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Abstract 

 
One of the central questions in financial economics is the determination of asset prices, such as 
the value of a stock. Over the past three decades, research on this topic has converged on a 
concept called the “state-price density”. However, a puzzle has arisen. On the one hand, Cox, 
Ingersoll, and Ross (1985) and others argue that the ratio of the state-price density to the 
statistical probability density, which is commonly known as the pricing kernel, should decrease 
monotonically as the aggregate wealth of an economy rises. On the other hand, recent empirical 
work on options on the S&P 500 index suggests that, for a sizable range of index levels, the 
pricing kernel is increasing instead of decreasing.  
We investigate theoretical explanations to this puzzle. Our existing work has ruled out some 
alternative hypotheses, such as data imperfections and methodological problems. We provide a 
representative agent model where volatility is a function of a second momentum state variable. 
This model is capable of generating the empirical patterns in the pricing kernel. We estimate the 
model through GMM. 
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The Pricing Kernel Puzzle: 
Reconciling Index Option Data and Economic Theory 

 
The Capital Asset Pricing Model (CAPM) of William Sharpe and the option pricing models of 
Fisher Black, Robert Merton, and Myron Scholes were seminal in developing our understanding 
of the pricing of financial assets; these works sparked a firestorm of research by economic 
theorists and empiricists. Furthermore, as Bernstein (1993) has argued, these inventions and the 
work that followed them were critical in the development of modern financial securities, 
methods of risk management, and the structure of today’s financial markets.  
Despite the fact that the CAPM was developed to price equity shares while the option pricing 
models were developed for options, these two sets of models share a common feature, namely a 
state-price density, which allows us to price all securities. Early researchers understood the 
original works as distinct theories. The authors of the option models employed different 
assumptions and logic than Sharpe, and explained their results using a disparate set of arguments. 
However, it is now understood that asset-pricing models generally – a set that includes the 
CAPM, option pricing models, and the work of Debreu (1993), Rubinstein (1976), and Cox, 
Ingersoll and Ross (1985) – can be interpreted using a single, simple calculation. An asset price 
is equivalent to an expectation based on a state-price density (SPD).  
      Because of its central role in pricing assets, the state-price density now has many uses. For 
example, central banks use estimates of SPDs to measure the credibility of exchange rate 
commitments.1 Another application is in risk management by banks, trading firms, and portfolio 
managers. Because an appropriate hedge position - say a position in an option - requires an 
assessment of the random changes in the value of the option, risk managers often rely on pricing 
models to evaluate the hedge. In turn, accurate valuation of the hedge requires precise estimates 
of the SPD.  
Not surprisingly, researchers have taken great interest in estimating SPDs. An often-used 
approach relies on a model of a representative agent, and requires an estimate of the parameters 
of the agent’s utility function. This is typically accomplished by fitting the agent’s optimality 
conditions to a set of asset returns and other data, e.g., per capita consumption. Two of many 
examples are Brown and Gibbons (1985) and Hansen and Singleton (1983). An alternative 
method is the subject of this research. This method draws on a cross section of options with 
different strike prices and does not impose strong assumptions on the utility of a representative 
agent.2  In fact, this method does not even require that a representative agent exists. 
Breeden and Litzenberger (1978) first showed within a theoretical setting, given a set of options 
on aggregate consumption dense in the set of possible strike prices, that a state-price density 
could be calculated exactly from the option prices. As Cox, Ingersoll, and Ross (1985) 
demonstrate, this SPD may be used to price all securities. Rubinstein (1994) and Jackwerth and 
Rubinstein (1996) provide empirical procedures for estimating a SPD when a finite number of 
options exist instead of a dense set. They also extend the interpretations of Breeden and 
Litzenberger to the case where options are written on securities or security indices, and not on 
aggregate consumption. In this case, the SPD estimate is a projection; for example, the SPD 
obtained from options on an equity index is an empirical projection of the general SPD 
(discussed by Cox, Ingersoll, and Ross (1985)) onto the space of payoffs defined by the index. In 
                                                 
1 See Campa and Chang (1998) and the survey by Jackwerth (1999). 
2 For example, some central banks draw their estimates of the state-price density from foreign exchange rates and 
the prices of foreign exchange options. 
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simple terms, this means that the SPD estimated from index option prices cannot be used to price 
all securities, but it can be used to price all securities in a large and important subset, namely the 
set of options and other securities derived from the index payoffs. More generally, a SPD can be 
used to price all derivative securities based on an underlying asset, when options on the 
underlying are used to estimate the SPD.  
There is now a large literature documenting estimates of SPDs derived from various options 
markets, e.g., foreign exchange, interest rates, equities, and equity indices. Some 100 papers on 
this topic are surveyed in Jackwerth (1999). As the evidence regarding the state-price densities 
has been collected, a puzzle has arisen. Estimates of the SPD derived from index options, which 
are written on the S&P 500 index and comprise the second largest options market in the world, 
appear to be inconsistent with fundamental assumptions about investor behavior. Specifically, 
when recent estimates are viewed through the lens of existing asset pricing theory, they imply 
that investors behave as if they are risk seeking (and not risk averse) with respect to the risk 
inherent in the index. This conclusion is inconsistent with one of the fundamental assumptions of 
the economic theory. The empirical research suggests that the marginal utility of investors 
trading S&P 500 index portfolios is increasing over an important range of wealth levels and not 
decreasing in wealth, as economic theory would sugggest. We seek to understand this puzzle. 
There are several reasons to investigate this puzzle, and to investigate more generally the state-
price densities for equity indices. A first is that indices such as the S&P 500, DAX, FTSE, 
Nikkei, and those published by the Center for Research in Security Prices of the University of 
Chicago (CRSP) represent the large majority of the public equity capital in their respective 
nations. The S&P 500 index represents roughly 50% of public U.S. equity capital. 
Second, the very large market capitalization of broad equity indices has led to a long line of 
research on their distributional properties. For example, research into the random walk theory of 
equity price changes has asked if the S&P index returns are predictable. Also, early tests of the 
CAPM were carried out under the assumption that the value-weighted CRSP index was a good 
proxy for the entire capital of the US investors. More recent works, for example by Fama and 
French (1988) and Poterba and Summers (1988), examine the predictability of a number of stock 
market indices. By their very nature, state-price densities provide information regarding the 
statistical distribution of index returns. 
In the following section 1 we describe the pricing kernel puzzle in more detail. Section 2 links 
the discussion of the pricing kernel to the option smile. In section 3 we discuss our empirical 
investigation of several hypotheses regarding our estimates of marginal utility and their positive 
relation to the index. Section 4 concludes. Information concerning the data is contained in the 
appendix. 
 
Section 1 -  Fundamental Determinants of State Prices  
 
We introduce the SPD by calculating the price of a European option. The option price C is the 
expectation of the random payoffs received at the option’s expiration. Write C as a sum across 
states, 
 
Eq. 1     s s

s
C p F=∑ , 
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where Fs is the option payoff and ps is the current Arrow-Debreu state price of a dollar paid in 
the future state  s.3,4 The sum of the ps across states is equal to one, so the set of ps represent a 
distribution analogous to, but distinct from a market participant’s subjective distribution of 
probabilities of the states.5  The set of ps is a state-price density or SPD.6 
Equilibrium theory relates a state-price density to economic fundamentals. Breeden and 
Litzenberger (1978) and Cox, Ingersoll, and Ross (1985) show that a state price ps satisfies  
 
Eq. 2     /s s sp q m=  
 
where  qs  is the subjective probability assessed by an investor for state  s, and  ms  is known as 
the pricing kernel and is proportional to the marginal utility of a representative investor in that 
state. In a state where the marginal value of an additional dollar is high, the proportional 
difference between the state price and the probability is high. Conversely, if one observes a state 
price far below a probability belief, then the marginal value of a dollar is low in that state.  
Within an exchange economy model such as Rubinstein (1976) and Lucas (1978), the pricing 
kernel is the ratio of marginal utilities of a representative investor. In this case the value of an 
option written on the market portfolio is 
 
Eq. 3   ( ) ( )( )' / 's s s s o s s

s s
C m q F U C U C q F= =∑ ∑ , 

 
where  m  is a ratio of marginal utilities of future per capita consumptions (Cs) and present per 
capita consumption (C0). This insight – that the pricing kernel is proportional to a ratio of 
marginal utilities - has led numerous authors to investigate the distributions of equity returns and 
test a variety of alternative specifications of utilities and endowments for the representative 
agent. One of the first utility functions tried was power utility. Described in detail by Rubinstein 
(1976) and investigated empirically by Brown and Gibbons (1985) and others, an implication of 
power utility is that aggregate consumption is proportional to aggregate wealth.7  In this case, the 
pricing kernel  m  is a nonlinear function of the return on the index measured over the life of the 
option. Furthermore, because the power-utility investor is risk averse,  m  is a monotonically 
decreasing function of aggregate wealth at the option expiration. 
Jackwerth (2000) estimates   p   and  q  using data on the S&P 500 index return and option prices 
from April 2, 1986 to the end of 1995.8 Details pertaining to the data are in the appendix. 
Estimates of  m  are then obtained from equation (2). The maximum smoothness method of 
Jackwerth and Rubinstein (1996) is used, and this method does not require a representative agent 

                                                 
3 See Debreu (1993) for development of a state price.  
4 We focus our attention on European options because they are exercised only at expiration. A European call option 
pays the maximum of zero and the difference between the price of the underlying security, e.g. the level of a stock 
index, and a strike price defined in the option contract. We write Fs=Max[0,Ps-X].  
5 For simplicity and without loss of generality, we assume in our discussion that the rate of interest on risk-free 
assets is zero. As a result, there is no discounting in (1). In general, the price of a security is the sum of expected 
future payoffs (using the SPD) discounted at the risk-free rate. 
6 The word “density” is usually reserved for a continuous function. For simplicity of discussion, we refer to the 
probability distribution in (1) as a state-price density. 
7 This result also requires that per capita consumption follows a geometric random walk with drift. 
8 Rosenberg and Engle (1999) confirm this shape by using a related method. 
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to be specified. An estimate of   p   is obtained by the method applied to the option data. Multiple 
options with various strike prices, but all with 31-day lives are used. The subjective probability 
distribution  q  is estimated as the historical distribution of index returns over 31-day intervals. 
This is an appropriate method for estimating  q  provided that investors have rational 
expectations. Typical estimates of the distributions, say  p*  and  q*, are graphed in Figure 1. 
 
Figure 1. Risk-Neutral and Subjective Distributions. The risk-neutral and the subjective return 
distributions are calculated on March 16, 1990. The subjective distribution is approximated by 
the smoothed 4-year historical distribution. Returns are reported as 1 plus the rate of return. 
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 A typical estimate of  m, say  m*, appears in Figure 2 as a function of the return on the S&P 500 
index. The value of one in the center of the horizontal axis represents an ending level of the 
index (i.e., at the time of option expiration) that is equal to the current level (at the beginning of 
the 31-day interval). Globally,  m*  is a decreasing function of the ending level. However, for the 
range from approximately  0.97  to  1.03, i.e. for a range of index levels centered on and within a  
3%  deviation from the current level,  m*  is increasing. This occurs because the proportional 
difference between the estimates, say  p*  and  q*, is increasing over this range, as equation (2) 
implies. 
 
Figure 2. Empirical Pricing Kernel. Typical post-1987 stock market crash implied pricing kernel. 
The pricing kernel is calculated as the ratio of the option implied state-price density and the 
historical smoothed return distribution. Returns are reported as 1 plus the rate of return. 
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Traditional asset pricing theory, e.g. Rubinstein (1976) and Lucas (1978), assumes that a 
representative investor exists. It also is common in tests of asset pricing theories to assume that a 
market index such as the S&P 500 index represents the aggregate wealth held by this investor. If 
we make these assumptions, then the empirical  m*  of Figure 2 suggests that the representative 
investor is locally risk seeking. Over the range of  0.97  to  1.03, the marginal utility is increasing 
in wealth, the utility function is convex, and the investor will pay to acquire fair gambles in 
wealth. Taking this thought experiment to the limit, however, we recognize that our 
interpretation of  m*  in equations (2) and (3) is derived from the optimality conditions of an 
investor with concave utility. Figure 2 is inconsistent with these conditions. Hence we arrive at a 
puzzle. Our estimate  m*  is inconsistent with standard approaches in asset pricing.  
Our estimation technique does not require the above strong assumptions. To estimate  p  
Jackwerth and Rubinstein (1996) only require that the prices do not offer any arbitrage trading 
opportunities, while the sample estimator of  q  requires rational expectations to be valid. 
Therefore we interpret  m*  differently from that just given. It is a projection of the pricing 
kernel  m  onto the space of index returns. This projection is guaranteed to exist, independent of 
the existence of a representative agent for the economy as a whole. Just the same,  m*  may be 
interpreted as (proportional to) the marginal utilities of investors who trades in the S&P 500 
index and the options written on the index. In practical terms,  m*  represents investors in an 
index fund that mimics the S&P 500. It is surprising to see that index-fund investors have 
marginal utilities that are locally increasing in the level of the index.  
 
Section 2 - Option Smiles 
 
Option prices exhibit so-called volatility smiles and skews. These labels refer to systematic 
patterns in the cross section of option prices. To explain this idea, we note that option prices are 
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commonly transformed to and measured in units of volatility of the underlying. That is, the 
volatility (of returns on the underlying asset) consistent with the Black-Scholes model is 
obtained, which exactly matches the observed option price. This is the “implied volatility,” 
which is used a substitute for the option price. Once the transformation from price to volatility is 
made it is an easy task to compare the prices of options. For example, researchers often describe 
the cross section of options by a plot of implied volatilities against strike prices as in Figure 3.9 
 
Figure 3. Empirical Volatility Smile. Typical post-1987 stock market crash implied volatility 
smile. Returns are reported as 1 plus the rate of return. 
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A consequence of the Black-Scholes option-pricing model is that implied volatilities of all 
options are equal. If this result held, the plot in Figure 3 would be flat. Instead, what we observe 
is a “smile”, or “skew”, or “smirk” depending on your preference in label. The left tail of the plot 
is substantially above the right. A plot such as this is a common finding, although the degree to 
which the left tail of the plot is elevated relative to the center is systematically related to the 
underlying security. For example, for options on individual equities, the plot is relatively flat 
compared to Figure 3. For foreign-exchange options, each tail of the plot is slightly and equally 
elevated. For the S&P 500 index options, the smile looks like that of Figure 3, where the left tail 
is substantially above the right tail. 
For any option-pricing model, the plot of the kernel  m  (as in Figure 2) is closely tied to the 
degree of the smile (like that of Figure 3).10 It is important to note that any model used to explain 
                                                 
9 Pricing based on implied volatility is analogous to the use of yield to maturity in the bond market. Just as the yield 
to maturity is a transformation of the bond price, the implied volatility is a transformation of the option price. 
Implied volatilities allow traders to easily compare the prices of options with disparate terms, e.g., different strike 
prices. 
10 We do not formally demonstrate the link between plots of  m  and smiles here, but refer to the discussion in 
Jackwerth (2000) and Rosenberg and Engle (1999). 
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the smile in the S&P 500 index options must provide a kernel  m  that is consistent with Figure 2. 
That is, the kernel implied by a well-constructed model must have a central range that is 
increasing with the index. The goal of this work is to find models that explain the pricing kernel 
as shown in Figure 2. 
 
Section 3 - Alternative Hypotheses 
 
In principle, a number of alternative hypotheses might explain the increasing marginal utility 
shown in Figure 2. Some of these are discussed elsewhere, so we briefly review them in section 
3.1. We discuss the literature in section 3.2. We propose new hypotheses to investigate and 
discuss these in section 3.2. 
 
Section 3.1 – Hypotheses Discussed Elsewhere 
 
One hypothesis that explains the puzzle shown in Figure 2 is that either one or both of our 
estimation procedures for  p  and  q  are faulty. A second possibility is that the option prices used 
to calculate  p*  are noisy. Jackwerth (2000) discusses these concerns in detail and has ruled 
them out. Here, we briefly review his findings.  
First note that Jackwerth and Rubinstein (1996) provide a number of alternative methods to 
obtain estimates of  p. Jackwerth (2000) examines these methods using simulated data for which 
we know the true  p, and he shows them to be quite accurate. Similarly, a variety of standard 
procedures, both parametric and non-parametric, are used to estimate the historical return 
distribution  q*  and they provide equivalent results. Our work will rely on the same data, which 
contains records of all trades and quotes in the index options and a continuous record of the 
index levels, again from April 2, 1986 to 1995.11 Although there are bid-ask spreads in options 
markets, midpoints of the bid-ask spread are used to calculate  p*  instead of trade prices. We 
also use all option quotes during a day for an estimate of  p*  for that day. Jackwerth (2000) 
demonstrates that measurement of  p*  is not sensitive to the existence of spreads. Furthermore, 
there is no good reason to believe that our index return data is poor. In summary, neither data 
errors nor poor estimation techniques are the cause of the puzzle. 
Another hypothesis is that the estimate  m*  in Figure 2 is very noisy. Perhaps the standard error 
bounds on  m*  are sufficiently large that the slope in the middle range (about the value of 1) is 
statistically insignificantly different from zero. Jackwerth (2000) rules this hypothesis out. The 
slope is significantly positive.  
Our data includes index option prices during the months before the market crash of 1987. 
Estimates of pricing kernels from this period are downwards sloping, and do not exhibit the 
puzzling behavior of Figure 2. Estimates of  m*  from data after the crash universally exhibit the 
puzzle. This suggests that the 1987 crash induced a radical change in investors’ beliefs. 
Beginning in 1988 and continuing through the end of our data,  p*  impounds a belief that market 
crashes are highly likely relative to our estimate  q*. This can be seen in the left tail of the 
distributions of Figure 1. 
One interpretation of the pre- to postcrash comparison is the following:  On the one hand, 
investors rationally updated their beliefs, and this caused the changed estimates of  p. On the 
other hand, our estimate  q*  suffers from a so-called “peso problem”. By this we mean that even 
though it is an accurate estimate of the statistical distribution,  q*  does not represent the true 
                                                 
11 Details can be found in the appendix. 
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distribution faced by investors because there are too few crashes in our sample. If so,  q*  does 
not incorporate correctly the likelihood of an infrequent event, while investors are cognizant of 
the correct likelihood.  
Jackwerth (2000) examines the peso problem by calculating statistical distributions with 
simulated crashes. To the historical index-return data, daily market-crash returns (that is daily 
returns of –20%) are randomly mixed in. The pricing kernel is estimated using  q*  derived from 
a mixture of historical and simulated returns. He then shows that  q*  calculated in this fashion 
do not exhibit sufficiently fat left tails; they do not reconcile the fat left tails in the estimates of  
p. In other words, the resulting  m*  derived in this manner is a locally increasing function of the 
index. We conclude that a peso problem is not the source of the puzzle. 
 
Section 3.2 – Hypotheses in the Literature Regarding the Smile 
 
A number of explanations have been brought forward in the literature in order to explain the 
volatility smile. However, we will see that the existing models in the literature are largely 
unsatisfactory in explaining the puzzle of Figure 2. Most of the research is one-sided, meaning 
that researchers either model the index return process (and thereby generate a  q*  distribution, 
which is typically close to a lognormal) or they explain the post-crash option prices (and thereby 
generate a left-skewed  p*  distribution), but not both at the same time. Thus, these works do not 
touch on the puzzle we investigate here. The few existing papers that model both  q*  and  p*  
simultaneously circumvent the puzzle altogether. For example, Pan (1999) assumes a specific 
pricing kernel that is monotonically decreasing in wealth. We now proceed to survey and 
document the inconsistency of existing models with the form of the kernel estimate  m*  shown 
in Figure 2. 
A few of those existing models can be dismissed right away. Namely, the American nature of 
some options can introduce a volatility smile but this is not a concern to the present study since 
the S&P 500 index options are European in nature. Also, the discreteness of quotes and trades is 
not likely to be an issue, either. While discreteness will force the implied ask volatilities of away-
from-the-money options up, it forces the bid implied volatilities for those options down. Since 
we use midpoint implied volatilities the effects largely cancel around at-the-money and only lead 
to increased implied volatilities for moneyness levels below 0.6, which are seldom traded and not 
used in our estimates. Thus, we have to look for other arguments for the existence of the steep 
index option smile. 
 
Leverage effect: Black (1976), Christie (1982), and Schwert (1989) first advocated the leverage 
effect. As asset price falls, the market value debt-equity ratio rises. Then, subsequent shocks to 
the firm value would imply higher equity volatility. However, even for individual stock options 
with their comparatively flat smiles, Toft and Prucyk (1997) find that the leverage effect can 
only account for about half of the observed smile. Also, the actual leverage on the index should 
be similar to the average of leverages across all firms. But such index leverage effect would be 
far too small to explain the steep index smile. Surprisingly, Dennis and Mayhew (2000) find 
evidence of the reverse of a leverage effect. They also criticize the methodology of Toft and 
Prucyk (1997) in that their slope variable is contaminated by scaling by the implied at-the-money 
volatility, which can lead to spurious leverage effects in the regressions. 
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Information aggregation: Grossman (1988), Gennotte and Leland (1990), Jacklin, Kleidon, and 
Pfleiderer (1992), Kleidon (1994), and Romer (1993) develop models in which an investor learns 
about an important variable through trading. Once the learning takes place, prices adjust sharply, 
even if no news event took place. Unfortunately, these models are inherently symmetric in that 
the misperception of the investor could be an over- or under-estimation, i.e. the price adjustment 
could be either a crash or a “melt-up”. However, large crashes are more likely empirically than 
large up moves. Hong and Stein (1999) develop a related model in which the pessimistic 
investors are short sale constrained. Their model is asymmetric in that crashes are more likely 
than up moves. Nandi (1999) proposes a model where a risk-neutral trader has private 
information about future volatility. However, the symmetric smile generated is very slight and 
not nearly as pronounced as the empirical smile in the S&P 500 index options market. 
 
Correlation: Kelly (1994) argues that in down-markets correlations across companies increase. 
This effect exacerbates the impact of bad news on the market and can lead to increased volatility 
for the index. The explanation for this behavior is that equities become more highly correlated in 
down markets since disaster affects everybody. However, good news is not as much correlated 
across companies and volatility rises therefore only during market downturn but not during up-
moves. Kelly (1994) and Campbell et al (2001) find that individual stocks are more risky today 
than they were in 1963 or even in 1986. Conversely, the stock market as a whole did not show 
such trend in volatility. The explanation for this behavior lies in the correlations across stocks 
that decreased over this time. However, the index volatility smile has not flattened out over the 
10 years after the crash. Moreover, the index smile changed dramatically on the day of the crash, 
and the correlation structure of returns developed much more gently over time. 
 
Wealth effect and utility functions: As the market falls, the wealth of investors falls, and 
investors become more risk-averse. Then, the same news leads to a greater reaction and to more 
trading in order to rebalance the optimal portfolio for the investor. This in turn causes volatility 
to rise. Again, only modest smiles can be achieved as long as the associated pricing kernel  m  is 
monotonically decreasing across wealth. Also, the pricing kernel cannot be chosen independently 
of the stochastic process of the underlying, and we need to address the relationship in the next 
subsection. We will now turn to some examples of more flexible pricing kernel, which can 
generate (small) smiles. 
Franke, Stapleton, and Subrahmanyam (1999) suggest a pricing kernel with declining elasticity. 
Such pricing kernel is consistent with the concept of the investors being faced with 
undiversifiable background risk, Franke, Stapleton, and Subrahmanyam (1998). However, their 
model does not imply an increase in marginal utility over the near-the-money range, which we 
find empirically in Figure 2. 
Benninga and Mayshar (1997) obtain moderate smiles by using a more flexible pricing kernel. In 
particular, even in their richer setup of heterogeneous investors who can choose between current 
and future consumption, the marginal utility patterns of Figure 2 cannot be achieved unless a) the 
subjective probability assessment of future wealth is not nearly lognormal but severely left-
skewed and leptokurtic or b) individual marginal utilities are increasing as consumption 
increases from slightly below current consumption to slightly above current consumption. 
Campbell and Cochrane (2000) explore utility functions with habit persistence. They reset the 
starting point of the wealth dimension and over time, the investor exhibits risk-aversion increase 
for certain wealth (consumption) levels as the habit level increases. However, the reference point 
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is just one point indeed, and it is known at all times. Given the reference point, the utility 
function is still a power utility, and the monotonicity of marginal utility is preserved. Looking 
forward to a solution of the puzzle, we would need the reference point to vary in conjunction 
with wealth (consumption), thus acting as an additional state variable. We will further explore 
this avenue below. 
 
Volatility feedback: The volatility feedback effect argues that some large news event drives up 
the volatility of the underlying and the risk premium rises. If the news event was positive 
(negative), then the resulting up (down) move in the index will be dampened (amplified). 
Pindyck (1984), French, Schwert, and Stambaugh (1987), and Campbell and Hentschel (1992) 
developed such models. Wu (1998) describes the asymmetric volatility effects. Again, as above 
with the leverage models, a key problem with these arguments is that while they can generate 
asymmetric smiles, they depend crucially on the news event as a trigger. Thus, the models cannot 
explain price changes, which occur without accompanying news announcements. However, 
Brown and Jackwerth (2000) find that news about macroeconomic events have very little impact 
on the smile. Finally, Poterba and Summers (1986) argue that there is only a rather small 
quantitative effect of the volatility feedback as shocks to market volatility are not very persistent. 
 
Behavioral finance and rational bubbles: The models of behavioral finance argue that a sudden 
shift in investor sentiment manifests itself in a market crash [Shiller (1989), p.1]. However, it is 
not clear why such sudden shift in sentiment should be more likely to the downside than to the 
upside – as long as we do not view fear as an inherently stronger feeling than euphoria. 
Alternatively, rational bubbles such as the model of Blanchard and Watson (1982) achieve 
market crashes that are inherently asymmetric. Alas, Gartner (1999) shows that for a rational 
bubble to start out of equilibrium, individuals would have to form “inconsistent” forecasts – an 
argument which leads us back towards the behavioral models. Empirically however, these 
models have not been very successful as the work of West (1988) and Flood and Hodrick (1990) 
shows.  
 
Stochastic Process: A large literature investigates general stochastic processes for the underlying 
in order to explain the index option smile. There are deterministic volatility models which keep 
the framework of a one-dimensional Brownian motion driving the underlying asset price. These 
models (e.g. Rubinstein (1994) and others surveyed in Jackwerth (1999)) allow the volatility to 
be a general function of the index function and time. However, if we are willing to assume 
continuous trading, then the pricing kernel of a one-dimensional process is uniquely determined 
through Girsanovs Theorem.12 We explored this avenue by specifying more general functions for 
the drift and the volatility parameter. Interestingly, when we plot the resulting pricing kernels 
across wealth, we only add noise: the overall shape stays the same (monotonically decreasing 
across wealth), and we could not generate the characteristic hump of Figure 2. 
Alternatively, we have stochastic models (e.g. Bates (2000) and Bakshi, Cao, Chen (1997)), 
which add (at least) a second stochastic factor, such as volatility, interest rates, or jumps. Jumps 
however only give you the negative skewness of the returns (if the jumps are asymmetric) but 
not necessarily the negative correlation stock vs. volatility. One of the leading proponents of this 
idea is the stochastic volatility and stochastic jump model of Pan (1999). We simulate her model 
                                                 
12 Moreover, if trading is not continuous but frequent, one would hope that the associated set of feasible pricing 
kernels is close to the unique pricing kernel of the continuous trading case. 
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according to her estimated parameters, but the model-implied pricing kernel is monotonically 
decreasing. Hence, Pan (1999) cannot explain Figure 2. 
One general problem with all these approaches is that the process for the underlying did not 
change dramatically around the crash. Thus, it is hard to see why we should use a simple Black-
Scholes framework precrash and a more complex model postcrash. Alas, one might have wanted 
to use the more complex model in the precrash period but the option market ignored this fact 
until the crash, when it realized its mistake. Similar arguments can be made for option pricing 
models based on the GARCH model, such as Duan (1995). In addition, Duan (1995) assumes a 
monotonically decreasing pricing kernel, which is inconsistent with Figure 2. 
 
Market imperfections and demand/supply:13 A potential further explanation for the existence of 
the smile is the illiquidity of out-of-the-money options. Options traded in a market with 
transaction costs or other frictions are priced within an interval determined by these costs. 
Demand and supply would determine the final trading price. Grossman and Zhou (1996) suggest 
such a model with an exogenous demand for portfolio insurance. Unfortunately, they do not 
generate a sufficiently steep smile, but we will revisit their model below. However, the liquidity 
in the index option market increased ten-fold from an average daily notional volume of $250 
million in 1986 to $2250 million in 1995 (Jackwerth and Rubinstein (2001)), while the steepness 
of the smile did not change at all after the 1987 crash. In addition, Brown and Jackwerth (2000) 
find that large trades of out-of-the-money puts have no obvious impact on the steepness of the 
smile.14 Next, in the spirit of Lee and Ready (1991), we looked at the number of seller versus 
buyer initiated options trades out of a total of 665,548 trades. The distribution of trades is given 
in table 1. There are slightly more buys (trades near the ask) than sells (trades near the bid) but 
the imbalance does not seem to explain the smile pattern, in particular as the distribution of 
trades is insensitive to the choice of moneyness ranges.  
 

                                                 
13 In a further exploratory study, we investigated market frictions in a GMM setting starting with the Euler equation 
1 = E[m r]. We use the dataset on options returns from Buraschi and Jackwerth (2001). He and Modest (1995) 
suggest that the vector of 1’s should be replaced with some other value, close to 1 for transaction costs or less than 1 
for short sale constraints. However, as the marginal investor (the one with the lowest costs) sets the equilibrium 
prices, it is hard to imagine that the vector should be vastly different from 1; especially since the market maker and 
the traders are not short sale constraint. We need to use an expected value of the OTM put returns, which is some 
40-50 basis points lower than 1, in order to achieve a monotonically decreasing pricing kernel. Such large daily 
transaction cost is hard to imagine in this liquid market. Such diminished return could also suggest mispricing, a 
position explored in Jackwerth (2000) and supported by Agarwal and Naik (2000), who find that hedge funds tend to 
sell out-of-the-money and at-the-money puts. Given the size and liquidity of this market, our prior is however, that 
such profit opportunities should not exist for ten years without any tendency towards equilibrium. 
14 However, Dennis and Mayhew (2000) test for the impact of “market sentiment” variables on the smiles of 
individual stock options. They find that the ratio of put to call volume is significant and that higher put volume 
increases the slope of the smile. However, other measures of “market sentiment”, such as the Consumer Confidence 
Index or the average Price/Earnings ratio for the S&P 500 stock, are not significant in explaining the slope of the 
smile. 
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Table 1. The distribution of trades relative to the last observed bid/ask spread. 
 
   Trade above ask    0.07 % 
   Trade at the ask    0.28 
   Trade between ask and midpoint  0.10 
   Trade at the midpoint    0.18 
   Trade between bid and midpoint  0.09 
   Trade at the bid    0.22 
   Trade above the bid    0.06  
 
Further, while the bid/ask spreads are bigger for away-from-the-money options, the hump in the 
pricing kernel occurs around at-the-money, and is determined by the at-the-money options.  
Market frictions due to margin account requirements might also play a role here. The public, the 
clearing firms, and the market makers are all subject to margin requirements. However, the 
requirements have not changed dramatically around the crash of 1987. They were slightly 
tightened in June of 1988 and more or less remained at that level since then.  
To explain the steep smile with transactions costs for trading the out-of-the-money options is 
probably insufficient. For one, transaction costs existed in the precrash period as well as the 
postcrash period without changes on the day of the crash. However, the smile changed 
dramatically. Second, transaction costs should affect the out-of-the-money options on both sides 
of the smile equally. Instead, the index option smile is largely asymmetric.  
 
Hedging: Although transaction costs are not a likely reason for the index smile, a related concern 
is the hedging of out-of-the-money puts. Hedging is difficult for sold out-of-the-money puts 
when one uses only the underlying to hedge. The hedge must offset the positive delta of the 
position, which is low and grows large as the market crashes. The hedging strategy must have a 
negative delta that declines to minus one as the market crashes. Thus, the investor must sell into 
the falling market. However, this problem only applies to investors who desire to stay fully 
hedged. However, investors similar to the representative investor should be able to follow sell 
and hold strategies even without hedging since we are assuming the existence of a pricing kernel 
in the economy.  
 
Section 3.2 – Additional Hypotheses that Explain the Puzzle 
 
Note that the historical sample estimate  q*  is backward looking. On the other hand,  p*  is 
derived from option prices, and is forward looking in that it represents the beliefs investors over 
the life of the index options (31 days in our work). If investors do not have rational expectations, 
then  p*  and  q*  may differ greatly.  
One form of irrationality we call crash-o-phobia. To understand this, suppose that in the period 
of the 1987 crash investors suddenly became overly fearful of a future market crash. Thus in the 
post-crash period prices of options with strike prices below the current index level are elevated 
relative to rational levels. As a result, the left tail of  p*, which represents prices for dollars 
received conditional on a large market decline, is raised upward. Given that  p*  always 
integrates to one,  p*  needs to decline in other ranges. If in addition the statistical distribution  
q*  is unchanged – so that the change in  p*  represents an irrational change in beliefs - then the 
pricing kernel may take on the shape shown in Figure 2. In other words, crash-o-phobia is an 
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irrational change in investor beliefs that shows up in index option prices and therefore in m*. It is 
a hypothesis that explains our puzzle.15  
Given that the puzzling behavior of  m*  appears in the index option data beginning in early 
1988, just after the market crash, the crash-o-phobia hypothesis must be seriously considered. 
Just the same, it is odd that  m*  is locally increasing in all months of our post-crash index 
sample that currently ends in 1995. The implication is that crash-o-phobia continued for at least 
eight years after 1987, and it did so in the absence of another crash. We expect that if investor 
beliefs changed irrationally in the 1987 crash, then the shape of  m*  should revert to its precrash 
form as memories fade during the postcrash era. Moreover, the S&P 500 index options trade in a 
large and liquid market, and the crash-o-phobia hypothesis implies that these options are 
irrationally priced. If so, then over time traders should learn to profitably exploit such 
mispricing. Over an eight-year period arbitrage trading should drive option prices and the pricing 
kernel back to their rational precrash levels. However, we observe no such adjustments. For this 
reason, we seek rational alternatives to the crash-o-phobia hypothesis as an explanation of the 
puzzling pricing kernel. 
A final set of hypotheses we collect under the umbrella of state-dependent utility. By this we 
mean that the representative investor in the S&P 500 index has state-dependent utility. We do not 
require a representative agent for the economy as a whole. Instead, we assume the existence of 
the representative or marginal investor in the S&P 500 index and index options. 
State-dependent utility may arise for a number of reasons. One of these is generalized utility, by 
which we mean that the investor exhibits either habit formation or recursive utility. For example, 
in the case of habit formation, and unlike with the simple power utility of Hansen and Singleton 
(1983), the pricing kernel  m  is a function of an aggregator of historical levels of consumption as 
well as current consumption. In this setting, an investor becomes accustomed to a level of 
consumption, which is determined by the aggregator, and strongly dislikes decreases in 
consumption below that level. Epstein and Zin (1989 and 1991) explore the recursive utility 
model. Here, the uncoupling of the risk-aversion coefficient and the intertemporal substitution 
rate is not too helpful for our purposes, since it leaves the power utility formulation across wealth 
in place. However, Figure 2 is in violation of such power utility. 
State-dependent utility may also arise when index volatility, or more generally the distribution of 
other security returns, is stochastic. In this case, measures of volatility, interest rates, or the 
prices of other assets enter the index-investor’s utility as additional state variables. Within the 
context in which we work, state-dependent utility includes also the case that the representative 
investor holds assets, e.g. foreign stocks, in addition to the S&P 500 index.  
We do not detail here every alternative state variable we must consider. It is possible, however, 
to characterize generally the nature of the relation between the index and the additional state 
variable that must exist to explain the puzzle. The kernel  m  is the ratio of future expected 
marginal utility divided by the current marginal utility. If utility is dependent on a state variable, 
and that variable is responsible for the puzzle, then changes in the variable must correlate with 
the index returns. Furthermore, the relation between the state variable and the index must be non-
monotonic.  
To demonstrate this, consider the optimal consumption (C*) induced by a level of the S&P 500 
index  w  and a state variable or variables  v. We then write  
                                                 
15 Stocks dropped precipitously in Asian and European markets in October 1987, too, and with the same magnitudes 
as U.S. stocks. In further research, it would be interesting to compare the pricing kernels in these markets with those 
in the U.S. 
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The numerator is the expected marginal utility at the time of the option expiration, where the 
expectation is conditioned on the index level. For equation (4) to behave as in Figure 2, the 
distribution of  v  must change with  w  so that the numerator rises monotonically in the middle 
range, i.e. where  w  is close to  wo. However, the relation between  w  and the  v  distribution 
must be decidedly different in the tails. In the tails we expect that the distribution of  v  changes 
very little with  w. Because marginal utility declines with wealth ceteris paribus, the numerator 
declines with  w  either far above or below  w0. We now examine several alternative 
representations of state-dependent utility with the goal of explaining Figure 2.  
We depict a hypothetical situation of such a state variable  v  in Figure 4.  As wealth increases, 
state 2 becomes more likely. Thus, the pricing kernel  m*  is a weighted average of the two 
pricing kernels associated with the two states of  v. Grossman and Zhou (1996) use a similar 
model to explain the smile in index options as the result of two classes of investors of whom one 
class is seeking portfolio insurance. Unfortunately, their model does not provide for strong 
enough effects, so that their aggregate pricing kernel (corresponding to m*) is still monotonically 
decreasing across wealth. Similarly, one can think about the following potential explanation: For 
low (high) levels of wealth, utility is based on low (high) marginal utility function of investor 1 
(2). In the center, the weights shift and the resulting marginal utility function from the above 
Figure 1 is obtained. However, it is not clear why the two investors stay segregated and dominate 
only their respective domains. The investigation of institutional details to explain such separation 
is ongoing research. 
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Figure 4. Hypothetical Pricing Kernels depending on State Variable  v. We graph the simplest 
setting where the state variable  v  can take either of two values. As wealth increases, the 
likelihood of being in state 2 increases. Taking the expectation over  v  yields the desired 
empirical pricing kernel m*. 
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Section 4 - A Model 
 
So far, we have not specified the second state variable. Candidates could be the level of habit 
persistence or the level of future utility in a recursive utility framework, Epstein and Zin (1989 
and 1991). Another class of state variables are (stochastic) volatility, interest rates, or any other 
asset price which carries additional information about the pricing kernel.  
For our model, we propose that volatility is a function of a second momentum state variable. 
This choice is based on the observation that a candidate state variable would have to exhibit an 
effect on the pricing kernel which is symmetric in wealth. Namely, the pricing kernel ought to be 
raised for small changes in wealth and lowered for large changes in wealth in either direction. 
Volatility naturally has this feature in that it tends to be low if wealth changes little and increases 
if wealth changes dramatically in either direction. Moreover, we know that in a representative 
agent economy with power utility and a small risk aversion coefficient, low volatility will cause 
the pricing kernel to be high and high volatility will lower the pricing kernel, just as desired. 
Finally, we are reluctant to model volatility as a function of wealth straightaway since wealth is a 
non-stationary variable. Thus, we propose to model volatility as a function of a (stationary) 
momentum variable Xt. Xt follows a simple mean reverting process; it is an exponentially-
weighted sum of past increments in wealth.  
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The agent’s problem can then be modeled as follows. Let the representative agent choose the rate 
of consumption ( ), ,t tC W X t , and the proportion of wealth in one risky asset ( ), ,t tW X tα , and 
the proportion in one riskless asset (1-α) to maximize expected utility of lifetime consumption: 
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Here, µ and θ are constants, σ(Xt) is a function of the second state variable Xt, and a single 
Brownian motion appears in each diffusion equation. Changes in the state variable are perfectly 
correlated with changes in wealth. Using Ito’s lemma, 
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Optimal consumption and investment choices satisfy the HJB equation: 
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From the first order conditions:  
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In order to find the solution of the model in equilibrium, we posit the following functional form 
for the utility of wealth of a representative agent, 
 
Eq. 10     ( ) ( ) 1, , e /(1 )t B
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Substituting partial derivatives (details are in the appendix) into Eq. 9 we obtain 
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When we assume that the riskless asset is in zero net supply, so that αt=1, the latter equation 
identifies the riskless rate: 
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Now, we use Eq. 11 to identify consumption and investment, Eq. 12 to identify the riskless rate, 
and Eq. 10 to identify the partial derivatives of J.  Eq. 8 is written: 
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This identifies h without knowledge of the riskless rate. The h-function is a second order ODE 
with a hyperbolic term that makes it very difficult to solve. However, from the functional form of 
the pricing kernel we can learn much about the functional form of h. The pricing kernel is given 
by the ratios of marginal utilities: 
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The adjustment depends on the ratio of h(XT) / h(Xt) which will give the desired shape of the 
pricing kernel if h is shaped like a normal density (Bell-curve) but raised by a constant above the 
zero line. We thus specify the following parametric form for h: 
 
Eq. 15     ( ) 2

ea bX cXh X d + += +   
 
In order to now empirically test the model, we proceed to an GMM estimation of the model 
based on a daily time-series (4 April 1986-29 December 1995) of returns of the risk-free rate, the 
S&P 500 index, and 5 constant 45-day-to-expiration call options. These options range in 
moneyness from deep-in-the-money (0.96 moneyness), in-the-money (0.98), at-the-money (1), 
out-of-the-money (1.02), to deep-out-of-the-money (1.04).16 With the knowledge of the 
functional form of h in Eq. 15, we can then solve for the function  σ(Xt)  as a quadratic form.17 

                                                 
16 Details on the data are in the appendix. A complete description of the dataset is in Buraschi and Jackwerth (2001). 
17 Of the two roots, a positive volatility requires that we take the negative root if (1-B) is less than zero and the 
positive root if (1-B) is greater than zero.  
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We can then pick the parameters µ, B, θ, X0, ρ and the  parameters of the h-function, a, b, c, d. 
Next, we discretize the wealth process and solve for the empirical daily increments in wealth: 
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where rm,t is the S&P 500 index return from date t to t+∆t which proxies for the change in 
wealth. We can use the increments to update the X-process: 
 
Eq. 17     ( )t t t tdX X dz t X tσ θ= ∆ − ∆   
 
The pricing kernel from date t to t+∆t is: 
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We are now ready to calculate two sets of moments for our GMM estimation. The first is based 
on the empirical asset returns which are expected to have value 1 when multiplied by m:        
E[mt Rt]-1 where Rt is the collection of the seven observed asset returns from date t to t+∆t. The 
second is based on the first 4 moments of dzt: E[dzt] – 0, E[dzt

2] – 1, E[dzt
3] – 0, and E[dzt

4] – 3. 
We collect the moment conditions in a vector g and minimize the GMM objective function g` W 
g by varying the parameter vector. Our initial choice for W is simply the identity matrix. 
To be continued. 
 
Section 5 – Summary 
 
The goal of out work is to explain the puzzle pictured in Figure 2. This figure demonstrates a 
surprising pattern of the marginal utility of wealth for investors in the S&P 500 index. It appears 
that these investors are risk seeking, at least with respect to small risks in the index. This is 
inconsistent with the basic assumptions of asset-pricing theory, when it is recognized that the 
S&P 500 index represents a significant proportion of public equity capital in the U.S. 
Our investigation is both empirical and theoretical. Our theoretical model provides for a 
representative agent model that features volatility as a function of an additional state variable 
which measures momentum. Through an adjustment function to the pricing kernel, the model is 
capable of generating the sort of relation we see in Figure 2. We are estimating a GMM 
specification of the model and use data on the riskfree rate, the S&P 500 index returns, and on 
S&P 500 index option returns. 
Future research will examine index returns from markets outside the U.S. We will see whether 
the puzzle is unique to the S&P 500 index options market. The empirical work also will use both 
domestic and foreign market data to test our theoretical explanation of the puzzle.  
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Appendix:  
 
Formulae 
 
Write the utility of wealth of a representative agent as: 
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so the derivatives of utility of wealth are 
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The derivation of Eq. 13 out of Eq. 8 uses the optimal αt = 1 and proceeds through: 
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Data  
 
The empirical tests are based on a database containing all minute-by-minute European option 
quotes and trades on the S&P500 index from April 2, 1986 to December 29, 1995. We use only 
option quotes since we cannot know for actual trades where they occurred relative to the bid/ask 
spread and our results might be affected. The database also contains all futures trades and quotes 
on the S&P 500. Our goal is to obtain a panel of daily return observations on the index, the risk-
free rate, and on several options with different strike price/index level ratios (moneyness) and 
constant maturity. 
Index Level. Traders typically use the index futures market rather than the cash market to hedge 
their option positions. The reason is that the cash market prices lag futures prices by a few 
minutes due to lags in reporting transactions of the constituent stocks in the index. We check this 
claim by regressing the index on each of the first twenty minute lags of the futures price. The 
single regression with the highest adjusted R2 was assumed to indicate the lag for a given day. 
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The median lag of the index over the 1542 days from 1986 to 1992 was seven minutes. Because 
the index is stale, we compute a future-based index for each minute from the future market  
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For each day, we use the median interest rate implied by all futures quotes and trades and the 
index level at that time. We approximate the dividend yield by assuming that the dividend 
amount and timing expected by the market were identical to the dividends actually paid on the 
S&P 500 index. However, some limited tests indicate that the choice of the index does not seem 
to affect the results of this paper. 
Interest Rates. We compute implied interest rates embedded in the European put-call parity 
relation. Armed with option quotes, we calculate separate lending and borrowing interest returns 
from put-call parity where we used the above future-based index. We assign, for each expiration 
date, a single lending and borrowing rate to each day, which is the median of all daily 
observations across all striking prices. We then use the average of those two interest rates as our 
daily spot rate for the particular time-to-expiration. Finally, we obtain the interpolated interest 
rates from the implied forward curve. If there is data missing, we assume that the spot rate curve 
can be extrapolated horizontally for the shorter and longer times-to-expiration. Again, some 
limited tests indicate that the results are not affected by the exact choice of the interest rate.  
Options with adjusted Moneyness and constant Maturity. It is important to use options with 
adjusted moneyness and constant maturity since our test statistics involve the conditional 
covariance matrix of option pricing errors. If the maturity of the options were not constant over 
time, then the conditional covariance matrix of the pricing errors would be time varying, too. 
This would require additional exogenous assumptions on the structure of the covariance matrix 
and the estimation of several additional parameters, which could lead to additional estimation 
error in our test statistics. 
In our data set, all puts are translated into calls using European put-call parity. Then, we compute 
the implied volatilities where we use the Black-Scholes formula as a translation device only. We 
then adjust throughout each day for the movement of the stock price by assuming that the 
implied volatilities are independent of the underlying stock price. Then, we pick the stock price 
closest to 12 pm as our daily stock price and value all options from throughout the day as if they 
were call options with the implied volatilities measured above and struck at the moneyness level 
measured above. We do not eliminate any daily observations due to their level of moneyness.  
Arbitrage Violations. In the process of setting up the database, we check for a number of errors, 
which might have been contained in the original minute-by-minute transaction level data. We 
eliminate a few obvious data-entry errors as well as a few quotes with excessive spreads -- more 
than 200 cents for options and 20 cents for futures. General arbitrage violations are eliminated 
from the data set. Within each minute we keep the largest set of option quotes which does not 
violate:  
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We also check for violations of vertical and butterfly spreads. 
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