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Abstract

This paper develops and compares two theories of strategic behavior of profes-

sional forecasters. The first theory posits that forecasters compete in a forecasting

contest with pre-specified rules. In equilibrium of a winner-take-all contest, forecasts

are excessively differentiated. According to the alternative reputational cheap talk

theory, forecasters aim at convincing the market that they are well informed. The

market evaluates their forecasting talent on the basis of the forecasts and the real-

ized state. If the market expects forecaster honesty, forecasts are shaded toward the

prior mean. With correct market expectations, equilibrium forecasts are imprecise

but not shaded.
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The best is the enemy of the good. (Voltaire)

1. Introduction

Professional forecasts guide market participants and inform their expectations about fu-

ture economic conditions. Given the importance of this role and the potential rewards

of accurate forecasting, one might expect that professional forecasters maximize their ac-

curacy by truthfully releasing all their information.1 As reported by Keane and Runkle

(1998), “since financial analysts’ livelihoods depend on the accuracy of their forecasts [...]

we can safely argue that these numbers accurately measure the analysts’ expectations.”

However, a number of commentators have suggested the contrary, arguing that forecast-

ers might strategically misreport their information, even when they are not interested in

manipulating the investment decisions of their target audience.

As argued for example by Croushore (1997), “some [survey] participants might shade

their forecasts more toward the consensus (to avoid unfavorable publicity when wrong),

while others might make unusually bold forecasts, hoping to stand out from the crowd.”

Following the recent evidence of the relevance of microeconomic incentives in forecasting

(e.g., Graham (1999), Hong, Kubik and Solomon (2000), Lamont (2002), Welch (2000),

Zitzewitz (2001a)), this paper develops the positive theory of strategic behavior of profes-

sional forecasters. As professional forecasts are often used as proxies for the unobservable

expectations of market participants, our results have also implications for empirical tests

of investment behavior.

To understand the basic ingredients of our model, consider Figure 1 depicting yearly

GNP growth forecasts and realizations2 during the period 1972-1993 from the Business

Week Investment Outlook, as collected by Lamont.3 The plot immediately reveals that

there is substantial dispersion in the individual forecasts. Hence, our model assumes that

forecasters are privately informed. Forecasts are more dispersed in some years, e.g., 1974

(in the aftermath of the oil shock), 1982-3, and 1991. To account for the variation in the

forecast dispersion across years, the quality of private information and the precision of the

prior are parameters in our model.

1Those that are successful in predicting the future are rewarded by markets and governments alike. For
example, both Alan Greenspan and Laurence Meyer practiced economic forecasting before being appointed
to the Board of Governors of the Federal Reserve System.

2A perennial problem in evaluating forecasts is that data on the realized values are revised over time.
See Section 6.4 for more on this.

3This data is taken from a survey of professional forecasters run at the end of each year by Business
Week. The economists belonging to the panel are asked to predict output, inflation, and unemployment
for the subsequent year.
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Figure 1. The circles represent individual forecasts of annual real GNP growth rate
from the Business Week Investment Outlook survey for the period 1972-1993 and the

connected triangles the realized values. Data source: Lamont (2002).

We formulate two distinct theories of strategic forecasting and contrast them with the

benchmark case of non-strategic forecasting. In order to facilitate the comparison, we

adopt a unified and tractable statistical model. The state has a normal prior distribution

and the signals of the forecasters are normally distributed around the state. After the

forecasters simultaneously release their forecasts, the state is publicly observed. In order to

isolate the effect of the professional objectives of forecasters predicting the future evolution

of economic or financial variables, we assume that these forecasters cannot affect the

distribution of the state variable and do not care about the investment decisions taken on

the basis of their forecasts. We therefore abstract from the additional strategic incentives

relevant to partisan forecasters, whose payoff instead depends on the investment decisions

made on the basis of their forecasts.4

Consider the benchmark case of a forecaster rewarded according to the absolute accu-

racy of the prediction. A non-strategic forecaster reports honestly the posterior expectation
4For empirical evidence of partisan bias of equity analysts see e.g. Michaely and Womack (1999) and

Hong and Kubik (2003) and references therein and for theoretical investigations see e.g. Morgan and
Stocken (2003). The study of the interaction of professional and partisan objectives is left to future
research.
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of the state, a weighted average of the signal and the prior mean. When the state turns out

to be above the prior mean, the honest forecast tends to be lower than the realized state.

This empirically documented negative correlation of the forecast errors with the realized

state is often taken as evidence of herd behavior by the popular press. The academic em-

pirical literature avoids this misconception and focuses instead on the correlation between

forecasts and their errors.5 This correlation is zero for “rational” forecasts in Muth’s (1961)

sense, because they are equal to conditional expectations.6 The two theories of strategic

forecasting developed here have different implications for this correlation.

Our first theory of strategic behavior posits that forecasters compete in a forecasting

contest with pre-specified rules.7 Forecasters are often ranked by their relative accuracy, see

e.g. the semi-annual Wall Street Journal Forecasting Survey (macroeconomic variables),

WSJ All Star Analysts (earnings) andWSJ Best on the Street (stock picking) competition.8

We find that reporting the best predictor on the state (the posterior expectation conditional

on the signal observed) is not an equilibrium in the contest. With an infinite number of

forecasters, the equilibrium strikes a balance between two contrasting forces. First, an

individual forecaster has an incentive to report the honest forecast, which is most likely to

be on the mark. Second, one gains from moving away from the prior because the number

of forecasters correctly guessing the state is lower the farther the state is from the prior

mean. In equilibrium, forecasters differentiate their prediction from those of competitors

by putting greater weight on their private signal than they would in an honest report of

the posterior expectation. Yet, rational market participants can in principle invert the

equilibrium strategy to recover the forecasters’ information thereby constructing accurate

expectations on the state.

According to the reputational cheap talk theory, forecasters wish to foster their rep-

utation for being well informed.9 In this second theory, forecasts and realized state are

used by the market to evaluate forecasting talent.10 Somewhat counter-intuitively, honest

5A number of studies have used professional forecasts to test the rational expectation hypothesis (e.g.,
Keane and Runkle (1990) and (1998)).

6Otherwise, a revised forecast would be more accurate.
7See Section 4 for a discussion of the connection with Laster, Bennett and Geoum (1999) and other

related Hotelling location models.
8See Stekler (1987) for an early study of the relative accuracy of forecasts. A number of rankings

are available on line. For example, Validea (www.validea.com), BigTipper.com (www.bigtipper.com)
and BulldogResearch.com (www.bulldogresearch.com) track stock recommendations made by Wall Street
professionals and then rank the analysts based on the performance of their selections. Forecasting contests
are run also for non-economic variables (see e.g., the National Collegiate Weather Forecasting Contest).

9See Section 5 for a discussion of the connection with Holmström (1999), Scharfstein and Stein (1990),
and other reputational models.
10Forecasters are assumed not to have private information about the talent prior to receiving the signal.

The importance of this assumption is discussed at the end of Section 5.2.
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forecasting cannot occur in equilibrium. Since the conditional expectation lies between

the signal and the prior mean, the state is expected to be closer to the prior than the

private signal is. But because the signals of more talented forecasters are on average closer

to the state, there is an incentive to pretend to have received a signal equal to the pos-

terior expectation of the state. When the market naively expects honest forecasting, the

best deviation is to release a forecast even closer to the prior mean. This accords with

the intuitive implication of career concerns suggested by recent empirical work. However,

in equilibrium, the market must have rational expectations regarding the forecasters’ be-

havior. The incentive to herd on the prior is self defeating. Equilibrium forecasts are

not shaded, but are systematically less precise than if forecasters were not strategic. The

analysts’ desire to be perceived as good forecasters turns them into poor forecasters.11

We derive implications on how the forecast dispersion varies with the quality of private

information and precision of the prior in the different models. In the symmetric equilib-

rium of our forecasting contest the forecast error is positively correlated with the forecast,

while the correlation is negative in the reputational deviation. The reputational equilib-

rium forecast may be uncorrelated with its error, but is not efficient. The theory is also

extended to allow for ex post innovation on the state. According to the empirical results

of Zitzewitz (2001a), forecast errors exhibit a strong positive correlation with the forecast

errors, consistently with our contest theory.

We believe that forecasting is a particularly apt laboratory for improving our under-

standing of strategic communication and positioning by non-partisan informed agents.

Our theorizing is inspired and disciplined by the availability of data and the richness of

institutional details, and can lead to further empirical testing. The insights gained in the

analysis can be helpful in shedding light on other social and economic problems in which

agents want to appear to be well informed, such as the choice of research topic by scientists.

The paper is organized as follows. Section 2 sets up the statistical model. Section 3

develops the benchmark case of honest forecasting. Section 4 introduces the forecasting

contest theory, Section 5 the reputational cheap talk theory. Section 6 compares the

predictions of the different theories and develops some extensions. Section 7 concludes by

summarizing the results and discussing avenues for future research.

11Ironically, The Economist (“Dustmen as Economic Gurus,” 3 June 1995) reports the surprisingly good
performance of a sample of London garbagemen in forecasting key economic variables.
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2. Information

Our model features n forecasters who simultaneously issue forecasts on an uncertain state

of the world. It is common prior belief that the state x is normally distributed with mean

µ and precision ν, x ∼ N (µ, 1/ν), with p.d.f. q (x) =
p
ν/2π exp

¡−ν (x− µ)2 /2
¢
. Each

forecaster i observes the private signal si = x + εi. Conditionally on state x, signals si
are assumed to be independently normally distributed with mean x and precisions τ i,

si|x ∼ N (x, 1/τ i), with the p.d.f. gi(si|x) =
p
τ i/2π exp

¡−τ i (si − x)2 /2
¢
. Forecaster

i’s observation of signal si leads to a normal posterior belief on the state with mean

E [x|si] = (τ isi + νµ) / (τ i + ν) and precision τ i + ν (cf. DeGroot (1970)). The p.d.f. of

this posterior distribution is denoted by qi(x|si). After the forecasts are released, the state
of the world x is realized and observed perfectly.12

It is natural to allow forecasters to have private information about the state, because

actual forecasts are typically dispersed. Forecasters who share a common prior belief and

are given the same (public) information without private information should make identical

forecasts if they honestly report their expectations.13 Forecast dispersion could also be

due to heterogenous prior beliefs or different models. According to industry participants,

forecasters seem to have access to the same pool of public data, but interpret it differently

depending on their model.14 In any case, forecasters have posterior beliefs that we assume

to be private. These can be reinterpreted as deriving from private information of the model

used to process the same public information. The observed forecast dispersion might also

be the outcome of strategic behavior. In order not to introduce a bias against honest

forecasting, we posit that forecasters are endowed with some private information about

the state.15

For simplicity, we have assumed that forecasts have no impact on the distribution of

the state or on the amount of information observed about its realization. Our model can

be thus applied to situations in which the state cannot be affected by the forecasts and

yet can be meaningfully forecasted and later observed.16

12Section 6.4 extends the model to allow for noisy observation of the state or, equivalently, ex-post
innovation on the state.
13In their classic study on the rationality of forecasts using data from the NBER-ASA survey of pro-

fessional forecasters (later to be called the Survey of Professional Forecasters), Keane and Runkle (1990)
found that differences in individual forecasts cannot be explained by publicly available information. They
inferred that differences in forecasts are due to asymmetric information, but this conclusion rests on the
maintained assumption of honest forecasting.
14Indeed, Kandel and Pearson (1995) and Kandel and Zilberfarb (1999) have found empirical support

for heterogeneous processing of public information.
15After all, the presence of heterogeneous private information is the very reason for the market to reward

forecasters according to their (absolute or relative) accuracy.
16Additional strategic incentives would be present if forecasters were concerned with the effect of their
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To simplify the presentation, our theories are developed under the assumption that

the state is uni-dimensional, so that forecasters are evaluated on the basis of a single

forecast of one variable. In some applications, forecasters are evaluated on the basis of

several contemporaneous forecasts or a whole record of past forecasts. To better capture

contests and evaluations that examine a number of different variables, our normal learning

model can be extended to such a multi-variate setting. As explained in Sections 4 and 5,

the strategic distortions identified here hold more generally with multi-dimensional states,

signals and forecasts.

3. Honest Forecasting

Forecasters are presumed honest, unless proven strategic. As forcefully argued by Keane

and Runkle (1990), “... professional forecasters ... have an economic incentive to be

accurate. Because these professionals report to the survey the same forecasts that they

sell on to the market, their survey responses provide a reasonably accurate measure of

their expectations.”

Our benchmark forecast is the honest report of the Bayesian posterior expectation,

hi(si) = E [x|si] = τ i
τ i + ν

si +
ν

τ i + ν
µ, (3.1)

as assumed by most empirical investigations. In the normal model the posterior expecta-

tion minimizes the mean of any symmetric function of the forecast error, such as the mean

squared error (cf. Bhattacharya and Pfleiderer (1985)).17 The honest forecast incorporates

all available evidence si, and can already offer some explanations for the data. Forecasts

are dispersed due to private information. Forecasts are more dispersed and less accurate

in years with relatively little public information.18

forecasts on the state, as is natural in a number of macroeconomic contexts. However, in the presence of
many forecasters each of them individually would have a negligible influence on the state variable. The
more general case in which forecasts affect the distribution of the state variable is left for future research.
17Motivated mainly by the needs of accurate probabilistic weather forecasts, a large literature in mete-

orology and statistics studies how to induce forecasters to form and state correct subjective probabilities
(cf. Dawid’s (1986) overview). Statisticians have developed scoring rules that elicit truthful information
and avoid misrepresentation of a forecaster’s beliefs (see e.g. de Finetti (1965) and Savage (1971)). In this
paper we instead adopt a positive approach and characterize strategic manipulation of forecasts.
18This is consistent with a finding reported by Zarnowitz and Lambros (1987) on the ASA-NBER

survey of professional forecasters. In addition to point forecasts, that survey initially asked forecasters to
report probability distributions. Zarnowitz and Lambros documented that forecast dispersion is positively
correlated with a measure of forecast uncertainty. Likewise, in the data of our Figure 1, a regression of
the standard deviation of the forecasts on the absolute error of the consensus forecast, we find a coefficient
of .145 with standard error .063. Thus, there is a significant negative correlation between accuracy and
dispersion.
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An important feature of the honest Bayesian forecast hi driving our theoretical analyses

below, is that hi is a biased forecast in the statistical sense. With probability one we have

x 6= µ, and therefore E [hi|x] 6= x. In fact, E [hi|x] always lies between x and µ.19 Even

with honest reporting, the forecast error hi − x is negatively correlated with x (since

E[(hi − x)x] = E[(τ iεi + ν (µ− x))x/ (τ i + ν)] = −1/ (τ i + ν) < 0).

Nevertheless, the honest forecast hi(si) has the key statistical property of being uncorre-

lated with its forecast error hi(si)−x: E[E[x|si] (E[x|si]− x)] = E[E[E[x|si] (E[x|si]− x) |si]] =
E[E[x|si]E[E[x|si]−x|si]] = 0. This orthogonality property states that the honest forecast
does not carry information about its forecast error. A large body of empirical literature on

rational expectations (e.g., Keane and Runkle (1990) and (1998)) tests for orthogonality

to see if forecasters are rational. Orthogonality may seem a necessary property of rational

forecasts, but this is not the case. Asymmetric scoring rules generally result in forecasts

violating the property, as noted by Granger (1969) and Zellner (1986).20 In our model we

instead maintain symmetry and examine whether rational players make non-orthogonal

forecasts for strategic reasons.

As can also be verified with the data used in Figure 1, forecasts tend to be less volatile

than realizations. This could suggest to some naive observers that forecasters herd. In

particular, forecasters often fall short of the mark in years with extreme growth rates. But

the realization x = hi+(x− hi) is more volatile than any orthogonal forecast hi when the

forecasters’ information is noisy, V [x] = V [hi] + V [x− hi] > V [hi]. This is almost always

the case for macroeconomic, earnings, and weather forecasts.

Consider briefly classical statistics, i.e. forecasting in the absence of prior information.

Forecaster i’s maximum likelihood estimator (MLE), maximizing gi (si|xi) over xi, would
be si. Since E[si|x] = x, the MLE forecast is unbiased and the forecast error εi is indepen-

dent of x. However, the maximum likelihood forecast violates the orthogonality property,

since E[si(si − x)] = E[(x+ εi) εi] = 1/τ i > 0. Note that the MLE can be equivalently

seen as resulting from Bayesian updating when the prior distribution on the state is the

improper uniform distribution on the real line. We have chosen to posit a normal prior on

x to reflect that forecasters typically share some information about the variable to be pre-

dicted. The presence of prior information drives the results of the two theories developed

19In its widely circulated World Economic Outlook, even the International Monetary Fund (2001)
laments that forecasters typically fall short of predicting changes in macroeconomic performance (cf.
pages 6—8). In particular, forecasts are often too optimistic when the economy enters a recession, and
pessimistic when the economy expands. It is misleading to interpret this as an indication that economic
forecasters use their information inefficiently.
20Granger (1999) defines generalized forecast errors for any given loss function, and notes that these

errors satisfy orthogonality.
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below.21

4. Forecasting Contest Theory

Forecasters often participate in contests that reward the best performers.22 It is natural

to investigate whether the competitive pressure from other forecasters provides the right

incentives to forecast honestly. This section develops a positive theory of a symmetric

simultaneous winner-take-all contest with a large number of forecasters. In our forecasting

contest, the participating forecasters simultaneously submit individual forecasts based on

their private information. A prize is awarded to the forecaster whose forecast is closest to

the realized state.

There is remarkably little previous work on forecasters’ behavior in contests. Steele and

Zidek (1980) were the first to study a sequential forecasting contest among two privately

informed forecasters. They assumed away game-theoretic considerations by supposing

truthful reporting by the first forecaster. After observing the first forecast, the second

guesser faces a simple decision problem and has a clear advantage.23 Indeed, Kutsoati and

Bernhardt (2000) have empirically confirmed that the financial analysts who release late

earning forecasts tend to overshoot the consensus forecast in the direction of their private

information. Laster, Bennett and Geoum (1999) studied a winner-take-all simultaneous

forecasting contest in which all forecasters share the same (public) information. We in-

stead allow forecasters to have private information on the state and cast winner-take-all

forecasting contests as problems of strategic location.24 A forecaster’s payoff is equal to

the probability that the realized state is closer to her forecast than to any other forecast.

This probability of falling closest to the state is equivalent to the market share or fraction

of votes to be maximized in Hotelling’s (1929) pure location game.25

21The importance of the role of public information is validated by a number of empirical studies. For
example, Welch (2000) finds evidence that security analysts are strongly influenced by the prevailing
consensus.
22In the much publicized Wall Street Journal semi-annual forecasting contest the most accurate fore-

caster over the previous six months is typically rewarded with a writeup. Even in the absence of monetary
prizes, the publicity effect to the winner can be large.
23Steele and Zidek and some follow-up papers focused on the characterization of the second guesser’s

probability of winning.
24There would be no reason to reward accurate forecasters in the absence of heterogeneous private

information. It turns out that the symmetric equilibrium in the forecasting contest is more appealing once
private information is introduced, being in pure rather than mixed strategies.
25An extensive literature in economics and political science studies versions of this game without private

information. As it is well known (cf. Osborne and Pitchik (1986)), equilibria in this classic game crucially
depend on the number of players and often involve mixed strategies. Our forecasting contest theory
extends Hotelling’s simultaneous location game to scenarios where the forecasters (firms or politicians)
have private information on the distribution of the state (location of consumers or voters).
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4.1. Model

The forecasting contest game proceeds as follows. First, each forecaster observes the

private signal si. Assume that the signals of all the forecasters are of common precision

τ .26 Second, the forecasters simultaneously submit their forecasts ci. Third, the true state

x is publicly observed and the forecaster whose forecast ci turns out to be closest to x wins

a prize proportional to the total number of forecasters participating in the contest. In the

case of a tie, all winners share the prize evenly.

To play this game, forecasters form conjectures about the distribution of the opponents’

forecasts and calculate their best response. Payoffs to forecaster i can then be defined

as follows. Suppose forecaster i receives signal si and conjectures that the opponents’

forecasts are distributed according to the conditional density γ(c|x, si) on the real line. By
conditional independence of the signals, x is sufficient for si so that we can write γ(c|x).
Suppose forecaster i submits the forecast ci. The forecasts of the many opponents are

dense on the support of γ, so forecaster i wins if and only if x = ci. This happens with

chance qi(ci|si). Conditional on winning, the size of the prize obtained by each player is
1/γ(ci|ci). In conclusion, the expected payoff to forecaster i when releasing forecast ci is:

Ui(ci|si) = qi(ci|si)
γ(ci|ci) . (4.1)

A companion paper (Ottaviani and Sørensen (2002)) provides a formal derivation of this

payoff function as the limit of payoff functions when the number of (identical) forecasters

tends to infinity.27

4.2. Deviation

We now show that honest forecasting is not an equilibrium. Consider a single forecaster

with signal s competing against forecasters who are all reporting their honest forecasts.

Without loss of generality, let s > µ as depicted in Figure 2. What is the best reply for

such a forecaster?

According to (4.1), the best forecast maximizes the ratio between the probability of

winning the first prize and the number of forecasters with whom this prize is shared. First,

the probability of winning conditional on signal s is equal to the posterior belief on the

state x|s, the normal distribution centered at E[x|s] and depicted on the right in Figure
26This symmetry assumption can be compatible with the fact that forecasters have unobserved hetero-

geneous forecasting abilities – see Section 5.
27Numerical simulations confirm that the equilibrium of the limit game is a good approximation of the

equilibria in games with a large number of forecasters.
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2. Second, the curve on the left in Figure 2 depicts γ(x|x), the denominator of the ratio
maximized by the forecaster. This represents how the mass of forecasters with correct

forecasts changes as a function of the state x. The shape of γ(x|x) depends on the weight
assigned by the other forecasters to their signal. Since the other forecasters put a positive

weight on the prior mean, γ(x|x) is bell shaped around µ.28 As clear from the graphical

illustration, the probability of winning is flat at the honest E[x|s], while the frequency of
correct forecasts is decreasing in the distance of the state x from the prior mean µ. At the

posterior expectation it is then optimal to move away from prior mean toward the private

signal, as the second-order loss resulting from lower probability of winning is more than

compensated by the first-order gain due to reduced competition:29

-

6

Others
γ(x|x)

Posterior
q(x|s)

µ E[x|s] s
x

Figure 2. Optimal deviation in the forecasting contest model.

Proposition 1 (Exaggeration in Contest Deviation) If all other forecasters are fore-
casting honestly by applying the strategy c(s) = (τs+ νµ) / (τ + ν), the contest drives

forecaster i to exaggerate.

The optimal deviation forecast is a weighted average of si and µ, but the weight on

µ is lower than in the honest forecast. The contest deviation forecast is then positively

correlated with its error: when x is above µ the forecast is too high on average. More

generally, it is optimal to bias the forecast against the prior mean whenever the other

forecasters use a common strategy consisting of a convex combination of the prior and the

signal received.
28It is worth noticing that γ(x|x) is not a probability density function. For example, when the other

forecasters put zero weight on the prior (for instance because they have perfectly informative signals),
γ(x|x) is constantly equal to 1.
29If x and s were multivariate Normal, a picture similar to Figure 2 would arise in the appropriate multi-

dimensional space, with γ (x|x) multivariate bell-shaped around µ and the posterior q (x|s) multivariate
bell-shaped around E[x|s].Proposition 1 then continues to hold.
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4.3. Equilibrium

Having established that honest forecasting is not compatible with equilibrium, we are now

ready to characterize a symmetric Bayes-Nash equilibrium.30 At such an equilibrium,

each forecaster applies for every signal si the best response to her conjecture about the

opponents’ distribution γ (c|x), and this conjecture is correctly derived from the strategies
actually used.

Proposition 2 (Exaggeration in Contest Equilibrium) For any values of ν and τ >

0 the contest has a unique symmetric linear equilibrium c(s) = Cs + (1− C)µ with

C ∈ [0, 1]. Forecasters put more weight on their private information than according to the
conditional expectation: C =

¡√
τ 2 + 4ντ − τ

¢
/2ν > τ/ (ν + τ).

In the absence of private information (τ = 0), the only symmetric equilibrium is in

mixed strategies as in Laster, Bennett and Geoum (1999) and Osborne and Pitchik (1986),

who find that with infinitely many symmetrically informed players the distribution of equi-

librium locations replicates the common prior distribution about x. The addition of private

information has the desirable effect of inducing a symmetric location equilibrium in pure

rather than mixed strategies. Forecasters differentiate themselves from their competitors

by putting excessive weight on their signals. As in the honest forecast, the weight on the

signal is increasing in τ and decreasing in ν. For all values of ν and τ , this weight is larger

than in the honest forecast, so the contest gives an incentive to move away from µ.31 The

symmetric equilibrium strikes a balance: opponents disperse themselves to such an extent

that forecaster i is happy to reply precisely with the same dispersion. The equilibrium

forecast is positively correlated with its error.

The contest equilibrium satisfies C < 1, so the forecast is not as extreme as the

maximum likelihood estimate (MLE). However, the MLE results in the contest when the

prior on the state x is improper, i.e. uniform on the real line. If the opponents forecast

c = s, their forecasts are normally distributed around x, and the term γ (c|c) is constant
in c. Forecaster i’s best reply will then be ci = si, since this constant term does not

distort the forecaster’s problem. Truthtelling by all forecasters is then an equilibrium in

the absence of public information. The contest distortion thus depends on the presence of

prior information that anchors the forecasts of the opponents around µ. The tendency of

opponents to cluster around the prior mean drives forecasters away from it.

30We take a positive approach and do not search for asymmetric or non-linear equilibria.
31The equilibrium in linear strategies exists for all parameter values. This is slightly surprising since a

best reply to honesty did not exist for all parameter values. Intuitively, with increased weight on their
signal, the opponents are less concentrated around µ, mitigating the incentive to move away from µ.
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5. Reputational Cheap Talk Theory

While in a forecasting contest, competition takes place according to rules clearly set out in

advance, markets often reward successful performance in subtler and less structured ways.

For example, the labor and financial markets perform informal (or subjective) evaluations

of the forecasters’ track record and performance. This section develops a positive theory of

forecasting in which forecasters aim to impress the market with their talent. It is convenient

to think of the market as performing the passive role of an evaluator. The market evaluates

a forecaster’s quality of information (or talent) by comparing the forecast with the ex-post

realization of the state.32 Instead of committing ex ante to a particular reward scheme,

the market optimally evaluates ex post the forecasting talent based on all the information

available. Forecasters with a better reputation can provide more valuable information and

can therefore command higher compensation. To foster their careers, forecasters want to

develop a good reputation for accuracy.

The first reputational cheap talk game was formulated in Scharfstein and Stein’s (1990)

seminal paper on reputational herding.33 While Scharfstein and Stein assumed that better

informed forecasters have conditionally more correlated signals, we focus on the case with

conditionally independent signals and extend our model in Section 6.4 to allow for condi-

tional signal correlation.34 Reputational forecasting is a game of cheap talk (Crawford and

Sobel (1982)), since a forecaster’s payoff depends on the forecast released only indirectly

through the market’s evaluation. The forecaster plays the role of sender and the market

is the receiver.

5.1. Model

The structure of our basic statistical model needs to be extended to introduce a latent

parameter representing the unknown talent ti > 0 of forecaster i. We assume that fore-

casters and the market share a common non-degenerate prior belief pi(ti) on forecaster

i’s talent, with all the talents ti and the state x statistically independent. It remains

the common prior that x ∼ N (µ, 1/ν). Conditionally on state x and talent ti, signal si
32In Zwiebel’s (1995) model ability adds instead to the productivity of the agent, rather than parame-

terizing the quality of information about the state.
33Earlier, Holmström (1999) in the second part of his paper analyzed the behavior of an agent who

aims at convincing the market that she is well informed in a situation in which the decision made affects
whether the state is observed by the market or not. We instead follow Scharfstein and Stein by assuming
that the forecasts influence neither the realization nor the observability of the state of the world.
34See Ottaviani and Sørensen (2000) on the connection of the reputational herding model of Scharfstein

and Stein (1990) and Trueman (1994) with the statistical herding model of Bikhchandani, Hirshleifer and
Welch (1992) and Banerjee (1992).
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is distributed with p.d.f. g̃ (si|x, ti). We assume that there exists a p.d.f. ĝ on [0,∞),
such that g̃ (si|x, ti) = tiĝ (ti|si − x|) /2 – then we have a symmetric location experi-

ment where ti is the scale parameter. Since we are extending our model, we keep the

assumption that si|x ∼ N (x, 1/τ). The primitives ĝ and p are thus restricted to satisfy

gi(si|x) =
R∞
0

g̃ (si|x, ti) pi (ti) dti. We naturally assume that a greater forecasting talent
is associated with smaller signal errors, i.e. that the likelihood ratio g̃ (si|x, ti) /g̃ (si|x, t0i)
is increasing in |si − x| when ti < t0i. As pointed out in Example 3.3 of Lehmann (1955),

this is equivalent to the log-concavity in a of ĝ (ea).35 Straightforward algebra shows that

both conditions reduce to monotonicity of the elasticity (εĝ0 (ε) /ĝ (ε) is decreasing in ε).36

We further simplify the problem by eliminating any form of payoff interaction among

the forecasters. First, conditionally on x and t1, . . . , tn, the n forecasters’ private signals

si are conditionally independent, so that forecaster i cannot signal anything to the market

about tj for j 6= i. Second, forecaster i’s objective depends solely on the posterior beliefs

about ti, regardless of the posterior beliefs about tj.37 With these assumptions there is no

strategic interaction among forecasters and so the problem of each forecaster is separable

from that of the others. For the remainder of this section, we will then focus on a single

forecaster and remove the subscript i.

The reputational cheap talk game proceeds as follows. First, the forecaster observes

the private signal s. Second, the forecaster issues the forecast (or message) m. Third,

the true state x is observed by the market which uses (m,x) to update the belief p (t)

about the forecaster’s talent t.38 The forecast m thus serves the role of a signal sent to the

market about s, and the observation of additional information x allows for sorting. The

forecaster’s goal is to obtain a favorable updating on the precision, with the understanding

that the market rewards a good reputation.

To update the beliefs about the forecaster’s talent, the evaluator applies a conjecture

on the forecaster’s strategy mapping s into m and derives the distribution of m condi-

35As hinted by Lehmann (1955), if ĝ is decreasing then the assumption is weaker than log-concavity
of ĝ. Under this stronger property, Lehmann’s (1988) Theorem 5.3 would guarantee that the talent ti
parameterizes forecaster i’s Blackwell effectiveness in the class of monotone decision procedures.
36For an example of distributions satisfying our assumptions, let ĝ (ε) = 2K1 exp

¡−ε4/12¢ implying
that s|x, t has an exponential power distribution (Box and Tiao (1973), page 517) with p.d.f. g̃ (s|x, t) =
K1t exp

³
−t4 (s− x)

4
/12
´
, and let t−4 follow a Gamma distribution such that t > 0 has p.d.f. p (t) =

K2τ
3/2t−4 exp

¡−3τ2t−4/4¢ . Appealing to the well-known p.d.f. of the inverse Gaussian distribution, it is
straightforward to find the normalizing constantsK1 andK2 and verify that g(s|x) = E[g̃ (s|x, t)]. Clearly,
log (ĝ (ε)) = log (2K1)− ε4/12 is concave and decreasing in ε, implying also log-concavity of ĝ (ea).
37See Ottaviani and Sørensen (2003) for an extension of the model to allow for relative reputational

concerns.
38In Prendergast and Stole’s (1996) reputational signaling model instead the state is not observed. See

Section 5.2 below for a more detailed discussion of the other differences with Prendergast and Stole.
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tional on x and t, denoted by ϕ (m|x, t). Bayes’ rule is then used by the evaluator to
calculate the posterior reputation p (t|m,x) = ϕ (m|t, x) p(t)/ϕ(m|x) where ϕ (m|x) =R∞
0

ϕ (m|t, x) p(t) dt. To model the forecaster’s preferences over posterior reputations, we
take a two-step von Neumann-Morgenstern formulation. We assume that the forecaster

correctly knows the ϕ function used by the evaluator, so that the forecaster can predict

how the posterior reputation is calculated. The utility of reputation p (t|m,x) is then given

by its expected value of the Bernoulli function u (t),39

W (m|x) ≡
Z ∞

0

u(t)p (t|m,x) dt. (5.1)

Since a signal with higher t is more valuable in all monotone decision problems, we

assume that u is strictly increasing. This implies that the market rewards more forecasters

with a (first-order stochastically) better reputation. When reporting the message m, the

forecaster does not yet know the state x, but believes it to be distributed according to

q (x|s). The forecaster then chooses the message m which maximizes the expected W ,

U(m|s) ≡
Z ∞

−∞
W (m|x)q (x|s) dx. (5.2)

Different messages might be differently appealing to a forecaster depending on the signal

received.

5.2. Deviation

In order to show that truthtelling cannot be an equilibrium, consider what happens when

the evaluator conjectures that the forecaster applies the benchmark honest strategy h (s).

A forecaster with signal s > µ believes that the state is concentrated around E [x|s], a
weighted average of the prior mean µ and the signal s represented in Figure 3. If the

forecaster were to honestly report h (s) = E [x|s], by inverting the strategy h (.) the mar-
ket would infer that the signal s is higher than E [x|s]. Note that the forecaster believes
that the state is distributed symmetrically and unimodally around the posterior expec-

tation. As proved formally below, signals closer to the state are better news about the

talent of a forecaster and so result in higher expected reputational payoff. The fore-

caster then wants to be perceived as having a signal ŝ equal to the posterior expectation

h (s) = E [x|s] on the state. We conclude that if the market naively believes that the
39This can be seen as a psychological game, in which the sender’s payoff depends on the receiver’s belief.

The payoff is equal to the expected value of a function over types evaluated using the posterior belief about
an individual’s type based on the information signaled in equilibrium. A formally similar expected utility
formulation has also been adopted in different contexts by Geanakoplos, Pearce and Stacchetti (1989) and
Bernheim (1995).
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forecast reflects truthfully the forecaster’s posterior expectation, the forecaster deviates

by reporting d (s) = h(h (s)) = E[x|ŝ = E[x|s]].40

-

6

Prior
N(µ, 1

ν
)

Posterior
N(E[x|s], 1

ν+τ
)

µ E[x|s] s
x

Figure 3. Optimal deviation in the reputational cheap talk model.

Another interpretation of the conservative deviation is based on the following logic.

A forecaster who receives a signal s above the prior mean µ, concludes that the average

forecast error E [ε|s] = ν (s− µ) / (τ + ν) is positive. The forecaster then optimally devi-

ates by removing this expected error from the true signal and so pretending to have signal

ŝ = s−E [ε|s] = E [x|s]. In this deviation, forecasters are biased towards the prior mean:41

Proposition 3 (Conservatism in Reputational Deviation) If the evaluator conjec-
tures honest forecasting h (s), the forecaster shades the forecast towards the prior mean

by reporting

d (s) = h (h (s)) =

µ
τ

τ + ν

¶2
s+

Ã
1−

µ
τ

τ + ν

¶2!
µ.

Note that if the signal is perfectly informative or the prior is improper, the posterior

expectation puts zero weight on the prior belief and so the inferred signal would be equal

to E [x|s]. In both these cases truthtelling is an equilibrium. Likewise, this theory relies
40In the more general case with x and si multivariate and univariate talent t, we can extend the model

by letting g̃ (si|x, ti) = tiĝ (ti||x− si||) /2. The property that signals closer to the state are better news
about the talent is retained. A picture similar to Figure 3 arises in the multi-dimensional space and
Proposition 3 continues to hold.
41This result holds regardless of the forecaster’s attitude toward risk. As seen in the proof of the

proposition, posterior reputations depend only on the inferred absolute forecast error |ε̂| and are ordered
in the sense of first order stochastic dominance. Equation (5.2) implies that forecasters are risk-neutral
with respect to lotteries over posterior reputations. Any forecaster with an increasing u therefore ranks
messages the same way, regardless of the second derivative of u.
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on the fact that the market sequentially rationally uses all the information available ex

post to evaluate the forecaster. To understand this, suppose that instead the market

were to commit ex ante to evaluate the forecaster by comparing the forecast m with the

realization x, according to the magnitude of the absolute distance |m− x|. In this case,
the forecaster’s optimal strategy is to honestly report m = E[x|s]. This is essentially the
default case of honest forecasting also explained in Section 2. Notice that this could be

reconciled with the reputational theory by positing that the market (incorrectly) believes

that the forecaster’s message is equal to her signal, m = s. It is perhaps quite natural that

when forecasters use a separating strategy, the market treats them as if m = s. But this

market conjecture remains incorrect in the presence of prior information, as the forecaster’s

best reply is m = E[x|s].
According to the proposition, sophisticated forecasters who are taken at face value

report conservative forecasts in order to fool the market into believing that they have more

accurate signals. The full characterization of the deviation incentive is relevant for several

purposes. Understanding the pressure to deviate from honesty provides intuition for the

impossibility of truthtelling and sheds light on out-of-equilibrium forces. If the forecaster

has mixed incentives, caring about both the reputation and the forecast accuracy, the

incentive to deviate from honesty persists, and we can expect to find conservativeness in

equilibrium. Finally, conservatism arises in real-world outcomes of communication when

the evaluator is not fully rational.42

The conservatism of Proposition 3 is a new insight into herding (as a disequilibrium

phenomenon). As the prior mean aggregates public information released previously by

others, forecasters tend to herd. Herd behavior is here driven by concerns for absolute

rather than relative accuracy. The content and logic of this result are different from the

finding of Scharfstein and Stein (1990). Scharfstein and Stein argued that reputational

herding requires the signals of better informed managers to be more correlated, condition-

ally on the state of the world. Our result instead does not rely on conditionally correlated

signals.

At a superficial level, our result is reminiscent of Prendergast’s (1993) “yes-men” effect,

but is driven by different forces and essentially goes in the opposite direction.43 While in

42For an example of reputational signaling with bounded rationality, see Zitzewitz’s (2001b) model where
the market uses a simple econometric technique to evaluate the quality of the information contained in
the forecasts. In his model forecasters have information on their own ability. As discussed below, this
introduces an incentive to exaggerate.
43Prendergast examines how to induce an agent to gather and report information. The agent has access

to two private signals, one on the state of the world and the other on the principal’s private signal on the
state. If the principal commits to a reward scheme based on the difference between the agent’s report and
the principal’s signal, the agent honestly reports her best estimate of the principal’s private signal. Then
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Prendergast’s model the agent does not sufficiently move away from her signal about the

principal’s signal, in our model the agent does not move away from the prior mean. By

identifying the principal’s signal with the ex-post (noisy) realization of the state, it is seen

that Prendergast’s deviation report is biased toward the state, rather than the prior. As

shown in the next section, also in our model the incentive to mis-report is self defeating.

In both models, in equilibrium the agent cannot transmit all her information.

The incentive to deviate towards the prior relies on the assumption that forecasters

do not know more than the evaluator about their forecasting talent (a.k.a. ability).44 A

forecaster who instead has private information about her own ability, will try to signal

it. Since the posterior expectation with better information is further away from the prior

mean, the incentive to signal ability generates an additional force pushing in the opposite

direction to the one identified in Proposition 3.45 The tendency to put excessive weight

on the private signal is isolated by Prendergast and Stole’s (1996) managerial reputational

signaling model without ex-post information about the state. When evaluating forecasters,

the market has instead access to additional information about the state, in the form of

ex-post realization or contemporaneous forecasts of others. The addition of such ex-post

information introduces the new conservatism effect isolated in Proposition 3.46 Overall,

concerns for absolute accuracy drive forecasters to be conservative if they do not know

their ability, but to exaggerate if they know it well enough.47

5.3. Equilibrium

According to Proposition 3, honest forecasting is incompatible with equilibrium. Since this

is a cheap talk game, ruling out truthtelling implies that there cannot be any fully sepa-

rating equilibrium. By definition, in a fully separating equilibrium, the strategy mapping

the agent’s report contains information from her two sources, and the principal can extract only part of
the agent’s direct signal about the state.
44This assumption allowed us to simplify the analysis, but is questionable in a dynamic setting since

forecasters would learn more about their precision than the evaluator. Analysis of the resulting two-
dimensional signaling problem is sensibly more involved. Preliminary investigations show that our con-
servatism result is robust to the introduction of small amounts of private information on own ability. See
our companion paper (Ottaviani and Sørensen (2003)) for more on this.
45Unconditionally on the state, better informed agents have more variable posterior expectations. The

variance of the honest forecast unconditional on the state, V [h] = τ/ (ν (τ + ν)), increases in τ .
46Exaggeration to signal own ability is also robust to the introduction of a small amount of ex-post

information about the state. Trueman (1994) and Zitzewitz (2001b) exhibit exaggeration to signal own
forecasting ability in the presence of ex-post information.
47As also suggested by Avery and Chevalier (1999), if younger managers have little private information

about their own ability, they should have a tendency to be conservative; older managers would instead
exaggerate, being more confident about their ability. Notice the contrast with Prendergast and Stole’s
(1996) prediction of impetuous youngsters and jaded old-timers when the same manager privately informed
about own ability makes repeated observable decisions with a constant and unobserved state.
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signals into forecasts can be inverted. As before, the evaluator infers the signal through

inversion of the strategy, but the forecaster with signal s then wishes to deviate to the

forecast corresponding to signal s0 = E[x|s], which is different from s whenever s 6= µ.48

Non-existence of a fully separating equilibrium is not a particularly surprising finding

in a cheap-talk setting. Another common property of cheap-talk games is that there exists

an equilibrium with complete pooling. In such a babbling equilibrium, the forecaster issues

the same message m regardless of the signal received, and any message received by the

evaluator is interpreted as carrying no information about the signal. More generally, not all

information is conveyed to the evaluator. Equilibrium forecasting must necessarily involve

some degree of pooling (or bunching) of signals into messages.

Due to the cheap talk nature of the game, the actual language used to send equilib-

rium messages is indeterminate. But the market can easily translate message m into the

best estimate conditionally on m, namely E[x|m]. So, the forecaster is effectively com-
municating E[x|m] to the evaluator. Being a conditional expectation of x, this forecast
is uncorrelated with its error. In this sense, the reputational equilibrium forecast satisfies

the orthogonality property. We conclude:

Proposition 4 (Coarseness in Reputational Equilibrium) There is no reputational
cheap talk equilibrium with full revelation of information. Any equilibrium can be defined

with a language such that the forecast has the orthogonality property.

Because of the endogenous coarseness of the message, forecaster can communicate only

part of the information about the state x. Additional information losses can result in

dynamic extensions of the model, consistently with what observed by Welch (2000). Note

that some information about the forecaster’s talent t is also lost. This in turn implies

an additional loss of information about future states of the world, because more precise

information on t would be useful to assess the value of future forecasts from the same

individual.

We now show by example that there is always a partially separating equilibrium in

which some information is conveyed. This equilibrium involves a binary forecasting strat-

egy, whereby the forecaster reports a high message mH whenever the signal s weakly

exceeds a threshold signal and a low message mL otherwise. The binary strategy in this

48In the presence of commitment or bounded rationality, the incentive to deviate can instead persist
in equilibrium. The importance of commitment is illustrated by the predictions obtained in the model
of Prendergast and Stole (1996), where the decision is delegated to the informed agent with reputational
concerns. For an example of reputational signaling with bounded rationality, see Zitzewitz’s (2001b) model
where the market uses a simple econometric technique to evaluate the quality of the information contained
in the forecasts.
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equilibrium is symmetric, with threshold signal equal to µ. Expressed in the natural lan-

guage that identifies messages with their meaning understood in equilibrium, we have

mL = E[x|s < µ] and mH = E[x|s ≥ µ]. A forecaster is indifferent between these two

messages when receiving signal µ. When observing a higher signal s > µ, the forecaster

expects high values of the state to be realized and so prefers to send message mH rather

than mL in order to indicate a positive signal, implying smaller average errors:

Proposition 5 (Binary Reputational Equilibrium) In the reputational cheap talk
model there exists a symmetric binary equilibrium, and this is the unique equilibrium

in binary strategies.

The reputational cheap talk theory can be extended to allow for private information of

forecasting ability, mixed objectives, and concern for relative reputation among forecasters.

We refer to the companion paper Ottaviani and Sørensen (2003) for a broader theoretical

analysis and discussion of the empirical literature. Rather than performing direct tests of

reputational cheap talk, most of the existing empirical literature provides indirect evidence

of reputational concerns based on heterogeneity across forecasters. Lamont (2002) finds

that older forecasters tend to deviate more from the consensus. Chevalier and Ellison

(1999) find that older mutual fund managers have bolder investment strategies. Hong,

Kubik and Solomon (2000) conclude that the lower accuracy of older stock analysts is due

the fact that they move earlier. Unfortunately, no one has so far attempted to model the

endogenous timing of forecasts when the agents are concerned about their reputation or

relative accuracy.49

6. Discussion

We now compare the empirical predictions of the different theories.

6.1. Forecast Variability

Except for the reputational equilibrium forecasts, we have found linear forecasting rules

of the form fi (si) = Fisi + (1− Fi)µ for some constant weight Fi between 0 and 1. The

conditional distribution of the linear forecast is then

fi|x ∼ N
¡
Fix+ (1− Fi)µ, F

2
i /τ i

¢
. (6.1)

49In Gul and Lundholm (1995) forecasters care about the absolute accuracy as well as delay. A forecaster
with a more extreme signal acts earlier at equilibrium.
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We now describe the variance of the forecasts under the different theories. Observe that

the prior variance 1/ν of x scales all variables of the model, while the weights Fi depend

on τ i only through the relative signal precision ρi ≡ τ i/ν. Apart from a factor 1/ν, all

variances below can therefore be written as a function of ρi.
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Figure 4. Conditional variances of forecasts as function of relative precision ρi, fixing

ν = 1. The solid line shows the conditional variance of the honest forecast V [h|x], the
dotted line the reputational deviation forecast V [d|x], the line with full dots the

reputational equilibrium forecast V [r|x = µ], and the line with empty dots the contest

forecast V [c|x].

Honest Forecast. The conditional variance of the honest forecast V [hi|x] = (1/ν)ρi/(1+
ρ2i ) is increasing in the signal precision if the forecaster is imprecise enough (ρi < 1), but

decreasing if precise (ρi > 1). When the signal is poorly informative (ρi ≈ 0), the honest
forecast is concentrated on the prior mean and so the conditional variance is also near

0. When ρi is very large, the conditional variance is again near 0 because a perfectly

informative signal gives an honest forecast concentrated on the true state.

Contest Equilibrium Forecast. The conditional variance of the forecast in the sym-

metric equilibrium of our symmetric contest (with τ i = τ and so ρi = ρ) is C2/τ =

(1/ν)
³
2 + ρ−pρ2 + 4ρ

´
/2. In the limit as the private signals become uninformative

ρ → 0, the distribution of equilibrium locations replicates the common prior distribution

about the state and its conditional variance converges to 1/ν. This limit result is con-

sistent with the findings of Osborne and Pitchik (1986) and Laster, Bennett and Geoum
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(1999). Note that the conditional variance of the distribution of the equilibrium contest

forecasts decreases in ρ and converges to 0 as ρ → ∞. We conclude that the addition
of private information decreases the conditional variance of the contest forecasts, but this

variance is consistently higher than the one resulting from honest forecasting.50 This is in

sharp contrast to the non-monotonicity of the conditional variance of the honest forecast.

In cases with imprecise private signals, one could check empirically whether forecasts are

very widely dispersed as in the contest, or quite close together as in the case of honest

forecasting.

Reputational Deviation Forecast. The conditional variance of the reputational devi-

ation forecast is (1/ν) ρ3i / (1 + ρi)
4 with variance first increasing in ρi, maximal at ρi = 3,

and then decreasing in ρi. Compared to the forecasts under truthtelling and in the fore-

casting contest, the reputational deviation forecast puts more weight on the prior mean,

and is therefore less variable.51

Reputational EquilibriumForecast. The reputational equilibrium forecast ri of Propo-
sition 5 is binomially distributed and therefore not directly comparable with the normally

distributed forecasts that result in the other cases described above. The following char-

acterization allows a partial comparison when the forecasters use the natural language

mH = E [x|s > µ] and mL = E [x|s ≤ µ].

Proposition 6 (Distribution of the Binary Reputational Equilibrium) In the bi-
nary equilibrium of the reputational model mH − µ = µ − mL =

p
2ρi/πν (1 + ρi) and

V [ri|x] ≤ (1/ν) 2ρi/ (π (1 + ρi)).

The amount by which the message moves the prior beliefs on the state increases in

the relative precision ρi of the forecaster’s signal. To compare the conditional variance

of the reputational binary equilibrium forecast with that of the honest forecast, observe

that 2ρi/ (π (1 + ρi)) ≤ ρi/ (1 + ρi)
2 if and only if ρi ≤ (π − 2) /2. If the signal is not

50Morris and Shin (2002) consider a model in which informed agents are interested in being close to
the state as well as to the average action taken by the others. In their symmetric equilibrium, agents
underreact to private information. Revelation of public information might then result in an increase of
action variability and so reduce welfare. Forecasters want instead to be far from the others and so overreact
to private information. It can be shown that the variance of the contest equilibrium forecast conditional
on the state is decreasing in the precision of the prior. More public information in our contest model
unambiguously decreases forecast variability.
51Graham (1999) was the first to develop comparative statics predictions in a reputational cheap talk

model. He considered a sequential setting with binary signals and he looked at how the second mover’s
incentives for deviation from a separating equilibrium are affected by changes in prior reputation, forecast
ability and conditional signal correlation.
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very precise, the conditional variance is uniformly higher under honesty than in the binary

equilibrium. But the inequality is reversed when the signal has high precision and x is

close to µ. In that case, the signal and thus the honest forecast are highly concentrated

near µ, while the reputational forecast is highly variable with even chance of a positive

and negative update of amount
p
2νρi/π (1 + ρi).

Comparison of Variances. Figure 4 plots the conditional variances as a function of ρi
when ν = 1 for four forecasts: honest h, contest c, reputational deviation d, reputational

binary equilibrium r. The graph makes clear that herding or exaggeration can be inferred

from forecast dispersion only after controlling for the quality of the forecaster’s information.

This point is also emphasized by Zitzewitz (2001a).

6.2. Properties of Forecast Errors

The linear forecasts (6.1) with weight Fi < 1 are not unbiased, since E[fi|x] > x when

x < µ and E[fi|x] < x when x > µ. The conditional mean of the linear forecast only

goes part of the way from the prior µ to the true state x. We see that all these forecasts,

including the honest one, possess the oft-lamented property that forecasters fail to predict

extreme values. This property is therefore not evidence of inefficient conservativeness on

the part of the forecasters.

In a similar vein, the forecast error fi−x is negatively correlated with x (since E[(fi−
x)x] = E[(Fiεi + (1− Fi) (µ− x))x] = − (1− Fi) /ν < 0). When x is high (low) the error

tends to be negative (positive). The forecast error can be predicted after the state x has

been observed, even if forecasters are not conservative. Furthermore, even though their

signals are conditionally independent, there is correlation among the forecast errors of any

pair i, j of forecasters. The covariance of fi − x = (Fiεi + (1− Fi) (µ− x)) with fj − x

is (1− Fi) (1− Fj) /ν > 0. This covariance is positive because forecasters tend to make

equal-signed errors of opposite sign of x.

To remove this correlation, one could alternatively study forecaster i’s shock as fi −
E[fi|x] = Fiεi. This error follows a normal distribution with mean 0 and variance F 2

i /τ i,

and is uncorrelated with x and with the errors of other forecasters. This makes them

useful observations for regression analysis. Empirically, E[fi|x] may not be known by the
data analyst even when x has been realized. It is a common approach to estimate E[fi|x]
using the consensus forecast, to which we now turn.

When n ≥ 2 forecasters have issued their forecasts, it is simple to calculate the un-
weighted average forecast f̄ =

Pn
i=1 fi/n, often referred to as the consensus forecast. In
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general, this is not the optimal forecast given the n signals.52 For example, when the

individual errors εi are statistically independent, the correlation of the honest consensus

forecast with its error is negative, since the forecast tends to be too low when x exceeds µ

and too high when x is below µ.53 When all forecasters have equal precision and indepen-

dent errors, we see that f̄ converges almost surely to E[f |x] as n→∞ by the strong law

of large numbers. Thus, asymptotically the shocks relative to the consensus fi − f̄ have

the desirable zero-correlation properties.

6.3. Orthogonality

Consider linear forecasting rules of the form fi (si) = Fisi + (1− Fi)µ. We have already

noted that under honesty the forecast is uncorrelated with its error fi − x when Fi =

τ i/ (ν + τ i). More generally, the correlation is

E [(fi − x)fi] = E [(Fiεi + (1− Fi) (µ− x)) (Fi (x+ εi) + (1− Fi)µ)] = Fi

µ
Fi

τ i
− 1− Fi

ν

¶
,

and so has the same sign as Fi − τ i/ (τ i + ν). There is positive correlation when Fi is

larger as in the contest, and negative correlation when Fi is smaller as in the reputational

deviation. The reputational equilibrium forecast satisfies orthogonality but is not efficient.

As noted above, all types of forecast had errors negatively correlated with the state

x. Thus, after knowing x the sign of the errors could be predicted. However, this is an

unreasonably strong test of the forecasters’ abilities since x is still unknown when the

forecasts are released. If they report honestly, their error cannot be predicted from the

forecast. The contest forecast and the reputational deviation forecast fail instead to inherit

this property, so that once a forecast has been released the sign of its error can be predicted.

A typical empirical test for the hypothesis that the forecasts are conditional expec-

tations (E[x|Ii] for some information set Ii) is based on regressing the realized forecast
error on the forecasts. Most studies report a positive correlation of the forecast and its

52An extensive literature in operations research studies the problem of how to optimally combine fore-
casts obtained with different methods or incorporating different information sets. See e.g. the early
contributions by Bates and Granger (1969) and Bunn (1975). That literature does not, however, consider
the possibility of strategic behavior by the forecasters.
53The weight that the conditional expectation E[x|s1, . . . , sn] = (νµ+τ1s1+· · ·+τnsn)/(ν+τ1+· · ·+τn)

attaches to si is τ i/τ j times the weight to sj . In the consensus forecast, the ratio of weights is instead
τ i(τ j + ν)/τ j (τ i + ν), so that too much weight is given to the least precise signals. Even when all
forecasters are equally precise, the weight accorded to the prior mean µ is too large and the consensus
forecast fails to inherit the orthogonality property from the individual forecasts. In this case the consensus
honest forecast is h̄ = (nνµ+ τ

Pn
i=1 si) / (nν + nτ) = (nνµ+ nτx+ τ

Pn
i=1 εi) / (nν + nτ) and the error

is h̄− x = (nν (µ− x) + τ
Pn

i=1 εi) / (nν + nτ), so that the covariance is always negative: E[h̄(h̄− x)] =

− (n− 1) τ/n (ν + τ)2 < 0 for n > 1. Kim, Lim and Shaw (1998) suggest methods to correct for the loss
of information in the consensus forecast.
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error, consistent with the prediction of our contest theory. For example, Batchelor and

Dua (1992) find that forecasters put too little weight on the forecasts previously released

by other forecasters (or, equivalently in our model, on the prior mean). However, Keane

and Runkle (1990, 1998) cannot support any bias, as they note that the tests are not as

powerful as is usually assumed once the correlation between forecast errors across fore-

casters is properly taken into account (see also Section 6.4 below). Recently, Zitzewitz

(2001a) has perfected the orthogonality methodology to test for the presence of herding

or exaggeration.54 Zitzewitz applies the test to I/B/E/S analysts and finds significant and

strong exaggeration.

6.4. Model Extension: Common Error

As stressed by Keane and Runkle (1998), the significant positive correlation among the

residuals in the orthogonality regression indicates the presence of a common error in the

forecasts. Since the forecasts are released well in advance, there are often unpredictable

changes to the variables after the forecasts are submitted.55 In this section we extend the

model to account for this correlation found in the data. We find that our results are robust

to the introduction of ex-post innovations in the state.

Suppose that each forecaster receives signal si = y + εi, that the variables y, ε1, . . . , εn
are stochastically independent as before, and that the state later observed is x = y + ε0.

Forecaster i observes si = x− ε0+ εi, so that the error ε0 plays the role of a common error

in the signals about the observed state x. We naturally assume that the the innovation is

unpredictable, i.e., ε0 ∼ N (0, 1/τ 0) is independent of y and the other errors. The honest

forecast of x is then the same as the honest forecast of y. Indeed, E[x|si] = E[y+ ε0|si] =
E[y|si] by the independence assumption. However, the posterior beliefs about x are less
precise than the posterior beliefs about y due to the added error term. The variance of

the normally distributed x|si is 1/ (τ i + ν) + 1/τ 0. Let q̃i (x|si) denote the p.d.f. of this
posterior belief.

54In our above theoretical derivation of the correlation of the forecast and its error, we treated the prior
mean µ as a parameter. Data analysis must control for the prior mean in order to correctly identify when a
realized state is “high” or “low.” Zitzewitz’ key innovation with respect to Keane and Runkle is to modify
the regression equation by subtracting the expectation containing all publicly available information at the
moment of forecasting from both the realization on the left hand side and the forecast on the right hand
side.
55In addition, often realizations are observed with noise. For example, national statistics data are revised

and become more accurate in later releases. In our model the evaluation of forecasters is based on one of
these realizations.
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Contest Theory. Let forecaster i conjecture that the opponents’ messages are distrib-

uted according to the conditional p.d.f. γ (c|x, si). His expected payoff from forecast ci is

Ui(ci|si) = q̃i (x|si) /γ(ci|ci, si). Where we previously found that γ(ci|ci) peaked at µ, we
now derive that γ(ci|ci, si) peaks between µ and h (si). A value of si above µ suggests that
y > µ and therefore that the opponents will issue relatively high forecasts – relative to

the situation before, this moves up the state wherein the greatest mass of opponents guess

correctly. Extending the analysis of Section 4, an optimal reply to honesty still involves

exaggeration. Now there is no symmetric linear Nash equilibrium when τ/ν is large rela-

tive to τ 0/ν. In this case, the forecasters have poor information on the location of x, and

log (q̃i(ci|si)) is not very concave. Still, they have good information about y and about
the other forecasters’ signals, resulting in the convexity of log (γ(ci|ci, si)) being too large
when the other forecasters use best replies. When instead τ/ν is small relative to τ 0/ν,

there is a linear equilibrium with similar features to the one studied in the benchmark

model. We conclude that the results of Section 4 hold in the presence of enough ex-post

information about the state:

Proposition 7 In the forecasting contest with common error, there is exaggeration in the
best reply to honesty. If the noise in the common error is small enough, there exists a

pure-strategy symmetric equilibrium with exaggeration.

Reputational Theory. Since errors ε1, . . . , εn are correlated conditionally on x, in the

reputational model we must explictly consider the interaction of the n forecasters. In order

to update beliefs about the precision of forecaster i, the evaluator uses the information on

the location of y contained in the realized x as well as in the n forecasts. We find that the

results of Section 5 are robust to the addition of ex-post noise:

Proposition 8 In the reputational model with common error, the best reply to honesty
of any other fully separable strategy is conservative. There exists an equilibrium in which

every forecaster uses the binary reporting strategy of Proposition 5.

A forecaster with signal si = µ regards the two possible messages as symmetric, and is

thus indifferent. A forecaster with signal si > µ thinks it more likely that other forecasters

report that they saw sj > µ, and thinks it more likely that the market observes x > µ –

alas forecaster i considers it more likely that the market’s posterior beliefs on y are shifted

upwards. Forecaster i then prefers to send the message that signals si > µ.

Since the evaluator does not have access to y, even honest revelation of si does not allow

for the calculation of the individual εi. The evaluator modifies the Bayesian procedure
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in this context, averaging over the possible values of y given the available information,

including the messages from the other forecasters. Recall that under a linear strategy

fi − E[fi|y] = Fiεi is proportional to the error and that in the case of many forecasters,

the consensus forecast provides a good approximation for E[fi|y]. A forecast close to the
consensus then indicates a small absolute value of εi and is therefore good news about the

forecaster’s ability.

7. Conclusion

In this paper we have formulated and contrasted two distinct theories of strategic forecast-

ing within the normal model, widely used in information economics and empirical studies.

In the process we have gained some novel insights on the forces driving informed agents

to deviate from honest reporting of their conditional expectations. Mis-reporting results

from the effect on individuals’ payoff of the subtle interaction of the private information

available to each individual with the public prior information available to the market and

commonly shared by all agents.

Our first theory posits that competition for best accuracy takes place with pre-specified

rules. Since the forecasters share the same public information, competition is highest

when the state turns out to be equal to the prior mean. At the posterior expectation

a small deviation away from the prior mean results in a first-order gain due to reduced

competition and a second-order loss due to lower probability of winning. Equilibrium

forecasts in a winner-take-all contest are then excessively differentiated in comparison

with the corresponding conditional expectations. Note that the evaluation in a forecasting

contest is ex post optimal when the market can only observe the accuracy ranking. But

in reality the market has more information to evaluate the quality of forecasts.

Our second theory posits that the market has all the information contained in the

forecasts and the realization of the state and uses it to ex post optimally evaluate the

forecasters. We have assumed that better informed forecasters observe signals on average

closer to the state and that forecasters who are reputed to be better informed have a

higher payoff. We have shown that forecasters wish to appear to have received a signal

equal to the posterior expectation of the state conditional on the signal actually received.

In the presence of public information, the observed signal is necessarily different from the

posterior expectation. If the market naively believes that forecasters are honest, forecasters

then shade their forecasts toward the prior mean. If the market is fully aware of the

forecasters’ strategic incentives, equilibrium forecasts are imprecise but not shaded.56

56A possible criticism of our approach is that in reality competition among forecasters combines elements
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In both the contest and the reputational theory the incentive to deviate from honesty

is driven by the property that private signals are unimodally centered around the state

and the fact that public information is available at the moment of forecasting. In the

absence of public information, honest forecasting is an equilibrium in both models. In the

empirical literature, Zitzewitz (2001a) takes this public information into account and finds

significant and strong exaggeration in the forecasts of I/B/E/S analysts. This finding is

in line with the equilibrium of our forecasting contest, but inconsistent with the deviation

or the equilibrium of our reputational cheap talk model.57

Our results raise questions about the interpretation and use of professional forecasts

to test the predictions of theories on how agents’ decisions depend on expectations, as

done in financial, international, and macro economics.58 Further development of the the-

ory of strategic forecasting should lead to methods to adjust for the induced biases and

thus improve the interpretation of the results of econometric studies that use professional

forecasts as proxies of market expectations.59

While interesting phenomena emerge in simple and plausible models without the need

to depart from the rationality paradigm, there is some experimental evidence on devi-

ations from Bayesian rationality. For example, according to Kahneman and Tversky’s

(1973) representativeness bias, forecasters often disregard prior information when making

intuitive predictions. Experimental subjects put excessive weight on their signal and are

overconfident in their predictions, similarly to what happens in equilibrium of our forecast-

ing contest.60 More work needs to be done on building and testing behaviorally plausible

models of forecasting.61

In order to test the different theories, it might be useful to compare non-anonymous

of both theories. For example, Institutional Investors ranks analysts based on the opinions of large
institutional investors. See Ottaviani and Sørensen (2003) for results on mixed incentives and relative
reputational concerns.
57As argued by Zitzewitz (2001b), the observed exaggeration is also consistent with an alternative

version of the reputational signaling model in which forecasters are privately informed about their ability
and are evaluated according to an econometric technique.
58See e.g., Frankel and Froot (1987) for a study of exchange rate expectations using surveys of profes-

sional forecasters.
59See e.g., Romer and Romer (2000) and Prati and Sbracia (2002).
60Our reputational theory only requires that the forecaster believes that the market perceives the under-

lying talents of forecasters to be heterogenous. In an early behavioral model of financial advice, Denton
(1985) assumes that investors listen to financial advisers who have no real information. In some cases,
this might well be the case. For example, Hartzmark (1991) found that futures forecasters depend on
luck rather than forecasting ability. Zitzewitz (2001a) instead finds that security analysts differ greatly in
performance, justifying the assumption that they are fundamentally heterogeneous.
61See De Bondt and Thaler (1990) for arguments in favor of behavioral biases. It is worth remarking

that a behavioral bias can be reinforced by strategic incentives. Ehrbeck and Waldmann (1996) run an
early horse race between economic and psychological explanations for biases in forecasting.
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with anonymous forecasting surveys. The existence of anonymous surveys (starting in

1946 with the Livingston Survey) presupposes a belief that forecasters might not honestly

report their best predictions if anonymity were not preserved. While the identity of the

forecasters belonging to the panel is typically available, anonymous surveys do not reveal

which individual made which forecasts. A possible rationale for preserving anonymity is

that it can (but need not) guarantee honest forecasting.62

In this paper we have adopted a positive approach, leaving unanswered a number of

normative questions: How can forecasting surveys be improved to counteract the gaming

incentives? How do different mechanisms affect the forecasters’ incentives for information

acquisition?63

62As reported by Croushore (1993): “This anonymity is designed to encourage people to provide their
best forecasts, without fearing the consequences of making forecasts errors. In this way, an economist can
feel comfortable in forecasting what she really believes will happen [...]. The negative side of providing
anonymity, of course, is that forecasters can’t claim credit for particularly good forecast performance,
nor can they be held accountable for particularly bad forecasts. Some economists feel that without
accountability, forecasters may make less accurate predictions because there are fewer consequences to
making poor forecasts.” A problem with the hypothesis of honest forecasting in perfectly anonymous
surveys is that we do not have a theory to predict behavior in this situation. There is no clear objective.
Possibly, the forecasters are concerned that the survey editor discovers something about their behavior,
partly undermining the survey anonymity. In fact, as we were told by Croushore and Lamont, forecasters
often seem to submit to the anonymous surveys the same forecasts they have already prepared for public
(i.e. non-anonymous) release.
63Combining the insights of the statistical literature on scoring rules with the economic theory of reg-

ulation, Osband (1989) studies the optimal provision of forecasting incentives in the presence of costly
information acquisition. See also Prendergast (1993).
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Appendix

Proof of Proposition 1. Recall that x|si is normal with mean (τsi+νµ)/(τ+ν) and
precision τ + ν. Suppose that all opponents use the linear strategy c (s) = As+(1−A)µ,

with A ∈ (0, 1]. Then c|x is normal with E[c|x] = Ax + (1−A)µ and V [c|x] = A2/τ .

Disregarding an irrelevant constant term, we find

log (γ(c|c)) = −τ (c− (Ac+ (1−A)µ))2

2A2
= −τ (1−A)2 (c− µ)2

2A2
,

a concave quadratic function of c with peak at µ. The forecaster maximizes log (qi(ci|si))−
log (γ(ci|ci)), the difference of two concave quadratic functions. The objective function is
concave when the first concave term prevails, i.e. for τ + ν > τ (1−A)2 /A2.

When τ + ν > τ (1−A)2 /A2, the forecaster has a unique best reply ci = Bsi +

(1−B)µ, with B = τ/
¡
τ + ν − τ (1−A)2 /A2

¢ ∈ [τ/ (τ + ν) ,+∞). When instead τ +

ν < τ (1−A)2 /A2, there is no best response because the incentive to move away from

µ is so strong that forecaster i wishes to go to the extremes ±∞. In the knife-edge case
τ + ν = τ (1−A)2 /A2 the objective function is linear – whenever si 6= µ there is again

no best reply, as the forecaster wishes to go to one of the extremes.

In particular, in the honest case A = τ/ (τ + ν), it is optimal to reply with B =

τ 2/ (τ 2 + τν − ν2), provided that ν/τ <
¡
1 +
√
5
¢
/2. We conclude that the best reply

against truthtelling by all the opponents is to exaggerate. ¤

Proof of Proposition 2. C = 0 is not compatible with a symmetric equilibrium since
in this case the opponents’ forecasts are all equal to c = µ so that all replies other than µ

yield forecaster i higher payoff. Assume then that the forecasters use linear strategies of

the form c(s) = Cs + (1− C)µ with C ∈ (0, 1]. As shown in the proof of Proposition 1,
forecaster i has as best reply a linear strategy with weight τ/

¡
τ + ν − τ (1− C)2 /C2

¢
on the signal, provided that τ + ν > τ (1− C)2 /C2. The fixed-point condition for a

symmetric Nash equilibrium is that this linear strategy be equal to the one posited,

or (1− C) τ = C2ν. Insert the values C = 0, τ/ (τ + ν) , 1 in this quadratic equa-

tion to conclude that it possesses only one positive solution, and that this solution is

in (τ/ (τ + ν) , 1). The second-order condition for the forecaster’s optimization requires

τ + ν > τ (1− C)2 /C2. Using (1− C) τ = C2ν, this condition reduces to τ > −νC,
clearly satisfied by the positive solution for C. Finally, the solution of the quadratic

equation is C =
¡√

τ 2 + 4ντ − τ
¢
/2ν. ¤

Proof of Proposition 3. Observingm = h (s) and x, the evaluator infers the realized

signal ŝ = h−1 (m) and error ε̂ = ŝ − x. The updated reputation is then p (t|m,x) =

g̃ (ŝ|x, t) p (t) /g (ŝ|x). This posterior reputation satisfies two intuitive properties due to
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the assumptions on g̃. First, the posterior reputation depends on m and x only through

the absolute size of the error |ε̂|. Second, a small realized absolute error is good news
about the forecaster’s talent: for any t < t0, the likelihood ratio p (t|m,x) /p (t0|m,x) =

(g̃ (ŝ|x, t) /g̃ (ŝ|x, t0)) (p (t) /p (t0)) is increasing in |ε̂|. These two properties imply (see

Milgrom (1981)) that W (m|x) is a strictly decreasing function of the inferred absolute
error |ε̂|.
Consider now the best response of a forecaster with signal s. The posterior distribution

on x is normal with mean h (s) and variance 1/ (ν + τ). The inferred forecast error ε̂ =

h−1 (m)−x is then normally distributed with mean h−1 (m)−h (s) and variance 1/ (ν + τ).

The best reply maximizes the expected value ofW , or equivalently minimizes a symmetric

loss function of the error h−1 (m)− x. The forecaster then chooses m such that the error

has mean zero, by setting h−1 (m) = h (s). ¤

Lemma 1 If a p.d.f. ĝ (.) satisfies the property

ĝ (t0ε) ĝ (tε0) < ĝ (tε) ĝ (t0ε0) for ε0 > ε ≥ 0 and t0 > t, (7.1)

its counter-cumulative distribution satisfies it as well:h
1− Ĝ (t0ε)

i h
1− Ĝ (tε0)

i
<
h
1− Ĝ (tε)

i h
1− Ĝ (t0ε0)

i
for ε0 > ε ≥ 0 and t0 > t. (7.2)

Proof. Integrating (7.1) for ε00 > ε0, we get

t0ĝ (t0ε)
h
1− Ĝ (tε0)

i
< tĝ (tε)

h
1− Ĝ (t0ε0)

i
(7.3)

for ε0 > ε. Notice that the left-hand side and the right-hand side of (7.2) are equal for

ε0 = ε, and that by (7.3) we know that the derivative of the left-hand side is larger than

the derivative of the right-hand side of (7.2). We conclude that (7.2) holds. ¤

Proof of Proposition 5. To support this equilibrium, we also need to specify the
evaluator’s beliefs following out-of-equilibrium messages. When receiving any message

different from mL and mH , the evaluator assumes that the forecaster possessed a signal

below the threshold, thereby resulting in the same posterior reputation as message mL.

These beliefs satisfy the requirements of a perfect Bayesian equilibrium.

Assume that the evaluator conjectures a binary strategy with threshold signal š. We

find ϕ (mH |x, t) =
R∞
š

g̃ (s|x, t) ds = R∞
š

tĝ (t|s−x|) /2ds. This reduces to (1−Ĝ(t|š−x|))/2
when š > x and (1 + Ĝ(t|š − x|))/2 when š < x, where Ĝ is the c.d.f. corresponding to

the p.d.f. ĝ. Therefore, ϕ (mH |x, t) = 1−ϕ (mH |2š− x, t) = ϕ (mL|2š− x, t). From (5.1),

this implies the symmetry property W (mH |x) =W (mL|2š− x).
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When š > x, it follows from Lemma 1 that message mH is worse news about the

talent than the observation that s ≥ x. Thus we have W (mH |x) < W (mH |š) for x < š.

Symmetrically, W (mH |x) > W (mH |š) for x > š. These inequalities and symmetry imply

that W (mH |x) > W (mL|x) for x > š.

We now show that when š = µ, the forecaster does not wish to deviate from the

putative equilibrium strategy. By symmetry, it suffices to assume that s ≥ µ and check

that U (mH |s) ≥ U (mL|s). Using (5.2) and symmetry of W , U (mH |s)− U (mL|s) isZ ∞

−∞
(W (mH |x)−W (mL|x)) q (x|s) dx =

Z ∞

µ

(W (mH |x)−W (mL|x)) (q (x|s)−q (2µ−x|s)) dx.

Since q (x|s) is the p.d.f. of the symmetric normal distribution with a mean weakly above
µ, we have q (x|s) ≥ q (2µ− x|s) when x ≥ µ. We already had W (mH |x) > W (mL|x)
when x > µ, so the integrand of the last integral is everywhere non-negative, implying

that the integral is non-negative, i.e. that U (mH |s) ≥ U (mL|s) as desired.
Finally, we show that when š 6= µ, the forecaster wishes to deviate from the binary

strategy. Without loss of generality, focus on the case š > µ. We show that there ex-

ists a signal s > š such that U (mH |s) < U (mL|s). As above, U (mH |s)−U (mL|s) =R∞
š
(W (mH |x)−W (mL|x)) (q (x|s)−q (2š−x|s)) dx. We have againW (mH |x) > W (mH |š)

for x > š. At x = š we have q (x|s) = q (2š− x|s). By properties of the normal p.d.f., we
obtain q (x|s) < q (2š− x|s) for x > š provided E[x|s] = (τs+ νµ) / (τ + ν) < š, which is

certainly true for s slightly greater than š. ¤

Proof of Proposition 6. By applying the well-known result that E[y|y > 0] =

σ
p
2/π for a normal variable y ∼ N(0, σ2) (cf. Johnson and Kotz (1970)), we see that

mH = E[x|s ≥ µ] is equal to E[E[x|s]|s ≥ µ] = E[ τs+νµ
τ+ν

|s ≥ µ] = µ+ τ
τ+ν

E [s− µ|s > µ] =

µ +
p
2τ/ (πν (τ + ν)). By symmetry, we have mL = µ − p2τ/ (πν (τ + ν)). Given

x, the chance of the forecast r taking the high value mH is 1 − Φ (
√
τ (µ− x)) where

Φ is the c.d.f. of the standard normal distribution. The binomial distribution of r

has mean E[r|x] = µ + (1 − 2Φ (√τ (µ− x)))
p
2τ/ (πν (τ + ν)) and variance V [r|x] =

4 (1− Φ (
√
τ (µ− x)))Φ (

√
τ (µ− x)) 2τ/ (πν (τ + ν)). For any x, we haveΦ (

√
τ (µ− x)) ∈

[0, 1] so 4 (1− Φ (
√
τ (µ− x)))Φ (

√
τ (µ− x)) ≤ 1, where the bound is tight being achieved

for x = µ. We conclude that V [r|x] ≤ 2τ/ (πν (τ + ν)). Finally, insert ρ = τ/ν. ¤

31



References
Avery, Christopher and Judith Chevalier, “Herding over the Career,” Economics Letters,
1999, 63(3), 327—333.

Banerjee, Abhijit V., “A Simple Model of Herd Behavior,” Quarterly Journal of Eco-
nomics, 1992, 107(3), 797—817.

Batchelor, Roy and Pami Dua, “Conservatism and Consensus-seeking among Economic
Forecasters,” Journal of Forecasting, 1992, 11, 169—181.

Bates, John M. and Clive Granger, “The Combination of Forecasts,” Operations Research
Quarterly, 1969, 20(4), 451—468.

Bernheim, B. Douglas, “A Theory of Conformity,” Journal of Political Economy, 1994,
102(5), 841—877.

Bikhchandani Sushil, David Hirshleifer and Ivo Welch, “A Theory of Fads, Fashion, Cus-
tom, and Cultural Change as Informational Cascades,” Journal of Political Economy, 1992,
100(5), 992—1026.

Bhattacharya, Sudipto and Paul Pfleiderer, “Delegated Portfolio Management,” Journal
of Economic Theory, 1985, 36(1), 1—25.

Bunn, Derek W., “A Bayesian Approach to the Linear Combinations of Forecasts,” Oper-
ations Research Quarterly, 1975, 26(2), 325—329.

Chevalier, Judith and Glenn Ellison, “Career Concerns of Mutual Fund Managers,” Quar-
terly Journal of Economics, 1999, 114(2), 389—432.

Crawford, Vincent and Joel Sobel, “Strategic Information Transmission,” Econometrica,
1982, 50(6), 1431—1452.

Croushore, Dean, “Introducing: The Survey of Professional Forecasters,” Federal Reserve
Bank of Philadelphia Business Review, 1993, November/December, 3—13.

Croushore, Dean, “The Livingston Survey: Still Useful After All These Years,” Federal
Reserve Bank of Philadelphia Business Review, 1997, March/April, 15—26.

Dawid, A. Philip, “Probability Forecasting”, Encyclopedia of Statistical Sciences: Volume
7, 1986, edited by S. Kotz, N. L. Johnson and C. B. Read, New York: Wiley-Interscience,
210—218.

De Bondt, Werner F. M. and Richard H. Thaler, “Do Security Analysts Overreact?”
American Economic Review, 1990, 80(2), 52—57.

de Finetti, Bruno, “Methods for Discriminating Levels of Partial Knowledge Concerning
a Test Item”, British Journal of Mathematical and Statistical Psychology, 1965, 18-I, 87—
123. Reprinted in Probability, Induction, and Statistics: The Art of Guessing, Chapter 4,
London: John Wiley & Sons, 1972, 25—63.

DeGroot, Morris, Optimal Statistical Decisions, 1970, New York: McGraw Hill.

32



Denton, Frank T., “The Effect of Professional Advice on the Stability of a Speculative
Market”, Journal of Political Economy, October 1985, 93(5), 977—93.

Ehrbeck, Tilman and RobertWaldmann, “Why are Professional Forecasters Biased? Agency
versus Behavioral Explanations,” Quarterly Journal of Economics, 1996, 111(1), 21—40.

Frankel, Jeffrey A. and Kenneth A. Froot, “Using Survey Data to Test Standard Proposi-
tions Regarding Exchange Rate Expectations,” American Economic Review, 1987, 77(1),
133—153.

Geanakoplos, John, David Pearce and Ennio Stacchetti, “Psychological Games and Se-
quential Rationality,” Games and Economic Behavior, 1989, 1(1), 69—79.

Graham, John, “Herding Among Investment Newsletters: Theory and Evidence,” Journal
of Finance, 1999, 54(1), 231—268.

Granger, Clive W. J., “Prediction with a Generalized Cost of Error Function,” Operational
Research Quarterly, 1969, 20(2), 199—207.

Granger, Clive W. J., “Outline of Forecast Theory Using Generalized Cost Functions,”
Spanish Economic Review, 1999, 1(2), 161—173.

Gul, Faruk and Russell Lundholm, “Endogenous Timing and the Clustering of Agents’
Decisions,” Journal of Political Economy, 1995, 103(5), 1039—1066.

Hartzmark, Michael L., “Luck versus Forecast Ability: Determinants of Trader Perfor-
mance in Futures Markets, Journal of Business, 1991, 64(1), 49—74.

Holmström, Bengt, “Managerial Incentive Problems: A Dynamic Perspective,” in Essays
in Economics and Management in Honor of Lars Wahlbeck, Helsinki: Swedish School of
Economics, 1982. Reprinted in Review of Economic Studies, 1999, 66(1), 169—182.

Hong, Harrison, Jeffrey D. Kubik and Amit Solomon, “Security Analysts’ Career Concerns
and Herding of Earning Forecasts,” Rand Journal of Economics, 2000, 31(1), 121—144.

Hong, Harrison and Jeffrey D. Kubik, “Analyzing the Analysts: Career Concerns and
Biased Earnings Forecasts,” Journal of Finance, 2003, 58(1), 313—351.

Hotelling, Harold, “Stability in Competition,” Economic Journal, 1929, 39(153), 41—57.

International Monetary Fund,World Economic Outlook: Fiscal Policy and Macroeconomic
Stability, May 2001.

Johnson, Norman L. and Samuel Kotz, Distributions in Statistics: Continuous Univariate
Distributions - 1, New York: Wiley, 1970.

Kahneman, Daniel and Amos Tversky, “On the Psychology of Prediction,” Psychological
Review, 1973, 80(4), 237—251.

Kandel, Eugene and Neil D. Pearson, “Differential Interpretation of Public Signals and
Trade in Speculative Markets,” Journal of Political Economy, 1995, 103(4), 831—872.

Kandel, Eugene and Ben Zion Zilberfarb, “Differential Interpretation of Information in
Inflation Forecasts,” Review of Economics and Statistics, 1999, 81(2), 217—226.

33



Keane, Michael P. and David E. Runkle, “Testing the Rationality of Price Forecasts: New
Evidence from Panel Data,” American Economic Review, 1990, 80(4), 714—735.

Keane, Michael P. and David E. Runkle, “Are Financial Analysts’ Forecasts of Corporate
Profits Rational?,” Journal of Political Economy, 1998, 106(4), 768—805.

Kim, Oliver, Steve C. Lim and KennethW. Shaw, “The Use of Forecast Revision in Reduc-
ing Built-in Biases in Mean Analyst Forecasts,” November 1998, University of Maryland
and Long Island University mimeo.

Kutsoati, Edward and Dan Bernhardt, “Can Relative Performance Compensation Explain
Analysts’ Forecasts of Earnings?” August 2000, Tufts University and University of Illinois
mimeo.

Lamont, Owen, “Macroeconomic Forecasts and Microeconomic Forecasters,” Journal of
Economic Behavior and Organization, 2002, 48(3), 265—280.

Laster, David, Paul Bennett and In Sun Geoum, “Rational Bias in Macroeconomic Fore-
casts,” Quarterly Journal of Economics, 1999, 114(1), 293—318.

Lehmann, Erich L., “Ordered Families of Distributions,” Annals of Mathematical Statis-
tics, 1955, 26(3), 399—419.

Lehmann, Erich L., “Comparing Location Experiments,” Annals of Statistics, 1988, 16(2),
521—533.

Michaely Roni and Kent L. Womack, “Conflict of Interest and Credibility of Underwriter
Analyst Recommendations,” Review of Financial Studies, 1999, 12(4), 654—686.

Milgrom, Paul, “Good News and Bad News: Representation Theorems and Applications,”
Bell Journal of Economics, 1981, 12, 380—391.

Morgan, John and Philip Stocken, “An Analysis of Stock Recommendations,” Rand Jour-
nal of Economics, 2003, 34(1), 183—203.

Morris, Stephen and Hyun Shin, “The Social Value of Public Information,” American
Economic Review, 2002, 92, 1521—1534.

Muth, John F., “Rational Expectations and the Theory of Stock Price Movements,” Econo-
metrica, 1961, 29(3), 315—335.

Osband, Kent, “Optimal Forecasting Incentives,” Journal of Political Economy, 1989,
97(5), 1091—1112.

Osborne, Martin and Carolyn Pitchik, “The Nature of Equilibrium in a Location Model”,
International Economic Review, 1986, 27(1), 223—237.

Ottaviani, Marco and Peter Sørensen, “Herd Behavior and Investment: Comment,” Amer-
ican Economic Review, 2000, 90(3), 695—704.

Ottaviani, Marco and Peter N. Sørensen, “Forecasting and Rank-Order Contests,” 2002,
London Business School and University of Copenhagen mimeo.

34



Ottaviani, Marco and Peter N. Sørensen, “Reputational Cheap Talk,” 2003, London Busi-
ness School and University of Copenhagen mimeo.

Prati, Alessandro and Massimo Sbracia, “Currency Crises and Uncertainty about Funda-
mentals,” 2002, IMF and Bank of Italy mimeo.

Prendergast, Canice, “A Theory of “Yes Men”,” American Economic Review, 1993, 83(4),
757—770.

Prendergast, Canice and Lars Stole, “Impetuous Youngsters and Jaded Oldtimers: Acquir-
ing a Reputation for Learning,” Journal of Political Economy, 1996, 104(6), 1105—1134.

Romer, Christina D. and David H. Romer, “Federal Reserve Information and the Behavior
of Interest Rates,” American Economic Review, 2000, 90(3), 429—457.

Savage, Leonard, “Elicitation of Personal Probabilities and Expectation,” Journal of the
American Statistical Association, 1971, 66(336), 783—801.

Scharfstein, David and Jeremy Stein, “Herd Behavior and Investment,” American Eco-
nomic Review, 1990, 80(3), 465—479.

Stark, Tom, “Macroeconomic Forecasts and Microeconomic Forecasters in the Survey of
Professional Forecasters,” 1997, Federal Reserve Bank of Philadelphia Working Paper 97-
10.

Steele, J. Michael and James Zidek, “Optimal Strategies for Second Guessers,” Journal of
the American Statistical Association, 1980, 75(371), 596—601.

Stekler, Herman O., “Who Forecasts Better?” Journal of Business and Economics Statis-
tics, 1987, 5(1), 155—158.

Trueman, Brett, “Analyst Forecasts and Herding Behavior,” Review of Financial Studies,
1994, 7(1), 97—124.

Welch, Ivo, “Herding among Security Analysts,” Journal of Financial Economics, 2000,
58(3), 369—396.

Zarnowitz, Victor and Luis A. Lambros, “Consensus and Uncertainty in Economic Pre-
dictions,” Journal of Political Economy, 1987, 95(3), 591—621.

Zellner, Arnold, “Biased Predictors, Rationality and the Evaluation of Forecasts,” Eco-
nomics Letters, 1986, 21, 45—48.

Zitzewitz, Eric, “Measuring Herding and Exaggeration by Equity Analysts,” 2001a, Stan-
ford GSB mimeo.

Zitzewitz, Eric, “Opinion-Producing Agents: Career Concerns and Exaggeration,” 2001b,
Stanford GSB mimeo.

Zwiebel, Jeffrey, “Corporate Conservatism and Relative Compensation,” Journal of Polit-
ical Economy, 1995, 103(1), 1—25.

35



Omissible Proofs
Proof of Proposition 7. Assume that the opponents use a linear strategy m̂ (s) =

Cs + (1 − C)µ where C ∈ (0, 1]. The hypothetical observation of x = ci and of sig-
nal si gives two independent sources of information about y. Updating normal beliefs
as usual, we find y|ci, si ∼ N ((νµ+ τ 0ci + τsi) / (ν + τ 0 + τ) , 1/ (ν + τ 0 + τ)). Condi-
tionally on x = ci and si, the message m̂ (sj) = Cy + Cεj + (1− C)µ is then nor-
mally distributed with mean C (νµ+ τ 0ci + τsi) / (ν + τ 0 + τ) + (1 − C)µ and variance
C2 (ν + τ 0 + 2τ) / ((ν + τ 0 + τ) τ). This gives the mass of correct opponent guesses,

γ(ci|ci, si) =
q

(ν+τ0+τ)τ
(ν+τ0+2τ)C22π

exp

µ
− (ν+(1−C)τ0+τ)2τ
2(ν+τ0+2τ)(ν+τ0+τ)C2

³
ci − (ν+(1−C)(τ0+τ))µ+Cτsi

ν+(1−C)τ0+τ
´2¶

.

Clearly, γ(ci|ci, si) is centered between µ and si. Nevertheless, when C < 1 this center
remains closer to µ than the honest estimate h (si) since the weight on si is smaller:
Cτ/ (ν + (1− C) τ 0 + τ) < τ/ (τ + ν). Provided there exists a best response, this response
is therefore biased away from µ, by the same logic as before.
Recall that x|si ∼ N ((νµ+ τsi) / (ν + τ) , (ν + τ0 + τ) / ((ν + τ) τ 0)). This objective

function log (Ui(ci|si)) = log (qi (ci|si))− log (γ(ci|ci, si)) is quadratic in the choice variable
ci. The first order condition characterizing the unique maximizer is

(ν+(1−C)τ0+τ)2τ
(ν+τ0+2τ)C2

³
ci − (ν+(1−C)(τ0+τ))µ+Cτsi

ν+(1−C)τ0+τ
´
= τ 0 (ν + τ)

¡
ci − νµ+τsi

ν+τ

¢
.

Gathering terms, this can be rewritten as ci = Ksi + (1−K)µ. The equilibrium fixed
point condition requires that the weight on si should be C, i.e.

τ 0 (ν + τ) (ν + τ 0 + 2τ)C
2− (ν + (1− C) τ 0 + τ)2 τ

= τ (τ 0 (ν + τ 0 + 2τ)C − (ν + (1− C) τ 0 + τ) τ) .

This quadratic equation in C can be easily solved. The total coefficient on C2 on the left
hand side is positive. At C = 0, the right hand side exceeds the left hand side. At C = 1
the opposite is true. The unique solution C ∈ (0, 1) defines an equilibrium, if it satisfies
the second order condition. The second order condition requires positivity of the left hand
side, or equivalently of the right hand side, i.e. C > τ (ν + τ 0 + τ) / (τ 0 (ν + τ 0 + 3τ)).
This condition can be checked by inserting τ (ν + τ 0 + τ) / (τ 0 (ν + τ 0 + 3τ)) for C in the
fixed point equation and verifying that the right hand side exceeds the left hand side. This
criterion for equilibrium existence is then

(ν + τ) (ν + τ 0 + 2τ)
τ2(ν+τ0+τ)

2

τ0(ν+τ0+3τ)
2 −

³
(ν+τ0+τ)(ν+τ0+2τ)

ν+τ0+3τ

´2
τ

< τ
³
(ν + τ 0 + 2τ)

τ(ν+τ0+τ)
(ν+τ0+3τ)

−
³
(ν+τ0+τ)(ν+τ0+2τ)

ν+τ0+3τ

´
τ
´
.

For small τ 0 this fails since (ν + τ)3 (ν + 2τ) τ 2/ (ν + 3τ)2 > 0. For large τ 0 it holds since
the coefficient on τ 20 is −τ < 0. ¤
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Proof of Proposition 8. First, assume that all opponents j 6= i use a fully separating
strategy. Besides the forecast of forecaster i, the evaluator observes n independent signals
about y, namely every sj where j 6= i and x. From the well-known updating of beliefs
on a normal state, this is equivalent to the observation of just one more precise signal
about y. So, without loss of generality, we can imagine that x itself contains all the
evaluator’s external information on y. Since x = y + ε0 where ε0 is independent of εi and
ti, y is a sufficient statistic for x and the law of iterated expectations gives pi (ti|mi, x) =
E [pi (ti|mi, y) |x]. Observe then that

Ui (mi|si) =

Z ∞

−∞

·Z ∞

0

u(t)pi(ti|mi, x) dt

¸
qi(x|si) dx

=

Z ∞

−∞

·Z ∞

0

u(t)

Z ∞

−∞
pi(ti|mi, y)q(y|x) dy dt

¸
qi(x|si) dx

=

Z ∞

−∞

·Z ∞

0

u(t)pi(ti|mi, y) dt

¸ ·Z ∞

−∞
q(y|x)qi(x|si) dx

¸
dy.

This resembles the original expression for Ui (mi|si), except that the old qi (y|si) has
been replaced by the average

R∞
−∞ q(y|x)qi(x|si) dx of the evaluator’s beliefs. Both q(y|x)

and qi(x|si) are normal p.d.f.s, and their product can be rewritten as A0 exp(−A1(x −
A2 (y, si))

2 − A3 (y −A4 (si))
2) where A0, A1, A3 are constants not depending on x, y, si,

the constant A2 depends on y, si only, and A4 (si) = [τ 0τ isi + (ν + τ 0 + τ i) νµ]/[τ 0τ i +
(ν + τ 0 + τ i) ν]. We then find

R∞
−∞ q(y|x)qi(x|si) dx = A5 exp

¡−A3 (y −A4 (si))
2¢ where

A5 is independent of y, si since the normalizing constant of a normal p.d.f. does not involve
the mean. We conclude that the forecaster’s objective function is of the same form as pre-
viously, where

R∞
−∞ q(y|x)qi(x|si) dx is a normal p.d.f. with mean A4 (si) strictly between

µ and si. As in Proposition 3, forecaster i will deviate from a fully separating strategy mi

by issuing mi (A4 (si)) 6= mi (si) for any si 6= µ.
Second, assume that all the opponents apply the binary strategy with threshold µ.

We use again that Ui (mi|si) = E [Wi (mi|y)E [q(y|x,m−i)|si]] as derived above, where
Wi (mi|y) is precisely the same as in the proof of Proposition 5. That proof carries over
to this new situation, once we verify that E [q(y|x,m−i)|si] ≥ E [q(2µ− y|x,m−i)|si] when
y ≥ µ and si ≥ µ. Using symmetry of q(y|x,m−i), we have

E [q(y|x,m−i)|si]− E [q(2µ− y|x,m−i)|si]
=

Z ∞

−∞

X
M−i

[(q(y|x,m−i)− q(2µ− y|x,m−i)) qi (x,m−i|si)] dx

=

Z ∞

µ

X
M−i

£
(q(y|x,m−i)− q(2µ− y|x,m−i))

¡
qi (x,m−i|si)− qi

¡
2µ− x,mc

−i|si
¢¢¤

dx

where M−i = {mL,mH}n−1 and mc
−i denotes the vector of messages opposite to m−i,

i.e. in which every mH is replaced by mL and vice versa. First, when y ≥ µ and
x ≥ µ, for any m−i, q(y|x,m−i) ≥ q(2µ − y|x,m−i) since x is closer to y than to
2µ − y. This implies that

R∞
µ

P
M−i [q(y|x,m−i) − q(2µ − y|x,m−i)]dx ≥ 0. Second,
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R∞
µ

P
M−i

£
qi (x,m−i|si)− qi

¡
2µ− x,mc

−i|si
¢¤
dx = Pr(x ≥ µ|si)− Pr (x ≤ µ|si) ≥ 0 since

si ≥ µ. Finally, the result that E [q(y|x,m−i)|si] ≥ E[q(2µ− y|x,m−i)|si] follows from the
positive correlation of q(y|x,m−i)−q(2µ−y|x,m−i) with qi(x,m−i|si)−qi(2µ−x,mc

−i|si).
This is due to the fact that when si, x, y ≥ µ, every opponent’s message mH is believed
more frequent than mL, and every opponent’s message mH gives greater q(y|x,m−i) and
smaller q(2µ− y|x,m−i) than message mL. ¤
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