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Test Hypothesis in Microarray StudiesTest Hypothesis in Microarray Studies

Microarray studies 

• aim to discover genes in biological samples that are
differentially expressed under different experimental conditions

• aim at having high probability of declaring genes to be significantly  
expressed if they are truly expressed 
(high power ~ low type II error risk),
while keeping the probability of making 
false declarations of expression 
acceptably low 
(controlling type I error risk)

Lee & Whitmore (2002) Statistics in Medicine 21, 3543-3570
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Multiple TestingMultiple Testing

• Microarray studies typically involve the simultaneous study of thousands of genes,
the probability of producing incorrect test conclusions (false positives and false negatives)
must be controlled for the whole gene set.

• for each gene there are two possible situations
- the gene is not differentially expressed, e.g. hypothesis H0 is true
- the gene is differentially expressed at the level described by the alternative

hypothesis HA

• test declaration (decision)  - the gene is differentially expressed (H0 rejected)
- the gene is unexpressed (H0 not rejected)

expressed
(H0 rejected)

unexpressed
(H0 not rejected)true hypothesis

true positivefalse negative
(type II error ββββ)expressed (HA)

false positive 
(type I error αααα)true negativeunexpressed (H0)

test declaration

Lee & Whitmore (2002) Statistics in Medicine 21, 3543-3570



Multiple TestingMultiple Testing

Testing simultaneously G hypothesis  H1,..., HG ,  G0 of these hypothesis are true

• counts U, V, S, T are random variables in advance of the analysis of the study data

• observed random variable R = number of  rejected hypothesis

• U, V, S, T not observable random variables 

• V = number of type I errors (false positives)

T = number of type II errors (false negatives)

GRG - Rtotal

G - G0ST# false hypothesis
(expressed genes)

G0VU# true hypothesis
(unexpressed genes)

# rejected 
hypothesis

# not rejected
hypothesis

Dudoit et al. (2002) Multiple Hypothesis Testing in Microarray Experiments, Technical Report



Type I and II Error RatesType I and II Error Rates
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GRG - Rtotal

G - G0ST# false hypothesis
(expressed genes)

G0VU# true hypothesis
(unexpressed genes)

# rejected 
Hypothesis

# not rejected
hypothesis

αααα0 = probability of type I error for any gene = E(V)/G0

ββββ1 = probability of type II error for any gene = E(T)/(G-G0)

ααααF = family-wise error rate (FWER) = P(V > 0)  (probability of at least one type I error)

False discovery rate (FDR) (Benjamini & Hochberg, 1995)
= expected proportion of  false positives among the rejected hypothesis

Dudoit et al. (2002) Multiple Hypothesis Testing in Microarray Experiments, Technical Report



Strong vs. weak controlStrong vs. weak control

• expectations and probabilities are conditional on which hypothesis are true

• strong control:
control of the Type I error rate under any combination of true and false  
hypotheses, i.e., any value of G0

• weak control:
control of the Type I error rate only when all hypothesis are true, 
i.e. under the complete null-hypothesis
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NotationsNotations

For hypothesis Hg, g = 1,..., G:

observed test statistics  tg
observed unadjusted p-values  pg

Ordered p-values and test statistics:
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Control of the family-wise error rate (FWER)Control of the family-wise error rate (FWER)

1. single-step Bonferroni procedure
reject Hg with   pg ≤ α/G, adjusted p-value

2. Holm (1979) – step-down  procedure

3. Hochberg (1988) – step-up procedure

4. Single-step Šidák procedure
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ResamplingResampling

Estimate joint distribution of the test statistics T1,...,TG under the complete null 
hypothesis           by permuting the columns of the Gene expression data matrix X.CH0

Dudoit et al. (2002) Multiple Hypothesis Testing in Microarray Experiments, Technical Report

Permutation algorithm  for non-adjusted p-values
For the b-th permutation, b = 1,...,B

1. Permute the n columns of the data matrix X.

2. Compute test statistics  t1,b , ..., tG,b for each hypothesis.

The permutation distribution of the test statistic Tg for hypothesis  Hg , g=1,...,G,  is 

given by the empirical distribution of  tg,1 , ... , tg,B.

For two-sided alternative hypotheses, the permutation p-value for hypothesis Hg is

where I(.)  is the indicator function, equaling 1 if the condition in parenthesis is true, 

and 0 otherwise.
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Control of the family-wise error rate (FWER)Control of the family-wise error rate (FWER)

Permutation algorithm of  Westfall & Young (1993)

- step-down procedure without assuming t distribution of 
the test statistics for each gene’s differential expression  

- adjusted p-values directly estimated by permutation
- strong control of  FWER
- takes dependency structure of hypotheses into account



Control of the family-wise error rate (FWER)Control of the family-wise error rate (FWER)

Permutation algorithm of  Westfall & Young (maxT)

- Order observed test statistics: 

- for the b-th permutation of the data (b = 1,...,B):
• divide data into artificial control and treatment group
• compute test statistics t1b, ... , tGb

• compute successive maxima of the test statistics

- compute adjusted p-values:
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Control of the family-wise error rate (FWER)Control of the family-wise error rate (FWER)

Permutation algorithm of  Westfall &Young  – Example
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Example: Leukemia study, Golub et al. (1999) Example: Leukemia study, Golub et al. (1999) 

• patients with ALL (acute lymphoblastic leukemia) n1=27

AML (acute myeloid leukemia) n2=11

• Affy-Chip: 6817 genes

• reduction to 3051 genes according to certain exclusion criteria

for expression values



Example: Leukemia study, Golub et al. (1999)Example: Leukemia study, Golub et al. (1999)

Dudoit et al. (2002)



Example: Leukemia study, Golub et al. (1999)Example: Leukemia study, Golub et al. (1999)

Dudoit et al. (2002)



Control of the False Discovery Rate (FDR)Control of the False Discovery Rate (FDR)

• While in some cases FWER control is needed, the multiplicity problem in
microarray data does not require a protection against against even a single 
type I error, so that the serve loss of power involved in such protection is not
justified.

• Instead, it may be more appropriate to emphasize the proportion of errors 
among the identified differentially expressed genes.
The expectation of this proportion is the False Discovery Rate (FDR).

R = number of  rejected hypothesis

V = number of type I errors (false positives)

Reiner, Yekutieli & Benjamini (2003) Bioinformatics 19, 368-375
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Control of the False Discovery Rate (FDR)Control of the False Discovery Rate (FDR)

1. Linear step-up procedure (Benjamini & Hochberg, 1995)

- controls FDR at level q for independent test statistics

2. Benjamini & Yekutieli (2001)
- procedure 1 controls the FDR under certain dependency structures
(positive regression dependency)

- step-up procedure for more general cases (replace q by                  )

- this modification may be to conservative for the microarray problem

)},{min(min~     value-p adjusted

,,, for   reject       },:max{

,,

**

1

1

kg

g

rk
G

Ggkr

gG
g

r

pp

ggHqpgg

�

�

=
=

=≤=

{ }
{ } ),/min( min~    value-p adjusted

,,,g for   reject   ,  )//(: max

,,

**

11

11

1

1

∑

∑

==

=

=

=⋅≤=
G

ik
G

rGgkr

g
G

ir

ipp

gHiGgqpgg

kg

g

l

l

qqFDR G
G ≤⋅≤ 0

∑ =

G

i
iq

1
1//

Reiner, Yekutieli & Benjamini (2003) Bioinformatics 19, 368-375



Control of the False Discovery Rate (FDR)Control of the False Discovery Rate (FDR)

3. Adaptive procedures (Benjamini & Hochberg, 2000)
- try to estimate G0 and use  q*=q G0/G instead of q in procedure 1 to gain more power

- Storey (2001) suggests a similar version to estimate G0, which are implemented in 
SAM (Storey & Tibshirani, 2003)

- adaptive methods offer better performance only by utilizing the difference between
G0/G and 1,  if the difference is small, i.e. when the potential proportion of 
differentially expressed genes is small, they offer little advantage in power while their
properties are not well established.

4. Resampling FDR adjustments

- Yekutieli & Benjamini (1999) J. Statist. Plan. Inference 82, 171-196
- Reiner, Yekutieli & Benjamini (2003) Bioinformatics 19, 368-375

Reiner, Yekutieli & Benjamini (2003) Bioinformatics 19, 368-375



Example: Leukemia study, Golub et al. (1999)Example: Leukemia study, Golub et al. (1999)

Dudoit et al. (2002)



Example: Apo AI Exp., Callow et al. (2000)Example: Apo AI Exp., Callow et al. (2000)

Apolipoprotein A1 (Apo A1) experiment in mice

• aim: identification of differentially expressed genes in liver tissues

• experimental group:   8  mice with apo A1-gene knocked out (apo A1 KO)

• control group: 8  C57B1/6 mice

• experimental sample: cDNA  for each of the 16 mice ⇒ labeled with red (Cy5)

• reference-sample: pooled cDNA of the 8 control mice ⇒ labeled with green (Cy3)

• cDNA Arrays with  6384 cDNA probes, 200 related to lipid-metabolism

• 16 hybridizations overall



Example: Apo AI Exp., Callow et al. (2000) Example: Apo AI Exp., Callow et al. (2000) 

Dudoit et al. (2002)



Beispiel 2: Apo AI Exp., Callow et al. (2000) Beispiel 2: Apo AI Exp., Callow et al. (2000) 

Dudoit et al. (2002)



Multiple Testing  - SummaryMultiple Testing  - Summary

• For multiple testing problems there are several methods to control the family-wise 
error rate (FWER).

• FDR controlling procedures are promising alternatives to more conservative FWER 
controlling procedures.

• Strong control of the type one error rate is essential in the microarray context.

• Adjusted p-values provide flexible summaries of the results from a multiple testing
procedure and allow for a comparison of different methods.

• Substantial gain in power can be obtained by taking into account the joint
distribution of the test statistics 
(e.g. Westfall & Young, 1993; Reiner, Yekutieli & Benjamini   2003).

• Recommended software: Bioconductor R multtest package
(http://www.bioconductor.org/)

Adapted from S. Dudoit, Bioconductor short course 2002
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2 x 2 Factorial Experiments2 x 2 Factorial Experiments

Two experimental factors, e.g. treatment (untreated T -, treated T +) 
strain (knock out KN, wild-type WT)

Linear model

β0 +β1 +β3β0+ β2T+

β0+ β1β0T -
treatment

WTKN
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β1 - strain effect

β2 - treatment effect

β3 - interaction effect of 
strain and treatment



2 x 2 Factorial Experiments2 x 2 Factorial Experiments
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2 x 2 Factorial Experiments2 x 2 Factorial Experiments
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2 x 2 Factorial Experiments2 x 2 Factorial Experiments

H0: ββββ3 = 0 - effect of strain is independent of treatment or
- effect of treatment is independent of strain or
- strain and treatment are additive

HA: ββββ3 ≠≠≠≠ 0 - treatment interacts with strain
- treatment modifies effect of strain
- strain modifies effect of treatment
- treatment and strain are nonadditive

H0: ββββ1 = ββββ3 = 0 - strain is not associated with expression Y

HA: ββββ1 ≠≠≠≠ 0 or ββββ3 ≠≠≠≠ 0 - strain is associated with expression Y
- strain is associated with expression Y for either T- or T+

H0: ββββ2 = ββββ3 = 0 - treatment is not associated with expression Y

HA: ββββ2 ≠≠≠≠ 0 or ββββ3 ≠≠≠≠ 0 - treatment is associated with expression Y
- treatment is associated with expression Y for either KN or WT

F.E. Harrell, Jr. (2001) Regression Modeling Strategies, Springer



2 x 2 Factorial Experiments - Treatment effect2 x 2 Factorial Experiments - Treatment effect
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2 x 2 Factorial Experiments - Strain effect2 x 2 Factorial Experiments - Strain effect
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2 x 2 Factorial Experiments - Strain effect2 x 2 Factorial Experiments - Strain effect
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2 x 2 Factorial Experiments - Interaction effect2 x 2 Factorial Experiments - Interaction effect
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