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SUMMARY

A method of devising stepwise multiple testing procedures with fixed experimentwise
error is presented. The method requires the set of hypotheses tested to be closed under inter-
section. The method is applied to the problem of comparing many treatments to one control
and to ordered analysis of variance.
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1. INTRODUCTION

The aim of this paper is to propose a method for devising multiple testing procedures with
bounded experimentwise error rates. The procedures thus obtained are sometimes more
powerful that those in common use. The method is applied to the problem of comparing
many treatments to one control and to Bartholomew’s (1959) analysis of variance with
ordered alternatives.

The idea of a closed testing procedure stems from the need to amend some multiple testing
procedures in current use. Some of these methods may attain very high experimentwise error
rates. Such is the case, for instance, with the procedure of Newman (1939) and Keuls (1952)
in analysis of variance whenever the treatments are homogeneous within one of several very
distinct sets (Hartley, 1955). Other methods, such as that of Dunnett discussed in the next
section, are unduly conservative in that more inferences are possible at the same experiment-
wise error rate.

Our aim is to construct multiple testing procedures in which the experimentwise error rate
equals the required level « of the overall test. The essential feature of our method is that we
refer to sets of hypotheses which are closed under intersection, and that each test is of
level . An example of a closed procedure, due to Peritz, which modifies the Newman—-Keuls
method is given by Einot & Gabriel (1975, § 1-8). Williams’s (1971) procedure also is closed,
although he does not point this out.

2. CLOSED TESTING PROCEDURES

Let X be a random variable with distribution F, (€ Q). Let W = {w,} be a set of null
hypotheses, i.e. a set of subsets of Q, closed under intersection: w,, ;€ W implies w; n ;€ W.
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For each wy let ¢4(X) be a level « test, that is, pra{@s(X) = 1} < a for all € w;. Now consider
the following procedure.

Any null hypothesis w, is tested by means of ¢4(X) if and only if all hypotheses w that are
included in w, (@ < wy) and belonging to W (we W) have been tested and rejected. The
probability of making no type I error with this procedure is at least 1 —a. This is so since
a type I error is committed if and only if the intersection of all true hypotheses, , say, is
tested and rejected by means of ¢,(X); in other words, if we denote by 4 the event that any
true w, is rejected, and by B the event that ¢,(X) = 1, then

pr(4n B) = pr (B)pr (4]B) < o

since ¢, isalevel « test. However, since A n B = 4,pr (4 n B) = pr(4)and hencepr (4) < a.

A simple example of a closed testing procedure is provided by modifying Dunnett’s (1955)
one-sided comparison of many treatment groups to one control group: let X; ~ N(u;, 02n~1)
(¢ =1,...,k) and Xy ~ N(g,, 0?m1). Let s? be an unbiased estimate of o2 distributed o2x2/v
and independent of X, ..., X;. It is known that y;,—p, > 0 for all ¢ = 1, ..., k. We want to
test the hypotheses u; = p, against u; > u, for all i so that the probability of making no
type I error is at least 1 —a.

We start by enlarging the set of hypotheses to be tested so as to include all hypotheses of
the type wp: p; = u, for all 1€ P, where P is some subget of {1, ..., k}. Clearly W = {wp} is
closed under intersection. Now, wp will be rejected if

max (X;— Xy) > sdy, ,, 0

teP
where p is the number of elements in P provided all hypotheses wp with B © P have been
rejected. Here d,, , , is the a-critical point for Dunnett’s (1955) statistic with p and » degrees
of freedom, p being the number of treatments in P. Since d,, , , is increasing with p, this
procedure is clearly more powerful than Dunnett’s original one, which uses the critical value
dy, »,  for all the comparisons. On the other hand this procedure does not provide one-sided
confidence bounds for y,; — g, which Dunnett’s procedure does. Also, unlike Dunnett’s pro-
cedure, in this closed testing procedure the inferences made on u; — u, depend not only on
X;, X, and s but also on the other ‘irrelevant’, X’s.

The above procedure is consonant in the sense of Gabriel (1969): whenever a composite
hypothesis is rejected at least one of its component hypotheses is rejected as well. Therefore
this procedure can be written in the following simplified form: if X;is the sth largest X, reject
w; if X;— X > 8dj,_4,1 ,, » Provided the hypotheses corresponding. to the X’s larger than X
have been rejected.

An alternative, nonconsonant, procedure consists in using at each stage, instead of
Dunnett’s test, the corresponding likelihood ratio, or %2 test; see Barlow, Bartholomew,
Bremner & Brunk (1972, p. 145) under ‘simple tree alternatives’.

It is easy to derive closed testing procedures, consonant or otherwise, for a variety of
situations. Difficulties arise, however, with hypotheses that have so-called two-sided
alternatives. This is readily illustrated by the case of one-way analysis of variance.

Let u,, ..., #;, be the population means with respect to which null hypotheses are formu-
lated. The overall null hypothesis is, of course, wy: g, = ... = g and a closed set of
‘interesting’ null hypotheses consists of all hypotheses of the form wp: pt; = ... = M,y Where
{igy sty < {1, ..., K} '

Now, whenever we reject a null hypothesis wp relating to exactly two means y; = p;,
we accept instead of it one of two alternatives: u; > p;, or y; < p;. It seems therefore
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natural to require from a closed testing procedure that the probability of not rejecting any
true wp and not accepting any alternative of the type u; > y;, when the reverse is true
should be at least 1 —a. Until now no closed testing procedure has been shown to have this

property.

3. APPLICATION TO THE ONE-WAY ANALYSIS OF VARIANCE WITH
ORDERED ALTERNATIVES

Let X, ..., X, be averages of k independent samples of sizes n, ..., n;, X; ~ N(u;, 0%/n;)
(# =1, ..., k), where the means yu, are unknown and o2 is known, and will be taken henceforth
to equal one. Assume that the means u; are known a priori to satisfy the ordering
Qi phy < oo < iy

The problem of testing the null hypothesis wy: g, = ... = p;, against the alternative
QN @y: ftg < ... < pywith at least one strict inequality has beeninvestigated by Bartholomew
(1959) and others; for discussion and references, see Barlow et al. (1972, §§3-2, 3-3).

Let A,,...,A, be positive integers satisfying A, + ... + A, = k. Put 7, = 0and 7, = A, +... + A;.
Let g; be the set of consecutive integers (1,_,+1,...,7;), and define by g = (g3, ...,9,) the
corresponding partition of the set (1, ..., k). Let fi(g;) = Zn,;p;/Zn;, where the summation is
over all ¢eg;. Consider the following family of hypotheses.

Wy = Gy, .-, 9p): g = B(g;) (E€g;5=1,...,7).

It is easy to see that {w,}is closed under intersection and w, = n w,, where the intersection
goes over all partitions g of {1, ..., k}.
The likelihood ratio statistic for testing v, against Q n @, (Bartholomew, 1959) is

k —
= 2 ni(ﬁi—X)29
i=1

where X = Zn,X,/En; and (7, ..., /i) are the maximum likelihood estimators of (u, ..., x)
under the model Q, and are obtained by the amalgamation process described by Brunk
(1958). The null distribution of D? has been shown by Bartholomew (1959) to be

pr(D? > #2) = }_‘, PRy, ..., my; m; k) pr (x2_g > 12),

where p(n,, ..., n,; m; k) is the probability that the amalgamation process leads to exactly m
different values. We define the following statistic for testing w, against

@, :“‘r,,_1+1 : [,L,, (G=1,..,7)

with at least one strict inequality:

r T
Dy=D¥gy ) =% % mi{fi—X(g)

j=li=7j_ 41
where X (g;) = Zn; X[%n; and (flg_y41> s ) (§ = 1, ..., 7) are those values which minimize
the functions Zn,(X,— p,;)? under the restnctlons ,u, 1 < ... < . Note that the last two
summations are over all ¢€g;. Clearly the fi; are mammum likelihood’ estimates if one
agrees to ignore information derived from the order postulated by Q for x’s belonging to
different partitions. In this sense D2 may be called ‘pseudo likelihood ratio’ statistic. Let
m; be the number of different numerical values in the set (i, i1, ..., /). Note that
1 < m; < A; =7;—7;_;. The conditional distribution of D} given m,,...,m,, because of
the independence of the X,’s, is x%,_,, where M = m, + ... +m,. The probability of obtaining
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m; different values of (,u,,j oo ) 8PNy g,y n,;; my; A;). Thus, again because of the
independence of the X,’s, the uncond1t10nal dlstrlbutlon of D is

pI’ (Dg > t2) = ME 2* 'Illp(nfj“ﬁl, ety nTj; mj; A;i) pr (X%{[—r > tz),
=7 j= .
where Z* denotes summation over all possible choices of (my, ...,m,) with 1 < m; < Ay

G=1,...,r)and my+...+m, = M.
In the special case n; = ... = my, the distribution of D2 is given by

pr(D; > ) = Z* H p(mj, ) pr (Xir—r > 13).

Table 1. Upper 5%, and 1%, points of the distribution of D(g,, ..., g,) for
4 to 10 means, with o?n; = 1, (1 = 4, ..., 10)

A ), G0 G om A1) 8005 50m QAiseesds)  Gows B om
(2,2) 4231 7-290 (3,7) 7-488 11-277 (2,8,4) 7394 11-128
(2,3) 5088 8-352 (4,4) 6-944 10-611 (2,3,5) 7799 11-613
(2,4) 5686 9-090 (4, 6) 7-356 11-110 (2, 4,4) 7-892 11-723
(2, 5) 6-144 9-653 (4,6) 7-694 11-518 - (3,3,8) 7552 11-307
(2,6) 6513 10-106 (5,5) 7757 11-593 (3,3,4) 8043 11-897
(2,7) 6-822 10-484 (2,2,2) 5435 8747 . 2,2,2,2) 6322 10019
(2,8) 7-087 10-808 (2,2,3) 6-184 9661 (2,2,2,3) 6966 10-848
(3,3) 5862 9295 (2,2,4) 6723 10-320 (2,2,2,4) 7440 11-457
(3,4) 6415 9-970 (2,2,5) 7144 10-832 2,2,8,3 758 11-633
(3,5) 6-845 10-494 (2,2,6) 7-487 11-250 2,2,2,2,2) 7-248 11-001
(3,6) 7-194 10-919 (2,3,3) 6-885 10-508

A; is the number of integers in g; (j = 1, ..., 7).

Upper 5%, points of the null distribution of D2 are tabulated in Table 1 for different
partitions. It is worth noting that subsets g; for which A; = 1 contribute nothing to D2 and
hence can be neglected in calculating the distribution of D2, or in looking up the critical
values in Table 1. The closed inference procedure of the general type described in §2 is
constructed in the following way. If D? < #2, where 2 is the upper « point of the null distribu-
tion of D?, then neither w, nor any of the hypotheses w, is rejected. If D* > #2, then we reject
w, and proceed to test all those hypotheses w, which correspond to partitions g = (g,,¢,) of
{1, ... k} Each such hypothesis w, is tested using the corresponding statistic DZ. If
D <t ,, where ¢2 , is the upper « pomt of the distribution of D}, then neither w, nor any
of the hypotheses wy, which correspond to subpartitions % of g is re]ected. If D? > 2 , then
we reject w,. After testing all those w, with r = 2 we proceed to test all hypotheses w, which
correspond to partitions w = (uy,uy,ug) of {1,...,k} which are not subpartitions of any
g = (91, 9,) for which w, has not been rejected. Each such w, is tested by comparing the
corresponding D with ¢ , and so on. This stepwise procedure is continued until no more
hypotheses are left to be tested.

These results are readily extended to the case of unknown variance by replacing D2 with

r T
= D%/ [Vé'z"l‘ 2 Zj ni{zi"z(gj)}z],
j=li=1j_,+1
where s? is an estimate of ¢ independent of the X, and distributed as chi-squared with
v degrees of freedom. The null distribution of E2 is analogous to that of D2, with ¥2,_,
replaced by the beta variables B34,y 3441 This distribution has been tabulated for the
overall null hypotheses and equal n;’s (Barlow et al., 1972, p. 362, Table A.4), but not for
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partitions. Critical values of the distribution for partitions can be calculated from the
probabilities given in Table A.5 of Barlow et al. (1972, p. 363) and readily available tables
of the beta distribution.

Another way of defining a closed family of hypotheses is to consider all hypotheses {w;},
each of which postulates w;: gty = ... = fi; < phj4q < ... < o, for some j (j = 2,..., k). Each
hypothesis is tested either by Williams’s statistic W; = j; — X, (Williams, 1971) or by the
modified Williams’s statistic R; = fi;— fi; (Marcus, 1976).

No way of constructing a simultaneous testing procedure of the general type described
by Gabriel (1969) by means of the statistic D? is known. The family of hypotheses and
statistics {w,, D2} is a testing family which is not monotone as required by Gabriel’s method.

Numerical example. Consider an ordered analysis of variance with six treatments and, for
simplicity, let 0% = 1, n; = 1 (¢ = 1,..., 6). Let the sample averages be, in that order: 8, 10,
16, 12, 8, 8. The estimates of the y;, as found by the amalgamation process, are given in
Table 2. The inference procedure is summarized in Table 3. The inferences, in this case, are
summarized by the inference from the last term, namely u; < u;, and hence g, < g, for
1=4,5,6.

Table 2. Estimates of means in the various subsets

Set of means b B By M Bs M
1, 2,3, 4, 5, 6) 8§ 10 11 11 11 11
(1, 2, 3, 4, 5) 8§ 10 12 12 12 @ —
(1, 2, 3, 4) 8§ 10 14 14 — @ —
(1,2, 3) § 10 16 — @— @—
(1, 2) 8 10 — — —  —
(2, 3, 4, 5, 6) — 10 11 11 11 11

In (3, 4, 5, 6) and any of its subsets all the /i, are equal.

Table 3. Test statistics critical values and inferences

g D? %005 Inference

(1,2, 3, 4, 5, 6) 7-333 5460 4y < fg

1), (2, 3, 4, 5, 6) 0-800  5-049 —

(1, 2), (3, 4, 5, 6) 2:000 5686 —

{, 2, 3), (4, 5, 6) 34667 5862 iy < g OF fiy < fg
1, 2, 3, 4), (5, 6) 27-000 5686 iy < fiy OF jty < flg
(1, 2, 3, 4, 5), (6) 12:800 5049 ;< g

(1, 2, 3), (4), (5, 6) 34667 5088  jy < g OF Sty < [g
(1, 2, 3), (4, ), (6) 34-667 5-088 P < Mg OF fiy < [ig
1, 2, 3, 4), (5), (6) 27-000 4528 gy < iy

(1, 2, 3), (4), (5), (6) 34-667 3820  fpy < Jig

The critical points for #, g5 are taken from Table 1.
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