Multiple Confidence Sets Based on Stagewise Tests

Sture HOLM

Recent years have seen suggested constructions of multiple confidence sets related to stagewise multiple tests by some authors.
These methods are a type of mixture between test and confidence interval methods, because confidence interval statements are
made only for some parameters, whereas test statements for fixed parameter values are made for the other parameters. In this
article I define a concept—confidence directional set—giving a confidence bound for one parameter, which may depend on other
parameters. Using this concept, one can construct multiple confidence sets, which are always confidence set statements and not test
statements for fixed parameter values. The confidence sets correspond exactly to stagewise tests, which is theoretically appealing.
Special examples of the general technique are given for the independent test statistic case and for comparison of a number of
treatments to a control in the case of normally distributed observations with the same variance.
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1. INTRODUCTION

Many classical multiple test procedures are directly re-
lated to simultaneous confidence intervals. Thus, for in-
stance, in the simple analysis of variance model with &
series of normally distributed observations with the same
unknown variance o2 in all series and possibly different
expectations u;,7 = 1,2,...,k in the k series, the Tukey
(1953) method gives both a test of the overall hypothesis
w; = p; for all ¢ # j such that 1 < 4,5 < k and multi-
ple (simultaneous) confidence intervals for all differences
Mg — M-

Also, for example, the Dunnett (1955) method of multiple
comparisons with a control include analogous tests and con-
fidence interval methods. In the simplest balanced model,
all observations are normally distributed with the same vari-
ance o2 and there is one control series with expectation pqg
and sample size ng and & treatment observation series with
expectations pu;,7 = 1,2,...,k, and the same sample size
n. In this case it is often most reasonable to use one-sided
tests and one-sided confidence intervals, upper or lower de-
pending on the application.

The theory and application of multiple tests has under-
gone great change since the middle of the 1970s. There
have been developed general closed tests, stagewise step-
down tests, and stagewise step-up tests. The general closed
tests were introduced by Marcus, Peritz, and Gabriel (1976).
A number of step-down tests have been presented by
Hochberg and Tamhane (1988). A basic early work on a
step-up test was given by Dunnett and Tamhane (1992).
These tests generally have the property of having greater
power than corresponding classical nonstagewise tests.

In the beginning of the development of closed and stage-
wise tests, corresponding confidence interval methods were
not found. Thus it was commonly thought that any trans-
formation from closed and stagewise tests to confidence
sets did not exist. In recent years, however, some multiple
confidence interval methods directly related to stagewise

Sture Holm is Professor in Biostatistics, Department of Mathematical
Statistics, Chalmers University of Technology and Goteborg University,
SE-412 96 Géteborg, Sweden. The author is grateful to the editors and two
anonymous referees for valuable suggestions improving the readability of
the article.

multiple tests have appeared.

Bofinger (1987) studied the problems of selecting sub-
sets containing no bad populations or no good populations
in relation to a control. The concepts “no bad” and “no
good” are defined by parameter differences below or above
some fixed bounds. Putting this bound to 0 for the method
of selecting no bad population gives a method of obtaining
lower bounds for differences between treatment parameters
and the control parameter with a predetermined coverage
probability. For the case of normal observations with the
same unknown variance o2 in all series and denoting the
means in the treatment groups by p1, po, - - ., 4k and in the
control group by uo, the method can be described as fol-
lows. Calculate the ordinary ¢ statistics 7; for testing the
hypotheses H;: 6; < 6, against the alternatives 6; > 6y
for all  =1,2,...,k. Suppose for simplicity that all treat-
ment cases have the same sample size n, whereas the con-
trol case may have another sample size ny. The variance
is estimated by S?, an ordinary pooled variance with some
degree of freedom v. Denote the means for the different
cases by Y;,i = 0,1,...,n; perform a step-down test of
each of these hypotheses with a multiple level of signifi-
cance «. This means that if ¢; is 1 — « fractile of the ap-
propriate ¢-variate ¢ distribution, then the ordered T; vari-
ables T,y > T(p—1) = - -+ > T{1) are compared successively
with t,,tn_1,...,t1. If T(n) > t,, then the corresponding
hypothesis H ) is rejected. If T,,_1) > t,_1, then the hy-
pothesis H(,,_) is rejected. This continues, and hypotheses
H;y are rejected as long as T(;) > t;. When this relation is
not satisfied, no further rejections are made. Let u be the
(first) 7 for which rejection is not made, and let R be the
set of (original) index for the rejected hypotheses. Then the
confidence intervals

0; —6p>0 for 1€R

and

0; — 00 >Y; — Yo — t,S(1/n+1/ng)/? for i¢R
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have a multiple confidence coefficient 1 — «. Observe that
this is in a sense a mixture between test and confidence in-
terval statements. The second type of statement, 6; — 6y >
Y; — Yo — tuS(1/n + 1/no)'/?, is an ordinary confidence
interval statement. The first type of statement 6; — 6y, > 0
gives confidence sets with a fixed bound 0 for a set of out-
comes, and may also be considered to be test statements.
Bofinger (1987) studied similar problems also for the non-
balanced case with unequal numbers of observations for the
treatment cases.

Hsu (1984) gave multiple confidence intervals for the dif-
ference between parameters 6; and the maximal parameter
maxi<j< 0; in problems involving comparing k treatment
effects 01,0, ..., 0; based on a nonstagewise test. This was
further developed for stagewise tests by Stefansson, Kim,
and Hsu (1988), who also explored the comparison of sev-
eral treatments with a control. To explain this, suppose that

Y;,i=0,1,...,n, are independent statistics in a translation
problem, where Y; — 6; has some known distribution. Let
di,7=1,2,...,k, be constants determined to satisfy

P(Y;‘—ei—Yo—eo<dkf0r’L'=1,2,...,]43):1—6!.

Then multiple one-sided (lower) confidence intervals are
constructed the following way. Order the variables Y;,i =
L,...,n to get Y3y < Y < -+ < Yy). Make a step-down
test of the hypotheses H;: 6; — 6y < 0,7 = 1,2,... k. If
Y(xy — Yo > di, then reject the corresponding hypothesis
Hpy; if Y(g—1) — Yo > dk—1, then reject the correspond-
ing hypothesis H;_1); and so on. Let u be the (first) j for
which H(;) is not rejected, and let R be the set of origi-
nal indices for rejected hypotheses. Then (analogously to
Bofinger 1987) the confidence intervals are given by

0; — 6y >0 for i€ R

and

91—902Y;~Y0—du for Z%R

if uw > 1, whereas
0i—6o > Y —Yo—d1 Vi

if w = 0 (i.e., if all hypotheses are rejected in the stagewise
test). The multiple confidence level is shown to be at least
1 — o. Because even the last hypotheses Hy) is rejected
in this case, all of the bounds are positive. Stefansson et al.
(1988) also discussed multiple comparison with the best and
comparison with the sample best. Their discussion includes
previous related results along with those of Bofinger (1987).

Hayter and Hsu (1994) studied in detail the problem of
constructing confidence intervals based on stagewise tests
in the case of the two-dimensional parameter. Statistics X
and X, are supposed to have a two-dimensional normal
distribution with unknown expectations #; and 6, and com-
mon unknown variance o2 but known correlation p. Fur-
ther, there is a statistic S? independent of X; and X, and
such that the normalized statistic .52 /o2 has a chi-squared
distribution with v df. This is a direct reformulation of a

Journal of the American Statistical Association, June 1999

situation with a comparison of two treatments with a con-
trol.

Let t; be 1 —« fractile in the ¢ distribution with v df, and
let t5 be the 1 — « fractile in the multivariate ¢ distribution
determined by

P(max{Xl — 01,Xg — 92} S tQS) =1-aqa.
Then lower multiple confidence sets are given by

91' > Xi — Stz for i= 1,2 ifmax{Xl,Xg} < tQS,

01y > X1) — Sta
and
f2) >0 if min{Xy, X5} <118
and
max{X1, X2} > t2S,
and
0; > max(X; — Ste,0) for i=1,2
if min{Xy, X5} >t;5
and
max{X1, X2} > t25.

The multiple confidence level is at least 1 — «. This confi-
dence interval method is related to a stagewise step-down
test.

Hayter and Hsu (1994) have also constructed confidence
intervals related to step-up tests. Let ¢; = ¢; and determine
co by.the relation

P(mln{X1 — 91,X2 — 92} S C]S
and
max{X; —01,Xs — 62} <25)=1-a.

Then a multiple confidence interval is given by

0; > X;— Scp for i=1,2, if max{X;, X2} <c1S;
0; > X; — Sca
and
0; > X; —Sci, ifeiS<X;<eS

and

X; <15

0; >0
and
0; > X; —Sci, if X; > ¢S

and

X; <cilS
and
0; > max(X; — Stg,0) for ¢=1,2,

if min{Xl,Xg} > t1.5.
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Observe that the statements of the test type ¢; > 0 may
appear in both the step-down and step-up cases. Hayter and
Hsu (1994) also compared the step-down and step-up one-
sided confidence intervals and discussed two-sided confi-
dence intervals. :

In this article I present a completely different type of mul-
tiple one-sided confidence sets, directly related to stagewise
step-down and step-up tests, which are reliable and do not
suffer from the inconvenience of only sometimes giving test
type statements. To obtain full correspondence with stage-
wise tests, I introduce and use a new concept—directional
confidence set for a parameter—instead of the ordinary one-
sided confidence interval for a parameter. These directional
confidence sets turn out to be subsets of the classical confi-
dence sets, defined as one-sided confidence intervals for pa-
rameter components. This means that my method is a pure
refinement of the classical methods, in contrast to the other
methods described earlier, which all may give worse re-
sults than the classical methods under some circumstances.
However, the confidence sets are rather complicated when
the parameter vector has many components of inferential
interest.

2. AN INTRODUCTORY EXAMPLE

In an investigation of two placmiogen activator inhibitors
(PAI-1 and PAI-2) in healthy pregnant women, measure-
ments were made on 41 women during the 33rd week of
pregnancy. The means for these measurements are 96.0 and
147.8, units and the standard deviations are 28.6 and 38.7
units. From medical knowledge, it is known that the depen-
dence between these two variables is small, which is also
seen empirically. The observations are assumed to be nor-
mally distributed, which is also supported empirically. Thus
I use a model in which the two types of measured values
are normally distributed with unknown expectations ¢; and
62 and variances o? and o2.

Using the Bonferroni method leads to a 95% upper confi-
dence set for the two-dimensional parameter (6, 62) defined

by
2.02-28.6

=105.0
VAl

61 <96.0+

and
2.02 - 38.7

Va1

This is thus a confidence set statement on the position of
the two-dimensional parameter (61, 65).

The set outside this confidence set can be divided into
three subsets:

Oy < 147.8 + = 160.0.

a. the set #; > 105.0 and 65 > 160.0, where both com-
ponents 6; and 6, are considered unacceptably large;

b. the set §; > 105.0 and 0, < 160.0, where 6#; is con-
sidered unacceptably large but 65 is not; and

c. the set ; < 105.0 and 6, > 160.0, where 0, is con-
sidered unacceptably large but 6, is not.
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This means a more precise statement than just a confidence
set of acceptable points for the two-dimensional parameter.
For nonacceptable points, a statement is given as to why
they are not acceptable. It is pointed out which parameter
components are unacceptably large. This is a true multiple
confidence statement.

Can the different “rejection sets” in the foregoing exam-
ple be changed to a more general form, while still giving
reasonable protection against erroneous statements? For ex-
ample, is it possible to change the sets according to Figure
1? The dotted line is an upper confidence bound for the
parameter component ¢; depending on the other parame-
ter component #,. The dashed line is an upper confidence
bound for the parameter component 6, depending on the
other parameter component 6;.

Observe that the confidence set for the two-dimensional
parameter (61, 65), defined as the intersection of the two
confidence sets for the individual components, is the same
as in the previous case. Only the rejective statements are
changed, and in particular the strong statement that both
components are unacceptably large is now made on a larger
set. This might mean a greater risk of falsely declaring a
parameter component to be unacceptably low. If, for in-
stance, the true parameter point is (61,62) = (99.0,155.0),
then a wrong rejective statement on the component 6, is
made for the point (6y1,002) = (98.5,165.0). For this point
there is the correct statement 0y < 6go = 165.0 and the
wrong statement 6; < 6p; = 98.5. A wrong statement of
this type occurs as soon as the upper boundary for 6; drops
below the true 6, for any 6s.

In the multiple procedures, bounds are given for all pa-
rameter components in all points. The bounds may be gen-
eral, but they will have a “directional character” like in this
example. The confidence requirement is that there should
be a small predetermined probability of making a false re-
jective statement on any parameter component in any point.
The sets where rejective statements are made for different
components are determined by the “directional” confidence
sets for the parameter components.

The classical multiple confidence interval methods with
constant boundaries satisfy the requirement in the previous
paragraph. Is it at all possible to “refine” the upper bounds
by making upper nonconstant bounds and still satisfy the

62
170 F
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Figure 1. Upper Confidence Bound for 6; Depending on 6, (- - -)
and Upper Confidence Bound for 6, Depending on 61 (——-).



492
164 '
02 :
162 X
|
— —168| — —'—--—-Tt
158 I — — — — —
]
156 :
1

104 106 108 61

Figure 2. Upper Confidence Bound for 6; Depending on 67 (---)
and Upper Confidence Bound for 6, Depending on 61 (-——) With a
Probability of at Most .05 for any False Rejective Statement.

requirement? The answer is yes. Figure 2 illustrates the
bounds

105.0 for
103.5 for

6,
601

02 < 160.0

<
< 05 > 160.0
and

160.0 for
158.0 for

02
6o

0, <£105.0

<
< 61 > 105.0.

Here the bounds 103.5 and 158.0 are determined as
1.68 - 28.6

96.0 +
vzl

=103.5

and
1.68 - 38.7

vz

for the 95% quantile 1.68 in the ¢ distribution with 40 df. To
show that the probability of any wrong rejective statement
is at most equal to .05, I consider a simple step-down mul-
tiple test of the hypotheses 61 = 61 and 6, = 0y, against
alternatives 01 < 6y and 0 < 6po. The step-down test based
on the Bonferroni inequality means rejecting 6; = 6oy if

147.8 + =158.0

Y1 — 0o

T = < —2.02
YT S /Al
or
Yo — o2
T, = < —2.02
2T s, VAl
and
Y — 0o
T = < —1.68.
NN

This gives exactly the upper boundary for #; confidence
set. The upper boundary for the 6, confidence set is ob-
tained similarly. This calculation shows that the probability
of any false rejective statement in any parameter point is at
most .05.
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The general mathematical formulations are given in the
next section. These types of multiple confidence sets have a
natural correspondence to multiple test, which is indicated
in the last calculation in the foregoing example.

3. DIRECTIONAL CONFIDENCE SETS

To describe my multiple confidence sets suitably, I need
a simple set concept.

Definition 1. Let Q C R™, let §; be a coordinate in 2,
and let e; be the corresponding (positive) coordinate axis
unit vector. Then a set .S; C € is said to be 6; directional if
it satisfies

0eS;=0+ae; €5; Va>0.

The definition means that the set has an unbroken pro-
longation in the 6;-axis direction. The meaning of the anal-
ogous notation “—6;-directional set” is easily understood.
One-sided coordinate confidence intervals (e.g., 61 < 6p1)
generate confidence sets, which are directional sets. How-
ever, the boundary of a directional set needs not be constant.
If, for example, f(62,0s,...,0,,) is any function defined for

all 05,03, ...,0,,, then the sets

{0€Q: 0, > f(62,603,...,0m)}
and

{0€Q: 61 > f(02,03,...,0m)}

are both 6, -directional sets. Every 6, -directional set S7 can
be characterized similarly by defining

f1(02,03,...,0m) = ifl)lfSh

but the type of inequality (> or >) may depend on
02,03, ...,0,. A ;-directional set S; also has the property
that its complement R; = {2 — S; is a —0;-directional set.

I now state a general definition of multiple risk for up-
per confidence bounds, which are thus —6;-directional sets.
Denote the true parameter by 6 = (6,60s,...,6,,) and let
0o = (6o1,002,...,00m) denote any parameter point. Fur-
ther, let

1(0,00) = {i € {1,2, ...

For the components 6; with index in I(6,6,), a wrong re-
jective statement would result if 6y; was above the upper
bound for 6;, because this would imply a wrong statement
fo; > 0;. Because the confidence sets are directional, the
most crucial case is §y; = ;. Wrong statements are avoided
if the set

{6o: 6p; < 0;forieIand fy; >6; fori¢g I}

ym}: 0o < 05}

is covered by the intersection
) S:.
i€l

To avoid all kinds of possible wrong (rejective) statement,
this condition should be satisfied for all index sets I C
{1,2,...,m}. Thus, I state the following definition of mul-
tiple confidence level.
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Definition 2. Suppose that for each i € I, =
{1,2,3,...,m}, the set S; is a —6;-directional set. Then
the set {S;(X),7 € Ip} of upper confidence directional sets
has a multiple confidence level q if, for all § € Q and for
all nonempty index sets I C Iy, it holds that

Py9 <CI(9) <N Si(X)> > q,
» i€l
where Cr(6) = {6o: 0o; < 6; for ¢ € I and y; > 0; for
i ¢ I} and ¥ is a possible nuisance parameter.

The reason for introducing the nuisance parameter ¥ in
the definition is that quite often one is interested in making
multiple confidence statements only on some main param-
eter coordinates. For instance, in a comparison of several
treatments with a control, the expectation differences be-
tween treatments and control are often main parameters,
whereas the expectation for the control together with an
unknown variance is considered to be a (two-dimensional)
nuisance parameter. The nuisance parameter is not directly
involved in the multiple inference, but it is varied in the
restriction on the hitting probability. For the sake of sim-
plicity, Definition 2 of multiple level of significance is given
only for upper directional bounds. A definition for lower di-
rectional bounds can be formulated analogously. I can now
state a general theorem on correspondence between one-
sided multiple tests and one-sided directional confidence
sets.

Theorem 1. Let X be a (multidimensional) random vari-
able with distribution determined by (6,%), where 6 is
a main parameter in a parameter set 2 and ¢ is a nui-
sance parameter. Suppose that for each 6, € Q and each
1 € Ip = {1,2,...,m} there is a one-sided multiple level
a test of the hypotheses H;(6p): 6; = 6o; against the al-
ternatives 6; < 6g;, with acceptance regions A;(fp), which
satisfy the following conditions.

a. For all X,i € I and 6y, j # i, there exists a fp; such
that X € Az(ao) for 6y = {901, 0oz, Bos, . - . aGOm}~

b. If 90 = {001,«902,003, .. .,Hom} and 96 = {961,962,
0035 - - - »00m } are two parameter points with 65; < 6o,
for all j € Iy, then A;(6)) 2 Ai(fp) for all ¢ € I.

c. If for each I C I, the set Af(fp) is defined as the
infimum of A,(6}) over all 06]- for j € Iy — I and fixed
963‘ = 90j for j € I, then Pg,y(X € ﬁze[A{(H)) >
1—-a.

Then the sets {S;(X): € Iy} defined by

Si(X)={00€QZ XGAZ‘(HO)}, 1 € Iy
are —6;-directional (upper bound) confidence sets with mul-
tiple confidence level ¢ =1 — o

Proof. In the construction of S;(X), consider fixed 6
coordinates 6y; for j # 4. Condition a ensures that for
each outcome there is at least one point 8p; in a confidence
set on this line. Further, condition b ensures that A;(6;) 2
A;(0o) for points 6y and 6; with ordered values ), < 6;.
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It thus follows that S;(X) is a —6;-directional set. To prove
that the constructed confidence sets have multiple confi-
dence level ¢ = 1 — a, let the true parameter be denoted
by 6 and take into account the coverage probabilities of the
sector sets Cr(0) of 6. It needs to be shown that for all
IC Iy, ng«g(C](@) - ﬁieISi<X)) > q=1— a. Now by the
definition,

P9 <CJ(9) <N Si(X)>

iel

=Py (cl(o) C{locx X e Ai(eo)}>

i€l

= Pgﬁ(C[(@) - {90 e Xe A1(00) Vie I})

=Py (01(0) C{loe: Xec ﬂAi(Go)}> .

iel
However,

() Ai(6o) 2 () Al (6o).

i€l i€l
Thus

Py 9 <CI(0) - {00 e Xe mA,;(G@})

i€l

> Py (cf(e) c {90 €O Xe ﬂAf(G@})

i€l
. I
> Py 9(Cor(6) C {90 € X e )A (00)}) ,
i€l

where Co](@) = {90: Oo; < 6; for i € I}

Both the set Cyr(f) and the set {fy € : X €
NierAl(0o)} are determined by the 6 coordinates with index
i € I. Further, by condition c,

Py.s (X € ﬂA{(@)) >1—o,
i€l
and the event X € N;cr Al (6) implies that
6e {00 e Xe ﬂA{(GO)}.
icl
Thus, finally,

Py,9 <CI(9) <N Si(X)>

i€l

> Py (om(e) C {90 e Xe ﬂA{(O@})

iel

iel

> Pyg (XeﬂA{(&)) >1—o.



494

4. TWO SPECIAL CASES OF DIRECTIONAL
CONFIDENCE SETS

It is rather easy to determine whether the conditions of
Theorem 1 are satisfied for different types of multiple tests.
I now give two examples of directional confidence sets, one
based on a step-down test for the comparison of several
treatments with a control and one based on a step-up test
for the independent test statistic situation.

Example 1. In the simplest balanced model of the Dun-
nett (1955) method of multiple comparisons with a con-
trol, all observations are supposed to be independent and
normally distributed with the same variance o2, a control
observation series has expectation po and sample size no,
and k treatment observation series have expectations ji;,7 =
1,2,...,m and the same sample size n. For this model I in-
troduce the notation 6; = p; — po,% = 1,2,...,m, and 9 =
(110, 02). T consider the multiple tests of H;(6p): 6; = 6o;
against the alternatives 6; < 6g;, for i € I in the different
points 6. This then corresponds to the upper bounds of 6;
for s € I as in Theorem 1.

The test statistic used for the test of H;(6p) in the proce-
dure is

Y; — Yo — 0o

Sy/1/n+1/ng’

where Y; is the mean in the ith series and 52 is an ordi-
nary weighted variance estimate. In the Marcus et al. (1976)
step-down version of the Dunnett test, first the 7;(6o;)’s are
ordered to T(1)(fo(1)) < T(2)(bo2)) <+ < Tim)(Oo(m))-
For the foregoing alternatives, rejection is made for small
values of T;(6p;). Thus I reject successively hypotheses
H(l) (90), H(z) (90), ..., as IOIlg as T(i) (90(1)) < dm+1—is
where d,,,1_; is the test constant of a one-step Dunnett
test with m -+ 1 — ¢ treatment groups and one control.
These multiple tests trivially satisfy condition a of The-
orem 1. Obviously also the acceptance sets are nonin-
creasing with increasing component values. Finally, con-
dition ¢ is satisfied because the sets A(6p) are in fact
just the acceptance sets for the individual tests in a mul-
tiple test of H;(6o) for i € I. Introducing further hypothe-

T;(00i) =

4
ITI v
-4 -2 b 4
-2
I 11
-4

Figure 3. The Four Regions With Different Values of the Upper
Bounds of 6; (as Functions of 8 and 03). The figure is normalized
with the estimate (Y2 — Yo; Y3 — Yp) in the origin. The region notations
I, Il, Ill, and IV correspond to the order given in the equation at the end
of Example 1.
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ses besides those with index in I may just make the ac-
ceptance sets larger. Restricting to ¢ € I, however, gives
Py.s(X € NierAL(6)) > 1 — o, because the involved accep-
tance sets are those of the multiple test of hypotheses with
index ¢ € I.

Thus this results in multiple directional sets for the pa-
rameters 6;,7 € Iy by the method given in Theorem 1. In
the three-dimensional case, it can be given explicitly. For
instance, the #; directional confidence set (upper bound) is
given by

01 <Y, —Yy+dsKS for 0, <Yy —Yy+d3sKS
and 03 <Y3-—Yy,+d3sKS,
9 <Y, —Yy+dyKS for 0y >Yy — Yy +d3sKS

and 03 <Y3 —Y,+d2KS,

0, <Yq - Yy +doKS for 6, SYQ—Y()-I-dQKS

and 03 > Y3 — Yy +d3sKS,
and

f1 <Y —Yy+diKS for the remaining cases,
where K = +/(1/n) + (1/no)-

The bounds of the defining regions are shown in Figure 3.

The directed confidence sets based on a step-down test
are always subsets of the classical simultaneous confidence
sets with the same confidence coefficient. The intersection
of all the directed confidence sets are the same in both
cases. Certain parts are included in the classical directed
confidence statements but not included in the directed con-
fidence sets based on step-down tests. The directional confi-
dence sets based on step-down tests eliminate more param-
eter components than does the classical directional confi-
dence sets with constant bounds.

Example 2. Consider m independent statistics 7;,7 =
1,2,...,m, whose distributions are determined by 6 =
(61,02,0s,...,0,). Suppose further that the statistics T;
are continuous and that the cumulative distribution function
F(0;,t;) of T; is a nonincreasing continuous function of 0;.
An ordinary upper confidence limit of 6; with confidence
coefficient ¢ at outcome 7T} = t; is obtained by solving the
equation F(6;,t;) = 1 — ¢ in 6;. I denote this upper bound
by 0; (q) A level-o test of Hi(eoi)i 0; = Bo; against 0; < Bo;
is analogously obtained by rejecting 6; = 6p; for outcome
T, =t; if F(90i7ti) < a.

To construct multiple directional confidence sets for 6 =
(61,02,03,...,0,,), I consider a step-up multiple test of
Hi(GOi): 0; = Oo; against 0; < 001'17: =12,...,m with a
multiple level of significance a.

Let ¢1,ca, . .., cm be successively determined by P(U; <
¢1) = 1 — a, where Uy is uniform (0, 1); P(Uqy <
c1,U(g) < c2) = 1 —a, where Upy) and U(z) are order statis-
tics from two independent uniform (0, 1) statistics U; and
UQ;P(UU) < ¢t = 1,2,3) = 1 — «, where U(z) 7=1,2,3
are order statistics from three independent uniform (0, 1)
statistics U; ¢ = 1,2, 3; and so on. The first three constants
for o = .05 are ¢; = .95,co = .975, and c3 = .9847.



Holm: Muitiple Confidence Sets Based on Stagewise Tests

The multiple test of H;(6o;): 6; = 6o, against 6; < 6y;,7 =
1,2,...,m can be performed by calculating the “obtained
p values”

73(00i) = F(6oi, ts)
and ordering those to r(1)(fp1)) < r2(foz)) < -+ <
7(m) (@o(m))-

If 7(m)(Bo(m)) < 1 — c1, then all hypotheses are rejected;
otherwise, if 7(,_1)(fo(m—1)) < 1 — co, then the hypotheses
H;)(0o(;y) for i < m — 1 are rejected, and so on. It is easily
seen that conditions a, b, and ¢ of Theorem 1 are satisfied
for this test.

The event 7;(0o;) = F(6os,t;) < 1 — c; is equivalent to
the event 6;(c;) < 0o;. Thus the test conditions for testing
Hi(e()i): 0; = 0y; against 6; < 0y;,i = 1,2,...,m, can be
expressed in the bounds 6;(c;). For instance, the case of
three parameters has the following directional confidence
set (upper bound) for 6;:

0, < 6, (Cl) for 6, < 92(61) and 65 < 93(01),

0 < 91(02) for 65 < 92(62) and 63 > 03(01),

0, < 91(02) for 6y > 92(61) and 65 < 93(62),
and

61 < 61(c3)

In the first example based on a step-down test, the di-
rectional confidence sets for the different parameters are
subsets of the classical confidence sets. This is not the case
in the second example based on a step-up test. To show
this, I focus on the case where Y;,i = 1,2, 3 are indepen-
dent and normally distributed with variance 1 and expec-
tations 6;,7 = 1,2,3. Making directional confidence sets
(upper bounds) based on a stagewise step-up test with mul-
tiple confidence coefficient .95 as at the end of the previous
section leads to the following directional confidence set for
912

6, <Y:+1.645 for 6y <Y+ 1.645
and 03 < Y3 + 1.645,

for the remaining cases.

01 <Y1 +1.960 for 6y <Y+ 1.960

and 03 > V3 + 1.645,

0, <Y1 +1.960 for 6y > Y5+ 1.645
and 05 < Y3 + 1.960,
and

61 <Y1 +2.163 for the remaining cases.

495

In this case the classical multiple confidence set in the 6,
parameter direction is 6; < Y; +2.121, with multiple confi-
dence coefficient ¢ = .95. This is compensated for in other
parts of the parameter space.

5. DISCUSSION

I have demonstrated how directional confidence sets can
be determined from stagewise tests. Requirements for these
directed confidence sets are that component statements all
be correct, not only that the intersection of the confidence
sets covers the true parameter point. It turns out that the
directional confidence sets based on stagewise tests may
sometimes be subsets of the classical directional confidence
sets. The new directional confidence sets are also invari-
ant under translation in problems with translation parame-
ters. Unfortunately, the directional confidence sets based on
stagewise tests are rather complicated when there are many
components in the parameter vector. The directional confi-
dence sets give a natural correspondence between multiple
tests and multiple confidence sets.

[Received June 1997. Revised December 1998.]

REFERENCES

Bofinger, E. (1987), “Step-Down Procedures for Comparison With a Con-
trol,” Australian Journal of Statistics, 29, 348-364.

Dunnett, C. W. (1955), “A Multiple Comparison Procedure for Comparing
Several Treatments With a Control,” Journal of the American Statistical
Association, 50, 1096-1121.

Dunnett, C. W., and Tamhane, A. C. (1992), “A Step-Up Multiple Test
Procedure,” Journal of the American Statistical Association, 87, 162—
170.

Hayter, A. J., and Hsu, J. C. (1994), “On the Relationship Between Step-
wise Decision Procedures and Confidence Sets,” Journal of the American
Statistical Association, 89, 128-136.

Hochberg, Y., and Tamhane, A. C. (1987), Multiple Comparison Proce-
dures, New York: Wiley.

Hsu, J. C. (1984), “Constrained Two-Sided Simultaneous Confidence Inter-
vals for Multiple Comparisons With the Best,” The Annals of Statistics,
12, 1136-1144.

(1996), Multiple Comparisons. Theory and Methods, London:
Chapman and Hall.

Marcus, R., Peritz, E., and Gabriel, K. R. (1976), “On Closed Testing
Procedures With Special Reference to Ordered Analysis of Variance,”
Biometrika, 63, 655-660.

Stefansson, G., Kim, W-C., and Hsu, J. C. (1988), “On Confidence Sets in
Multiple Comparisons,” Statistical Decision Theory and Related Topics
IV, 2, 89-104.

Tukey, J. W. (1953), “The Problem of Multiple Comparisons,” lecture
notes, Princeton University, Dept. of Statistics.






