n − k)

∑k
i=1 επ(i) − k

∑n
j=k+1 επ(j)

n

=
(n − k)

∑k
i=1 επ(i) − k(Sn −∑k

i=1 επ(i))

n

=

k∑

i=1

επ(i) −
kSn
n

= Wk.

Thus,

(14) m′(θ) =
1

n
√
k

k∑

i=1

n∑

j=k+1

E((επ(i) − επ(j)) exp(θWk/
√
k)).

Now fix i ≤ k < j. Let π′ = π ◦ (i, j), so that π′(i) = π(j) and π′(j) = π(i).
Then π′ is again uniformly distributed on the set of all permutations of
{1, . . . , n}. Moreover, (π, π′) is an exchangeable pair of random variables.
Let

W ′
k =

k∑

ℓ=1

επ′(ℓ) −
kSn
n
.

Then

E((επ(i) − επ(j)) exp(θWk/
√
k)) = E((επ′(i) − επ′(j)) exp(θW ′

k/
√
k))

= E((επ(j) − επ(i)) exp(θW ′
k/
√
k)).

Averaging the two equal quantities, we get

E((επ(i) − επ(j)) exp(θWk/
√
k))

=
1

2
E((επ(i) − επ(j))(exp(θWk/

√
k) − exp(θW ′

k/
√
k))).

Thus, from the inequality

|ex − ey| ≤ 1

2
|x− y|(ex + ey)

and the fact that Wk −W ′
k = επ(i) − επ(j), we get

∣∣E((επ(i) − επ(j)) exp(θWk/
√
k))

∣∣

≤ |θ|
4
√
k
E((επ(i) − επ(j))

2(exp(θWk/
√
k) + exp(θW ′

k/
√
k)))

≤ |θ|√
k
E(exp(θWk/

√
k) + exp(θW ′

k/
√
k))

=
2|θ|√
k
E exp(θWk/

√
k) =

2|θ|√
k
m(θ).
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Using this estimate in (14), we get

|m′(θ)| ≤ 2|θ|
nk

k∑

i=1

n∑

j=k+1

m(θ) ≤ 2|θ|m(θ).

Using that m(0) = 1, it is now easy to complete the proof. �

Lemma 3.5. Let us continue with the notation of Theorem 3.2. There exists
a universal constant α0 > 0 such that for all n, all possible values of Sn, all
k such that k ≤ 2n/3, and all α ≤ α0, we have

E exp(αS2
k/k) ≤ exp

(
1 +

3αS2
n

4n

)
.

Remark. The exact value of the constant 3/4 in the above bound is not
important; what is important is that the constant is < 1 as long as we take
k ≤ 2n/3. This is why the induction argument can be carried out in Section
4. However, there is no mystery; the fact that one can always get a constant
< 1 can be explained via simple heuristic arguments once Lemma 3.4 is
known.

Proof. Let Z be an independent standard gaussian random variable. Then

E exp(αS2
k/k) = E exp

(√
2α

k
ZSk

)

= E exp

(√
2α

k
ZWk +

√
2α

k

kSn
n
Z

)
.

Now, by Lemma 3.4 we have

E

(
exp

(√
2α

k
ZWk

)∣∣∣∣Z
)

≤ exp(2αZ2).

Thus, we have

E exp(αS2
k/k) ≤ E exp

(
2αZ2 +

√
2α

k

kSn
n
Z

)
.

Since Sn is nonrandom, the right hand side is just the expectation of a func-
tion of a standard gaussian random variable, which can be easily computed.
This gives, for 0 < α < 1/4,

E exp(αS2
k/k) ≤ 1√

1 − 4α
exp

(
αkS2

n

(1 − 4α)n2

)
.

The lemma is now proved by bounding k by 2n/3 and choosing α0 small
enough to ensure that 1/(1 − 4α0) is sufficiently close to 1. �

Proof of Theorem 3.2. For simplicity, we shall write W for Wk and S for Sn,
but Sk will be written as usual.

Let Y be a random variable independent of π and uniformly distributed
on the interval [−1, 1]. Fix 1 ≤ i ≤ k and k < j ≤ n. Suppose we are given
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the values of {π(ℓ), ℓ 6= i, j}. Let E
− denote the conditional expectation

given this information. Let

S− =
∑

ℓ 6=i,j

επ(ℓ), W− =
∑

ℓ≤k,ℓ 6=i

επ(ℓ) −
kS

n
.

If S 6= S−, then we must have επ(i) = επ(j), and hence in that case

E
−((επ(i) − επ(j))ϕ(W + Y )) = 0.

Next let us consider the only other possible scenario, S = S−. Then the
conditional distribution of επ(i) − επ(j) is symmetric over {−2, 2}. Let

X =
επ(i) − επ(j)

2
= επ(i),

and note that

W = W− +X.

Thus, under S = S−, Lemma 3.3 shows that for all Lipschitz ϕ,

E
−((επ(i) − επ(j))ϕ(W + Y )) = 2E−(Xϕ(W− +X + Y ))

= 2E−((1 −XY )ϕ′(W + Y ))

= E
−((2 − (επ(i) − επ(j))Y )ϕ′(W + Y )).

Next, let

aij := 1 − επ(i)επ(j) − (επ(i) − επ(j))Y.

A simple verification shows that

aij =

{
2 − (επ(i) − επ(j))Y if επ(i) 6= επ(j)
0 if επ(i) = επ(j).

Thus, irrespective of whether S = S− or S 6= S−, we have

E
−((επ(i) − επ(j))ϕ(W + Y )) = E

−(aijϕ
′(W + Y )).

Clearly, we can now replace E
− by E in the above expression. Now, as in

the proof of Lemma 3.4, observe that

W =
1

n

k∑

i=1

n∑

j=k+1

(επ(i) − επ(j)).

Combining the last two observations, we have

E(Wϕ(W + Y )) = E

((
1

n

k∑

i=1

n∑

j=k+1

aij

)
ϕ′(W + Y )

)
.

Again, by Lemma 3.3, we have

E(Y ϕ(W + Y )) =
1

2
E((1 − Y 2)ϕ′(W + Y )).
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Thus, putting W̃ = W + Y and

T =
1

n

k∑

i=1

n∑

j=k+1

aij +
1 − Y 2

2
,

we have

(15) E(W̃ϕ(W̃ )) = E(Tϕ′(W̃ )).

Now

1

n

k∑

i=1

n∑

j=k+1

aij =
k(n− k)

n
−

(
∑k

i=1 επ(i))(
∑n

j=k+1 επ(j))

n
−WY.

Let σ2 = k(n− k)/n. Since n/3 ≤ k ≤ 2n/3 and |W | ≤ |Sk|+ 2
3 |S|, a simple

computation gives

(T − σ2)2

σ2
≤ n

k(n− k)
(|Sk| + |W | + 1/2)2

≤ C

(
S2
k

k
+
S2

n
+ 1

)
,

where C is a universal constant.
Now, clearly, E(W̃ ) = 0 and E(W̃ 2) < ∞. The equation (15) holds and

the random variable T is a.s. bounded. Therefore, all conditions for applying

Theorem 1.2 to W̃ are met, and hence we can conclude that it is possible

to construct a version of W̃ and a N(0, σ2) random variable Z on the same
space such that for all θ,

E exp(θ|W̃ − Z|) ≤ 2E exp(2θ2σ−2(T − σ2)2).

Since the value of W is determined if we know W̃ , we can now construct

a version of W on the same probability space satisfying |W − W̃ | ≤ 1. It
follows that

E exp(θ|W − Z|) ≤ 2E exp(|θ| + 2θ2σ−2(T − σ2)2).

Using the bound on (T − σ2)2/σ2 obtained above, we have

E exp(θ|W − Z|) ≤ 2 exp(|θ| + Cθ2S2/n+ Cθ2)E exp(Cθ2S2
k/k),

where, again, C is a universal constant. The conclusion now follows from
Lemma 3.5 by choosing θ sufficiently small. �

4. The induction step

The goal of this section is to prove the following theorem, which couples
a pinned random walk with a Brownian Bridge. The tools used are The-
orem 3.2 and induction. The induction hypothesis, properly formulated,
allows us to get rid of the dyadic construction of the usual KMT proofs.
The following is an alternative statement of Theorem 1.4, given here for the
convenience of the reader.
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Theorem 4.1. Let us continue with the notation of Theorem 3.2. There
exist positive universal constants C, K and λ0 such that the following is
true. For any n ≥ 2, and any possible value of Sn, it is possible to construct
a version of W0,W1, . . . ,Wn and gaussian r.v. Z0, Z1, . . . , Zn with mean zero
and

(16) Cov(Zi, Zj) =
(i ∧ j)(n − (i ∨ j))

n

on the same probability space such that for any λ ∈ (0, λ0),

E exp(λmax
i≤n

|Wi − Zi|) ≤ exp

(
C log n+

Kλ2S2
n

n

)
.

Proof. Recall the universal constants α0 from Lemma 3.5 and c and θ0 from
Theorem 3.2. We contend that for carrying out the induction step, it suffices
to take

K = 8c, λ0 ≤
√
α0

16c
∧ θ0

2
, and C ≥ 1 + log 2

log(3/2)
.(17)

Choosing the constants to satisfy these constraints, we will now prove the
claim by induction on n. Now, for each n, and each possible value a of Sn,
let fna (s) denote the discrete probability density function of the sequence
(S0, S1, . . . , Sn). Note that this is just the uniform distribution over An

a ,
where

(18) An
a := {s ∈ Z

n+1 : s0 = 0, sn = a, and |si − si−1| = 1 for all i.}
Thus, for any s ∈ An

a ,

(19) fna (s) =
1

|An
a |
.

Let φn(z) denote the probability density function of a gaussian random
vector (Z0, . . . , Zn) with mean zero and covariance (16).

We want to show that for each n, and each possible value a of Sn, we can
construct a joint probability density ρna(s, z) on Z

n+1 × R
n+1 such that

(20)

∫
ρna(s, z) dz = fna (s),

∫
ρna(s, z) ds = φn(z),

and for each λ < λ0,
∫

exp

(
λmax

i≤n

∣∣∣∣si −
ia

n
− zi

∣∣∣∣
)
ρna(s, z) ds dz ≤ exp

(
C log n+

Kλ2a2

n

)
.

Suppose ρka can be constructed for k = 1, . . . , n − 1, for allowed values of a
in each case. We will now demonstrate a construction of ρna when a is an
allowed value for Sn.

First, fix a possible value a of Sn and an index k such that n/3 ≤ k ≤ 2n/3

(for definiteness, take k = [n/2]). Given Sn = a, let gn,ka (s) denote the
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density function of Sk. Recall the definition (18) of An
a and note that for all

allowed values of s of Sk, an elementary counting argument gives

(21) gn,ka (s) =
|Ak

s ||An−k
a−s |

|An
a |

.

Let hn,k(z) denote the density function of the gaussian distribution with
mean 0 and variance k(n − k)/n. By Theorem 3.2 and the inequality
exp |x| ≤ exp(x) + exp(−x), we see that there exists a joint density function

ψn,k
a (s, z) on Z×R such that

(22)

∫
ψn,k
a (s, z) dz = gn,ka (s),

∫
ψn,k
a (s, z) ds = hn,k(z),

and for all 0 < θ ≤ θ0,

(23)

∫
exp

(
θ

∣∣∣∣s−
ka

n
− z

∣∣∣∣
)
ψn,k
a (s, z) ds dz ≤ exp

(
1 +

cθ2a2

n

)
.

Now define a function γna : Z × R × Z
k+1 × R

k+1 × Z
n−k+1 × R

n−k+1 → R

as follows:

(24) γna (s, z, s, z, s′ , z′) := ψn,k
a (s, z)ρks (s, z)ρn−k

a−s (s′, z′).

By integrating over s′, z′, then s, z, and finally s, z, it is easy to verify that
γna is a probability density function (if either a or s is not an allowed value,

then ψn,k
a (s, z) = 0, so there is no problem).

Let (S,Z,S,Z,S′,Z′) denote a random vector following the density γna .
In words, this means the following: We are first generating (S,Z) from the

joint distribution ψn,k
a ; given S = s, Z = z, we are independently generating

the pairs (S,Z) and (S′,Z′) from the joint densities ρks and ρn−k
a−s respectively.

Now define two random vectors Y ∈ R
n+1 and U ∈ Z

n+1 as follows. For
i ≤ k, let

Yi = Zi +
i

k
Z,

and for i ≥ k, let

Yi = Z ′
i−k +

n− i

n− k
Z.

Note that the two definitions match at i = k because Zk = Z ′
0 = 0. Next,

define Ui = Si for i ≤ k and Ui = S + S′
i−k for i ≥ k. Again, the definitions

match at i = k because Sk = S and S′
0 = 0. We claim that the joint density

of (U,Y) is a valid candidate for ρna . The claim is proved in several steps.

1. Marginal distribution of U. From equations (20) and (22) it is easy to
see that ∫

γna (s, z, s, z, s′, z′) dz dz′ dz = gn,ka (s)fks (s)fn−k
a−s (s′).

In other words, the distribution of the triplet (S,S,S′) can be described
as follows: Generate S from the distribution of Sk given Sn = a; then
independently generate S and S′ from the conditional distributions fks and
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fn−k
a−s . It should now be intuitively clear that U has marginal density fna .

Still, to be completely formal, we apply equations (19) and (21) to get

gn,ka (s)fks (s)fn−k
a−s (s′) =

|Ak
s ||An−k

a−s |
|An

a |
1

|Ak
s |

1

|An−k
a−s |

=
1

|An
a |
,

and observe that there is a one-to-one correspondence between (S,S,S′) and
U, and U can take any value in An

a .

2. Marginal distribution of Y. First, we claim that Z, Z, and Z′ are
independent with densities hn,k, φk, and φn respectively. Again, using (20)
and (22), this is easily seen as follows.

∫
γna (s, z, s, z, s′, z′) ds′ ds ds =

∫
ψn,k
a (s, z)ρks (s, z)ρn−k

a−s (s′, z′) ds′ ds ds

= φn−k(z′)
∫
ψn
a (s, z)ρks (s, z)ds ds

= φn−k(z′)φk(z)

∫
ψn
a (s, z)ds

= φn−k(z′)φk(z)hn,k(z).

Thus, Y is a gaussian random vector with mean zero. It only remains to
compute Cov(Yi, Yj). Considering separately the cases i ≤ j ≤ k, k ≤ i ≤ j,
and i ≤ k ≤ j, it is now straightforward to verify that Cov(Yi, Yj) = i(n −
j)/n in each case. Thus, Y ∼ φn.

3. The exponential bound. For 0 ≤ i ≤ n, let

Wi = Ui −
ia

n
.

We have to show that for 0 < λ < λ0,

E exp(λmax
i≤n

|Wi − Yi|) ≤ exp

(
C log n+

Kλ2a

n

)
,

where C, K, and λ0 are as in (17). Now let

TL := max
i≤k

∣∣∣∣Si −
iS

k
− Zi

∣∣∣∣, TR := max
i≥k

∣∣∣∣S
′
i−k −

i− k

n− k
(a− S) − Z ′

i−k

∣∣∣∣,

and

T :=

∣∣∣∣S − ka

n
− Z

∣∣∣∣.

We claim that

(25) max
i≤n

|Wi − Yi| ≤ max{TL, TR} + T.
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To prove this, first take any i ≤ k. Then

|Wi − Yi| =

∣∣∣∣Si −
ia

n
−
(
Zi +

iZ

k

)∣∣∣∣

≤
∣∣∣∣Si −

iS

k
− Zi

∣∣∣∣ +

∣∣∣∣
iS

k
− ia

n
− iZ

k

∣∣∣∣

≤ TL +
i

k
T ≤ TL + T.

Similarly, for i ≥ k,

|Wi − Yi| =

∣∣∣∣S + S′
i−k −

ia

n
−

(
Z ′
i−k +

n− i

n− k
Z

)∣∣∣∣

≤
∣∣∣∣S

′
i−k −

i− k

n− k
(a− S) − Z ′

i−k

∣∣∣∣

+

∣∣∣∣S +
i− k

n− k
(a− S) − ia

n
− n− i

n− k
Z

∣∣∣∣

=

∣∣∣∣S
′
i−k −

i− k

n− k
(a− S) − Z ′

i−k

∣∣∣∣ +
n− i

n− k

∣∣∣∣S − ka

n
− Z

∣∣∣∣
≤ TR + T.

This proves (25). Now fix λ < λ0. Using the crude bound exp(x ∨ y) ≤
expx+ exp y, we get

(26) exp(λmax
i≤n

|Wi − Yi|) ≤ exp(λTL + λT ) + exp(λTR + λT ).

Now, by the construction (24), it is easy to check that given (S,Z) = (s, z),
the conditional density of (S,Z) is simply ρks . By the induction hypothesis,
this implies that

E(exp(λTL)|S,Z) ≤ exp

(
C log k +

Kλ2S2

k

)
.

It is easy to see that the moment generating functions of both TL and T are
finite everywhere, and hence there is no problem in applying the Cauchy-
Schwarz inequality to get

E exp(λTL + λT ) ≤
[
E
(
E(exp(λTL)|S,Z)2

)
E(exp(2λT ))

]1/2

≤ exp(C log k)

[
E exp

(
2Kλ2S2

k

)
E exp(2λT )

]1/2
.

We wish to apply Lemma 3.5 to bound the first term inside the bracket.
Observe that by (17), we have

2Kλ2 ≤ 16c · α0

16c
= α0,
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and also n/3 ≤ k ≤ 2n/3 by assumption. Hence Lemma 3.5 can indeed be
applied to get

E exp

(
2Kλ2S2

k

)
≤ exp

(
1 +

3Kλ2a2

2n

)
.

Next, note that by (17), 2λ ≤ θ0. Hence by inequality (23) with θ = 2λ, we
get the bound

E exp(2λT ) ≤ exp

(
1 +

4cλ2a2

n

)
.

Combining the last three steps, we have

E exp(λTL + λT ) ≤ exp

(
C log k + 1 +

(3K + 8c)λ2a2

4n

)
.

Now, by (17), 3K + 8c = 4K. Again, since n/3 ≤ k ≤ 2n/3, we have

log k = log n− log(n/k) ≤ log n− log(3/2).

Thus,

E exp(λTL + λT ) ≤ 21/2 exp

(
C log n− C log(3/2) + 1 +

Kλ2a2

n

)
.

By the symmetry of the situation, we can get the exact same bound on
E exp(λTR + λT ). Combined with (26), this gives

E exp(λmax
i≤n

|Wi − Yi|) ≤ 2 exp

(
C log n− C log(3/2) + 1 +

Kλ2a2

n

)
.

Finally, from the condition on C in (17), we see that

−C log(3/2) + 1 + log 2 ≤ 0.

This completes the induction step. To complete the argument, we just
choose C so large and λ0 so small that the result is true for n = 2 even if
the vectors (W0,W1,W2) and (Z0, Z1, Z2) are chosen to be independent of
each other. �

5. Completing the proofs of the main theorems

In this final section, we put together the pieces to complete the proofs of
Theorem 1.4 and Theorem 1.5. The following lemma combines Theorem 4.1
and Theorem 3.1 to give a ‘finite n version’ of Theorem 1.5.

Lemma 5.1. There exist universal constants B > 1 and λ > 0 such that
the following is true. Let n be a positive integer and let ε1, ε2, . . . , εn be

i.i.d. symmetric ±1 random variables. Let Sk =
∑k

i=1 εi, k = 0, 1, . . . , n.
It is possible to construct a version of the sequence (Sk)k≤n and gaussian
random variables (Zk)k≤n with mean 0 and Cov(Zi, Zj) = i∧ j on the same
probability space such that E exp(λ|Sn − Zn|) ≤ B and

E exp(λmax
k≤n

|Sk − Zk|) ≤ B exp(B log n).
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Proof. Recall the universal constants θ0 and κ from Theorem 3.1 and C, K,
and λ0 from Theorem 4.1. Choose λ so small that

λ <
θ0 ∧ λ0

2
and 16Kλ2 < 1.

Let the probability densities fna , ρna , and φn be as in the proof of Theo-
rem 4.1. Let gn and hn denote the densities of Sn and Zn respectively. By
Theorem 3.1 and the choice of λ, there is a joint density ψn on Z× R such
that ∫

ψn(s, z) dz = gn(s),

∫
ψn(s, z) ds = hn(z),

and

(27)

∫
exp(2λ|s − z|)ψn(s, z) ds dz ≤ κ.

Now define a function γn : Z× R× Z
n+1 × R

n+1 → R as

γn(s, z, s, z) := ψn(s, z)ρns (s, z).

It is easy to check that this is a probability density function. Let (S,Z,S,Z)
be a random vector following this density. As in the proof of Theorem 4.1,
an easy integration shows that the joint density of (Z,Z) is simply

hn(z)φn(z).

Define a random vector Y = (Y0, . . . , Yn) as

Yi = Zi +
i

n
Z.

By the independence of Z and Z and their distributions, it follows that Y

is a mean zero gaussian random vector with Cov(Yi, Yj) = i ∧ j.
Next, integrating out z and z we see that the joint density of (S,S) is

gn(s)fns (s).

Elementary probabilistic reasoning now shows that the marginal distribution
of S is the same as that of a simple random walk up to time n.

Let us now show that the law of the pair (S,Y) satisfies the conditions
of the theorem. First, let Wi = Si − iS/n. Note that for any i ≤ n,

|Si − Yi| =

∣∣∣∣Si −
(
Zi +

i

n
Z

)∣∣∣∣

≤ |Wi − Zi| +
i

n
|S − Z|.

Note that the conditional distribution of (S,Z) given (S,Z) = (s, z) is simply
ρns . Since λ < λ0, we have by the construction of ρns that

E
(
exp(λmax

i≤n
|Wi − Zi|)

∣∣S,Z
)
≤ exp

(
C log n+

Kλ2S2

n

)
.
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Thus, using the Cauchy-Schwarz inequality and (27), we can now get

E exp(λmax
i≤n

|Si − Yi|)

≤
[
E
(
E
(
exp(λmax

i≤n
|Wi − Zi|)

∣∣S,Z
)2)

E exp(2λ|S − Z|)
]1/2

≤ exp(C log n)
[
κE exp(2Kλ2S2/n)

]1/2
.

By inequality (13) and the choice of λ, the proof of the maximal inequality
is done. For the other inequality, note that we have (27) and Yn = Z since
Zn = 0. �

Proofs of Theorems 1.4 and 1.5. The proof of Theorem 1.4 follows trivially
from Theorem 4.1. The proof of Theorem 1.5 also follows quite easily from
Lemma 5.1, but some more work is required. We carry out the few remaining
steps below.

For r = 1, 2, . . . let mr = 22
r

, and nr = mr − mr−1. For each r

(S
(r)
k , Z

(r)
k )0≤k≤nr

be a random vector satisfying the conclusions of Lemma
5.1, and suppose these random vectors are independent. Inductively define

an infinite sequence (Sk, Zk)k≥0 as follows. Let Sk = S
(1)
k and Zk = Z

(1)
k for

k ≤ m1. Having defined (Sk, Zk)k≤mr−1
, define (Sk, Zk)mr−1<k≤mr

as

Sk := S
(r)
k−mr−1

+ Smr−1
, Zk := Z

(r)
k−mr−1

+ Zmr−1
.

Clearly, since the increments are independent, Sk and Zk are indeed random
walks with binary and gaussian increments respectively.

Now recall the constants B and λ in Lemma 5.1. First, note that for each
r, by Lemma 5.1 and independence we have

E exp(λ|Smr
− Zmr

|) ≤ E exp

(
λ

r∑

ℓ=1

|S(ℓ)
nℓ

− Z(ℓ)
nℓ

|
)

=

r∏

ℓ=1

E exp
(
λ|S(ℓ)

nℓ
− Z(ℓ)

nℓ
|
)
≤ Br.

(28)

Next, let

C =
1

1 − exp(− 1

2
B log 4)

B

.

We will show by induction that for each r,

(29) E exp(λ max
k≤mr

|Sk − Zk|) ≤ CBr exp(B logmr).

By Lemma 5.1 and the facts that B > 1 and C > 1, this holds for r = 1.
Suppose it holds for r− 1. By the inequality exp(x∨ y) ≤ expx+ exp y, we
have

E exp(λ max
k≤mr

|Sk − Zk|) ≤ E exp(λ max
mr−1≤k≤mr

|Sk − Zk|)

+ E exp(λ max
k≤mr−1

|Sk − Zk|).
(30)



A NEW APPROACH TO STRONG EMBEDDINGS 29

Let us consider the first term. We have

max
mr−1≤k≤mr

|Sk − Zk| ≤ max
1≤j≤nr

|S(r)
j − Z

(r)
j | + |Smr−1

− Zmr−1
|.

Thus, by independence and Lemma 5.1, and the inequality (28), we get

E exp(λ max
mr−1≤k≤mr

|Sk − Zk|) ≤ Br exp(B logmr).

By the induction hypothesis and the relation mr = m2
r−1, we see that the

second term in (30) has the bound

E exp(λ max
k≤mr−1

|Sk − Zk|) ≤ CBr−1 exp(B logmr−1)

= CBr−1 exp

(
B logmr

2

)
.

Combining, we get

E exp(λ max
k≤mr

|Sk − Zk|) ≤ Br exp(B logmr)

(
1 +

C

B
exp

(
−B logmr

2

))
.

From the definition of C, it easy to verify (since mr ≥ 4), that the term
within the parentheses in the above expression is bounded by C. This com-
pletes the induction step.

So we have now shown (29). Since r ≤ const. logmr, this shows that
there exists a constant K such that for all r,

E exp(λ max
k≤mr

|Sk − Zk|) ≤ K exp(K logmr).

Now let us prove such an inequality for arbitrary n instead of mr. Take any
n ≥ 2. Let r be such that mr−1 ≤ n ≤ mr. Then mr = m2

r−1 ≤ n2. Thus,

E exp(λmax
k≤n

|Sk − Zk|) ≤ E exp(λ max
k≤mr

|Sk − Zk|)

≤ K exp(K logmr) ≤ K exp(2K log n).

It is now easy to complete the argument using Markov’s inequality. �
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