Multiple Testing




Test Hypothesis in Microarray Studies

Microarray studies

 aim to discover genes in biological samples that are
differentially expressed under different experimental conditions

« aim at having high probability of declaring genes to be significantly
expressed if they are truly expressed
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(high power ~ low type Il error risk),
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Multiple Testing

» Microarray studies typically involve the simultaneous study of thousands of genes,
the probability of producing incorrect test conclusions (false positives and false negatives)
must be controlled for the whole gene set.

 for each gene there are two possible situations
- the gene is not differentially expressed, e.g. hypothesis H is true
- the gene is differentially expressed at the level described by the alternative
hypothesis H,

 test declaration (decision) - the gene is differentially expressed (H, rejected)
- the gene is unexpressed (H, not rejected)

test declaration
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PLE ol iess (H, not rejected) (H,rejected)

false positive
(type | error a)

unexpressed (Hg) true negative

false negative

expressed (H,) (type Il error B)
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Multiple Testing

Testing simultaneously G hypothesis H,,..., Hg, G, of these hypothesis are true

# not rejected # rejected
hypothesis hypothesis

# true hypothesis

(unexpressed genes) = \

# false hypothesis
(expressed genes)

S

total

e counts U, V, S, T are random variables in advance of the analysis of the study data

* observed random variable R = number of rejected hypothesis
« U,V,S, T notobservable random variables
 V =number of type | errors (false positives)

T = number of type Il errors (false negatives)

Dudoit et al. (2002) Multiple Hypothesis Testing in Microarray Experiments, Technical Report



Type | and Il Error Rates

# not rejected # rejected
hypothesis Hypothesis

# true hypothesis

(unexpressed genes) = \

# false hypothesis

(expressed genes) =

total

a, = probability of type | error for any gene = E(V)/G,
B, = probability of type Il error for any gene = E(T)/(G-G,)
ar = family-wise error rate (FWER) = P(V > 0) (probability of at least one type | error)

False discovery rate (FDR) (Benjamini & Hochberg, 1995)
= expected proportion of false positives among the rejected hypothesis

VIR :R>0
"OR =EQ) Q:{ 0 :R=0

Dudoit et al. (2002) Multiple Hypothesis Testing in Microarray Experiments, Technical Report



Strong vs. weak control

* expectations and probabilities are conditional on which hypothesis are true

e strong control:

control of the Type | error rate under any combination of true and false
hypotheses, i.e., any value of G,

ﬂgmo H,, forall G, U{L...,G}, |G, |=G,

e weak control:
control of the Type | error rate only when all hypothesis are true,
l.e. under the complete null-hypothesis

Hy =5 H,, with G, =G

g’
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Notations

For hypothesisH,, g=1,..., G:
observed test statistics t

observed unadjusted p-values p,

Ordered p-values and test statistics:

{rg }g =1,...G
P, <P, <...S<P,

It 2]t |2... 2]t |

Dudoit et al. (2002) Multiple Hypothesis Testing in Microarray Experiments, Technical Report



Control of the family-wise error rate (FWER)

observed . Holm Hochberg
Bonferroni
p-values Step-down Step-up
P, a/G a/G alG 4
P, a/G a/(G-1) a/(G-1)
P, a/G a/(G-g+1) a/(G-g+1)
Pr.. a/G a/2 a/2

Pr. a/G o v o




Control of the family-wise error rate (FWER)

single-step Bonferroni procedure
reject H, with p,<a/G, adjusted p-value Py =min(G py,1)

Holm (1979) — step-down procedure
g' =min{g:p, >a/(G-g+1)}, reject H; forg=1..,9" -1,

adjusted p-value p, = kmlax{min((m -k +1)p, 1)}
=1...9

g

Hochberg (1988) — step-up procedure
g =max{g:p, <a/(G-g+1)}, reject H, forg=1..,9",
adjusted p - value '|5rg = kggﬁ'r.’\m{min((G -k +1)p, 1)}
Single-step Sidak procedure
adjusted p-value p, =1-(1-p,)°

Dudoit et al. (2002) Multiple Hypothesis Testing in Microarray Experiments, Technical Report



Resampling

Estimate joint distribution of the test statistics T,,...,T; under the complete null
hypothesis Hg by permuting the columns of the Gene expression data matrix X.

Permutation algorithm for non-adjusted p-values
For the b-th permutation, b =1,...,B
1. Permute the n columns of the data matrix X.
2. Compute test statistics t; ,, ..., tg, for each hypothesis.
The permutation distribution of the test statistic T, for hypothesis H, g=1,...,G, is
given by the empirical distribution of t;,, ..., t .

For two-sided alternative hypotheses, the permutation p-value for hypothesis H, is

B
Py =52 1ty 21 1)
b=1

where I(.) is the indicator function, equaling 1 if the condition in parenthesis is true,

and O otherwise.

Dudoit et al. (2002) Multiple Hypothesis Testing in Microarray Experiments, Technical Report



Control of the family-wise error rate (FWER)

Permutation algorithm of Westfall & Young (1993)

- step-down procedure without assuming t distribution of
the test statistics for each gene’s differential expression

- adjusted p-values directly estimated by permutation
- strong control of FWER
- takes dependency structure of hypotheses into account



Control of the family-wise error rate (FWER)

Permutation algorithm of Westfall & Young (maxT)

- Order observed test statistics: [t |=[t [=...=]|t

- for the b-th permutation of the data (b = 1,...,B):
» divide data into artificial control and treatment group
e compute test statistics t,,, ..., tg,
e compute successive maxima of the test statistics

Ugp =| L b |

Uy, =max{ug,p,|t [} far g=G-1..,1

f

- compute adjusted p-values: 5 B
p j p =3I, 21t
b=1

Dudoit et al. (2002) Multiple Hypothesis Testing in Microarray Experiments, Technical Report



Control of the family-wise error rate (FWER)

Permutation algorithm of Westfall &Young — Example

| | | |
gene |t] | | | ]
ene t u l(u,>]|t D=/B
1 0.1 trG 19 |ty b (up>[t]) 2 P =X
1 1.3 1.3 1 935 0.935
4 (02|t _ M
4 0.8 1.3 1
. 58 : 2 876 0.876
5 3.0 | 3.0 1
5 3.4 tr2 2 138 0.138
2 21 | 3.0 0
3 71 trl 8 145 0.145
| 3 1.8 | 3.0 0 48 0.048
sort observed
values B=1000 permutations adjusted p-values

O. Hartmann - NGFN Symposium, 19.11.2002 Berlin



Example: Leukemia study, Golub et al. (1999)

e patients with ALL (acute lymphoblastic leukemia) n,=27
AML (acute myeloid leukemia) n,=11

 Affy-Chip: 6817 genes

* reduction to 3051 genes according to certain exclusion criteria

for expression values



Example: Leukemia study, Golub et al. (1999)

Sorted adjusted p-values
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Example: Leukemia study, Golub et al. (1999)
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Control of the False Discovery Rate (FDR)

« While in some cases FWER control is needed, the multiplicity problem in
microarray data does not require a protection against against even a single
type | error, so that the serve loss of power involved in such protection is not
justified.

* Instead, it may be more appropriate to emphasize the proportion of errors
among the identified differentially expressed genes.
The expectation of this proportion is the False Discovery Rate (FDR).

V/R :R>0
FDR:E(Q), Q:{ . .

R = number of rejected hypothesis

V = number of type | errors (false positives)

Reiner, Yekutieli & Benjamini (2003) Bioinformatics 19, 368-375



Control of the False Discovery Rate (FDR)

1. Linear step-up procedure (Benjamini & Hochberg, 1995)
g =max{g: p. <ga},  rejectH, forg =1....9°,

adjustedp-value p, = kminG{min(% p, )}
=g,...,

g

- controls FDR at level g for independent test statistics FDR < @G—O <(

2. Benjamini & Yekutieli (2001)
- procedure 1 controls the FDR under certain dependency structures
(positive regression dependency)
- step-up procedure for more general cases (replace q by g /Zillli )

g = max{g P, <qlg /(GZ?:llli) } rejectH, forg=1...,9",
: ~ . : G ,,-
adjusted p-value p, = kiglnG{ min(p, %Zizllll,l)}
- this modification may be to conservative for the microarray problem

Reiner, Yekutieli & Benjamini (2003) Bioinformatics 19, 368-375



Control of the False Discovery Rate (FDR)

Adaptive procedures (Benjamini & Hochberg, 2000)

- try to estimate G, and use g*=q G,/G instead of g in procedure 1 to gain more power

- Storey (2001) suggests a similar version to estimate G,, which are implemented in
SAM (Storey & Tibshirani, 2003)

- adaptive methods offer better performance only by utilizing the difference between
G,/G and 1, if the difference is small, i.e. when the potential proportion of
differentially expressed genes is small, they offer little advantage in power while their
properties are not well established.

Resampling FDR adjustments

- Yekutieli & Benjamini (1999) J. Statist. Plan. Inference 82, 171-196
- Reiner, Yekutieli & Benjamini (2003) Bioinformatics 19, 368-375

Reiner, Yekutieli & Benjamini (2003) Bioinformatics 19, 368-375



Example: Leukemia study, Golub et al. (1999)

Sorted adjusted p-values

1.0

0.8

0.4

0z

0.0

L A
"

Bonferroni
Haolm
Hochberg
maxT

EH

BY
Linadjusted
SANM Efron
SAM Tusher

1000

Mumber of rejected hyvpotheses

2000

2500 3000

Dudoit et al. (2002)




Example: Apo Al Exp., Callow et al. (2000)

Apolipoprotein A1 (Apo Al) experiment in mice

 aim: identification of differentially expressed genes in liver tissues

e experimental group: 8 mice with apo Al-gene knocked out (apo Al KO)
» control group: 8 C57B1/6 mice
» experimental sample: cDNA for each of the 16 mice = labeled with red (Cy5)

» reference-sample: pooled cDNA of the 8 control mice = labeled with green (Cy3)

« cDNA Arrays with 6384 cDNA probes, 200 related to lipid-metabolism

16 hybridizations overall



Example: Apo Al Exp., Callow et al. (2000)
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Beispiel 2: Apo Al Exp., Callow et al. (2000)
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Multiple Testing - Summary

* For multiple testing problems there are several methods to control the family-wise
error rate (FWER).

* FDR controlling procedures are promising alternatives to more conservative FWER
controlling procedures.

» Strong control of the type one error rate is essential in the microarray context.

» Adjusted p-values provide flexible summaries of the results from a multiple testing
procedure and allow for a comparison of different methods.

» Substantial gain in power can be obtained by taking into account the joint
distribution of the test statistics
(e.g. Westfall & Young, 1993; Reiner, Yekutieli & Benjamini 2003).

« Recommended software: Bioconductor R multtest package
(http://www.bioconductor.org/)

Adapted from S. Dudoit, Bioconductor short course 2002
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2 X 2 Factorial Experiments

Two experimental factors, e.g. treatment (untreated T -, treated T +)

strain (knock out KN, wild-type WT)

Linear model y =B, +BX +BX, + Bx X, +&  £~N(0,0°)
. = 0 :strain =KN

L' |1 :strain =WT
X, = 0 :treatment =T — strain

1 :treatment =T +
KN WT
B, - strain effect - t T - By Byt By
reatmen
- treatment effect

B, T+ BotB,  Bo+B, +Bs

B, - interaction effect of
strain and treatment



2 X 2 Factorial Experiments

p; >0
A A
,Bo+:81+182+:83 T 180+:81+182+:83 T
,Bo+182 e 180+:82 e
,Bo + :81 e :80 +:81 e
,Bo T 180 T




Bo+ B,

Bo+ B+ B+ B A
Bo+ B, A

B, -

2 X 2 Factorial Experiments
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2 X 2 Factorial Experiments

Ho: B3=0

Hy: B3 #0

- effect of strain is independent of treatment or
- effect of treatment is independent of strain or
- strain and treatment are additive

- treatment interacts with strain

- treatment modifies effect of strain

- strain modifies effect of treatment

- treatment and strain are nonadditive

Ho: B =B;=0

Hy: B, #00rB;#0

- strain is not associated with expression Y

- strain is associated with expression Y
- strain is associated with expression Y for either T- or T+

Ho: B, =B3=0

Hy: B, #00rpB;#0

- treatment is not associated with expression Y

- treatment is associated with expression Y
- treatment is associated with expression Y for either KN or WT

F.E. Harrell, Jr. (2001) Regression Modeling Strategies, Springer



2 X 2 Factorial Experiments - Treatment effect




2 X 2 Factorial Experiments - Strain effect
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2 X 2 Factorial Experiments - Interaction effect
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