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Multiple Hypothesis Testing

This article introduces a method of multiple hypothesis testing that combines the idea of sequential multiple testing procedures with
the structure of resampling methods. The method can be seen as an alternative to the analytic method of Dunnett and Tamhane,
which requires a specific distributional form. Resampling incorporates the covariance structure of the data without the need for
distributional assumptions. Recent work by Westfall and Young has shown that a step-down resampling method is asymptotically
consistent when adjusted p values can be obtained exactly for continuous data. This article shows that in the case of a comparison
of two groups on multiple outcomes, those results are generalizable to discrete data where exact adjusted p values are not available.
It is shown that the method asymptotically attains the desired level for controlling the experimentwise probability of a type I error.
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1. INTRODUCTION

When an experiment records several different variables
for each subject in two (or more) groups, it is often desired
that a statistical test identify any variable for which the group
means differ significantly. If the researchers record enough
different variables, it is apparent that they will likely find
one significant comparison by chance alone. Many different
methods of treating such simultaneous testing situations have
been proposed. One such method is concerned with con-
trolling the probability of at least one type I error at or below
a specified level a. This is called the experimentwise error
rate control approach (Dunnett and Tamhane 1992). In
some cases (€.g., a particular comparison has been isolated
prior to the experiment ) it may be unnecessary to make any
adjustments to the individual tests. But if the goal of the
experiment is to select a few significant variables from a large
pool, then I reccommend the adoption of the experimentwise
approach. In any case, in this article I shall assume that this
approach has been taken.

The simplest and most general multiple hypothesis testing
methods are the Bonferroni and its improvements (Hochberg
1988; Holm 1979; Simes 1986). The primary advantage of
methods based on the Bonferroni inequality is that they are
applicable to any multiple hypothesis testing situation; they
require no assumption about the data or dependence between
comparisons. Another advantage of such methods is their
simplicity in use. They require very little computation once
the individual comparisons have been completed to yield p
values. Unfortunately, they are ultraconservative in that no
attempt is made to incorporate the dependence between tests.
A second group of testing procedures is centered around the
assumption that the data are multivariate normal (Dunn
1959; Dunn and Massey 1965; Dunnett and Tamhane 1992;
Sidak 1967, 1971). Dunnett and Tamhane (1992) analyti-
cally approximated the joint distribution of k student ¢ vari-
ables used to compare normally distributed estimates. The
method requires assumptions about the structure of the data
that may be quite strong. Another approach to the multiple
testing problem is to use resampling techniques to incor-
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porate the dependence structure of the tests. Westfall and
Young (1989) showed how resampling can be useful in a
single-step manner to adjust p values. Analogous to the im-
provements of the Bonferroni procedure, stepwise resampling
is presented as an improvement to their single-step resam-
pling method of p-value adjustment. Stepwise resampling
can be thought of as a resampling approximation to the joint
distribution analytically approximated by Dunnett and
Tamhane (1992), which does not require the structural as-
sumptions yet retains a large portion of the increased power.
In this article I introduce a method of sequential testing that
relies on sample reuse to estimate probabilities needed to
control the experimentwise error rate. The method is illus-
trated in the setting of comparing k treatment and control
means. The method is shown quite generally to be asymp-
totically conservative; that is, the probability that any type
I error is committed is asymptotically bounded above by a.

2. BONFERRONI PROCEDURES

Before introducing the stepwise resampling method, we
shall review the Bonferroni procedure and its improvements.
Consider the problem of simultaneously testing k univariate
null hypotheses H,, H,, . . . , H, based on the observed values
t, ta, ..., t, of some test statistics 7y, 7>, ..., Tx. If p; is
the p value computed from the observed value ¢; for i = 1,
..., k, then the Bonferroni procedure rejects any H; with
pi < a/k. The factor 1/k accounts for the fact that there are
k possible true null hypotheses, and the rejection of any one
of these could cause a type I error. The Bonferroni procedure
can be improved upon by realizing that once one has rejected
one null hypothesis (assuming it was false), there are only
k — 1 possible true null hypotheses to guard against rejecting,
and so one can reduce the factor 1/k to 1/(k — 1) in the
Bonferroni procedure. This gives the step-down procedure
of Holm (1979):

HM Algorithm
1. Order the p values and hypotheses
P(l)Z L] ZP([()

corresponding to  Hyy, ..., Hy,.
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2. Leti=1.

3. If Py—i+1y> a/(k — i+ 1), then accept all the remaining
hypotheses H—i+1), . . . , H(;yand STOP.

4. If Py_js1y < a/(k— i+ 1), then reject H 1), incre-
ment i, and RETURN to Step 3.

By starting with the largest p value and sequentially ac-
cepting hypotheses, one gets the procedure of Hochberg
(1988):

HM Algorithm
1. Order the p values and hypotheses
Payz «++ = Py
corresponding to  H(y), ..., Hy,.

2. Leti=1.

3. If Py < o/, then reject all the remaining hypotheses
H(,'), ey H(k) and STOP.

4. If P;y > /i, then accept Hy;), increment i, and RE-
TURN to Step 3.

Hochberg’s procedure is called a step-up algorithm. All
three procedures control the probability of a type I error at
level «. But it can be easily seen that Hochberg’s procedure
is uniformly more powerful than Holm’s, which is uniformly
more powerful than Bonferroni’s.

The sequential multiple hypothesis testing procedures just
described, though not dependent on any particular distri-
bution form, are limited by their reduction of the data to p
values. Information in the data is lost when only the p values
are used. Sequential procedures can be improved by methods
that incorporate the covariance structure of the data. Dunnett
and Tamhane (1992) used an analytic approach to approx-
imate the multivariate distribution of the test statistics when
the data have a special form. This approach requires mul-
tivariate normal estimates with equal marginal variances and
a known common correlation coefficient. Resampling is a
computational approach geared toward making use of the
dependence structure of the data without distribution re-
strictions. Westfall and Young (1989) used the resampling
approach to compute adjusted p values for multivariate bi-
nomial data, but considered only a single-step adjustment.

3. STEPWISE RESAMPLING METHODS

Suppose in the comparison of a treatment group and a
control group, k outcome variables are observed. Let X,
..., Xy be independent k-dimensional random variables,
representing the control group, with common joint distri-
bution

Xi~F(”'l;x)’ i=17"°aNa

where u,, the mean of the distribution, consists of the com-
ponent means

M11
2

Hik
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For the treatment group, let Xy, . . . , Xon be independent
k-dimensional random variables, with

M21

M22

X; ~ F(u;y), m=|""|, i=N+1...,2N.

M2k

The hypothesis tests of interest may be either one-sided or
two-sided comparisons of the component means

H;:py = py versus Ki:uy < py;
or

H;:py = py versus  K;:py # uo;
fori=1,...,k,and it is desired to have no more than an

a chance of committing a type I error. Typically, test statistics
T,, ..., T, are available for testing each individual hypoth-
esis separately. For example, if the data are multivariate nor-
mal with a common variance, then each 7; would be a ¢
statistic with 2N — 2 degrees of freedom. Let the observed
valuesof Ty, ..., Ty bet,, ..., t. These values are ordered
along with the hypotheses

ly =ty =" =k

corresponding to

H(]), H(z), ceey H(k).

A conservative approach would be to reject each H ;) as long
as

PH(k){maX szt(,-)}Sa, (1)
1< j<k

where Py, is the probability under H,), . .., H,. In this
case we may estimate the probability given in (1) by resam-
pling, because under H(,), . .., H, the control and treat-
ment groups are identically distributed. Let ‘*’ denote a ran-
dom variable whose value is obtained by random sampling
from the entire original data. Then a resample

* *
Xi,.. .., Xon

is a sample from
X1, - -5 XoN.

Sampling could be done either with or without replacement.
Also, define T7, i =1, ..., k, to be the test statistics cor-
responding to the resampled data. For each resample, we
calculate whether

i=1,...,k (2)

*
max Tj = L),
1=<j<k

and keep track of the proportion of resamples for which (2)
holds. If after many resamples this proportion is less than or
equal to «, then we reject H,. In fact, the proportion of
times that (2) holds gives us an adjusted p value in the sense
of Westfall and Young (1989). This method of testing is
easily seen to be overly conservative in the case of more than
one false null hypothesis. To illustrate this point, consider
the following example.
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Example. Suppose that one is testing one-sided hy-
potheses on bivariate normal data with u; = (), w,
= (%), and identity covariance matrix. Suppose that N = §
and the data turn out to be

control gro 0 : -l ! :
n
goup {1 )\o)°\ o )7 \=1) o
(50 49 52 48 51
treatment group , s ) ” .
() (5)-(5)- (o1 (5)

In this case,
L=5-0=35,
and if resampling is done without replacement, then the event
t7=29-21=8

will occur with probability .5. Therefore, the probability of
rejecting H, by the foregoing resampling method with o
< .5 will converge to zero as the number of resamples goes
to infinity. Note that if the resampling is with replacement,
then the same conclusion holds for o < .25.

Consider the point at which we have decided to reject
H, the hypothesis corresponding to the largest test statistic.
If H, is actually true, then we have already committed a
type I error. Therefore, from the standpoint of controlling
the probability of committing any type I error, we can assume
that H, is false. Thus in deciding whether to reject H—_,),
we should not let the component corresponding to ¢ influ-
ence our decision. Consequently, I propose resampling the
data with the component corresponding to ¢, deleted. Then
in this partial resample, we calculate whether

max Tl* = Lk-1)>

where the maximum extends over all | < j < k except for
the index of the component corresponding to ¢,. By con-
tinuing in this manner, we arrive at a stepwise resampling
(SR) method:

SR Algorithm 1
1. Order the observed test statistics and hypotheses
< +-- <
corresponding to  Hyy, ..., Hy,.

2. Leti=1.
3. By repeatedly resampling the data, estimate

_ (k—i+1)
o = PH(k_,-H){ T ity = t—iv1) §» (3)
(k—i+1)

where T ;1 is the largest of the (k — i + 1) test statistics
corresponding to ¢y, . . . , L—i+1)-

4. If o; = e, then accept the remaining hypotheses H/,),
L. , H(k—i+1) and STOP.

5. If &; < a, then reject Hy—_;41), increment i, and RE-
TURN to Step 3.

When we estimate «; in (3), we are essentially using the
estimated distribution of TEZ:;: {; from resampling. This gives

rise to a second version of SR:

Journal of the American Statistical Association, March 1995

SR Algorithm 2
1. Order the observed test statistics and hypotheses

t(l)S e Sl(k)

corresponding to  Hy), . .., Hy,.

2. Leti=1. _
3. By repeatedly resampling the data, estimate ¢ (<~*+!
such that

- (k—i+1) k—i+1
a = PH(k-i+1){ T(k—i+l) = ‘Pt(x ! )}, (4)
(k—it+1)

where T (;_;1) is the largest of the (k — i + 1) test statistics
corresponding to #(y, . . ., Ek—i+1)-

4, If tgivny < @D, then accept the remaining hy-
potheses H(y), ..., Hy—;+1)and STOP.

5. If tginr) > @D, then reject Hy—i41), increment i,
and RETURN to Step 3.

The two SR algorithms are equivalent in the sense that
they are identical in the idealized case where the sample is
so large and the number of resamples so large that ¢ ¢!
is determined exactly.

In general, we must consider the error of estimating «; by
an estimate based on a finite number of resamples of the
data. Suppose now that M resamples are used, each of size
2N, to estimate «; given by (3). Let T} be the value of
T7 in the jth resample. We propose using the estimate

L

M
7 2 I[max T3 = tg—win),

J=1 !

(5)

ak =

where the maximum extends over all i corresponding to ¢y,
.« +» L—w+1), and I[A] is the indicator function of the event
A. We now can state the practical SR algorithm.

SR Algorithm 3
1. Order the observed test statistics and hypotheses
l(]) < o0 <

corresponding to  H(y), . .., Hy,.

2. Letw=1.
3. Generate T, the /th test statistic in the jth resample,
for/l=1,...,kandj=1,..., M.

4. Define a¥ by (5).

5. If a¥% = «, then accept the remaining hypotheses H ),
...y Hy—y+1yand STOP.

6. If a¥ < o, then reject H—,+1), increment w, and RE-
TURN to Step 4.

4. SR SIGNIFICANCE LEVEL

I first consider the experimentwise type I error rate when
using SR in the idealized case where resampling can be con-
sidered as perfect (i.e., SR Algorithm 2 is used where ¢
are known).

Theorem 1. In the multiple testing framework of Section
3, if each of k hypotheses are tested by an application of SR
Algorithm 2 with ¢’ known, then the probability of a type
I error being committed is less than or equal to c.
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Table 1. Proportion of Times That a
Type | Error is Committed

Number of
resamples HB SR
500 .0489 .0505
1,000 .0480 .0501

NOTE: Results for 500 resamples are based on
500,000 replications of the test, and results for 1,000
resamples are based on 200,000 replications. The nom-
inal level is .05.

A proof of Theorem 1 can be found in the Appendix.
I now consider the practical case of applying SR Algorithm
3 to the multiple testing framework of Section 3. The theorem
that follows treats the maximum of the test statistics 7'y, . . .,
T} as a function of the observations. Let / be a given integer
with 1 </ < k and suppose that a sample of size 2N, is used
to obtain T, ..., T;. The maximum of 7, ..., T;is a
function of the random variables X, .
max T; = G(X,, ..

1=<i<l/

ey XZNO:
O} XZN())‘

The only assumption made about G is that its expectation
exists and is finite,

E[G(Xl, ey XZNO)] < 0.

(6)

For example, if X, ..., Xy, are multivariate normal
with known equal marginal variance o2, then 7} is the z
statistic

_ (S Xy — 3 Xin)

b2N00’

T;

and

No 2Ny

G(Xl""’X2N0)=max(zX}i_ Z iji),
! j=No+1

Jj=1
which clearly satisfies (6).

Theorem 2. In the multiple testing framework of Section
3, suppose that each of k hypotheses is tested by an appli-
cation of SR Algorithm 3. Assume that (6) holds and that
the test statistics ¢4, . . . , f; are based on an initial sample of
size 2N,, whereas resampling is done from the increasing
total sample of size 2N. If each resample consists of sampling
with replacement a total of 2NV, times, then
lim lim P{typelerror} < a.

N—>oo M=

(7)

A proof of Theorem 2 can be found in the Appendix.
5. SIMULATED POWER

The nominal level and power of the SR method was
checked by three simulation experiments and compared to
that of the method due to Hochberg (1988), hereinafter de-
noted by HB, and to that of the step-up method of Dunnett
and Tamhane (1992), denoted by SU. The SR method was
programmed in Fortran; and a copy of the subroutine that
requires the test statistics for each comparison as input is
available from the author on request.
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Table 2. Proportion of Times That Each Hypothesis is Rejected

Hypothesis Effect size HB SR
1 A .0658 .0680
2 2 .2877 .2956
3 0 .0136 .0135
4 0 .0137 .0135
5 0 .0132 .0131

NOTE. Results are with 1,000 resamples and are based on 100,000 replications of the test.
The nominal level is .05.

5.1 SR versus HB

The first simulation set was performed with multivariate
normal data, with kK = 5 and covariance matrix

10 2 6 -6 .2

2 10 -2 2 2

6 -2 10 -2 -2

-6 2 -2 10 -6
2 2 =2 -6 10

The variances of each component are assumed to be equal,
and the common value is assumed to be known. The uni-
variate hypothesis tests of interest are

H;:py =

and the resampling is done without replacement. Therefore,
each resample is a permutation of the original data. Table |
shows a comparison of the experimentwise type I error rate
for the two methods. The nominal level was .05. Two sets
of results are presented; in the first the SR method is based
on 500 resamples per experiment, and in the second the SR
method is based on 1,000 resamples. The SR method ap-
proximates the nominal significance level more closely than
the HB method, and the accuracy improves with an increas-
ing number of resamples. Table 2 provides a comparison of
the power to reject individual hypotheses for a particular
alternative. The effect size is the difference of the true means
of the treatment and control groups. The SR method rejects
the false null hypotheses (1 and 2) more often than the HB
method and rejects the true null hypotheses at about the
same rate as the HB method. Table 3 shows that with many
false null hypotheses, a step-up test like HB has more power
than a step-down test like SR.

my,  versus  Kj:py # opo,

5.2 SR versus HB, SU: Known and Equal
Covariances

A second set of simulations were performed to compare
the nominal level and power of the SR method with that of

Table 3. Proportion of Times That Each Hypothesis is Rejected

Hypothesis Effect size HB SR
1 2 5177 5115
2 5 .9975 .9972
3 .6 .9999 .9999
4 .6 1.0000 1.0000
5 .5 .9976 .9973

NOTE: Results are with 500 resamples and are based on 200,000 replications of the test. The
nominal level is .05.
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Table 4. Proportion of Times That a Type | Error is Committed
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Table 6. Proportion of Times That a Type | Error is Committed

Number of Number of
resamples HB SR SuU resamples HB SR SuU
1,000 .0416 .0485 .0496 1,000 .0390 .0491 .0454

NOTE: Results are based on 100,000 replications of the test. The nominal level is .05.

the SU method. We simulated multivariate normal data,
with k = 5 and covariance matrix

1o 5 5 5 5
S 10 5 5 5
S 5 10 5 5
S5 5 5 1.0 5
S5 5 5 1.0

The variances of each component are assumed to be equal,
and the common value is assumed to be unknown. In ad-
dition, the correlation between any two components is as-
sumed to be equal and known. Instead of attempting to pro-
gram the SU method, we used the critical constants found
in table 2 of Dunnett and Tamhane’s paper with p = .5 and
an infinite number of degrees of freedom. The univariate
hypothesis tests of interest are

Hi:py = py versus  Ki:py # poj,

and the resampling is done with replacement. A two-sample
t test is used, where the estimate of the variance is pooled
among the two groups to get test statistics for each univariate
comparison. The nominal significance level in each case is
.05. A comparison of the experimentwise type I error rates
appears in Table 4, and the proportion of times each uni-
variate hypothesis is rejected by the methods is shown for a
particular alternative in Table 5.

The tables show that under conditions favorable to the
SU method, the power of the SU method (as judged by each
hypothesis separately) is slightly greater than that of the SR
method; however, the power of SR is closer to the power of
SU than to the power of HB. The SR method appears to
provide a large portion of the benefit gained by the use of
the correlation structure without the need for the structural
assumptions of SU.

5.3 SR versus HB, SU: Unequal Covariances

A final set of simulations were performed to compare the
performance of the SR and SU methods when the basic as-
sumptions on the data are not true. We simulated multi-
variate normal data, with kK = 5 and covariance matrix

Table 5. Proportion of Times That Each Hypothesis is Rejected

NOTE: Results are based on 50,000 replications of the test. The nominal level is .05.

10 8 2 6 4
g 10 4 6 2
2 4 10 6 8 |,
6 6 6 10 .6
4 2 8 6 10

although the correlation between any two components was
assumed to be known at .5. The variances of each component
are assumed to be equal, and the common value is assumed
to be unknown. Again, we used the critical constants found
in table 2 of the Dunnett and Tamhane (1992) paper, with
p = .5 and an infinite number of degrees of freedom to im-
plement the SU method. The univariate hypothesis tests of
interest are

H;:py = py versus  Kj:uy # o,

and the resampling is done with replacement. Again, a two-
sample z-test is used, where the estimate of the variance is
pooled among the two groups to get test statistics for each
univariate comparison. The nominal significance level in
each case is .05. Table 6 shows the comparison of experi-
mentwise type I error rates. The proportion of times that
each univariate hypothesis is rejected by the methods is
shown for.a particular alternative in Table 7. Here the SR
method rejects the false hypotheses most often and approx-
imates the nominal level most closely, whereas the SU
method suffers a drop in the experimentwise type I error
rate, indicating the SU method is sensitive to the assumption
about the data correlation. In summary, the SR method is
more generally applicable to multiple testing problems than
the SU method, while providing a good approximation to
the SU method when the assumptions of the SU method
are met.

6. ANALYSIS OF MALFORMATION DATA

In this section the SR method is applied to Bernoulli data
on the presence or absence of 55 different types of malfor-
mations in infants born of diabetic and nondiabetic women
(treatment and control). (An article on this subject matter
is under preparation, so the malformation names have been

Table 7. Proportion of Times That Each Hypothesis is Rejected

Hypothesis Effect size HB SR SuU Hypothesis Effect size HB SR SuU
1 0 .0154 .0172 .0172 1 0 .0205 .0243 .0224
2 3 .6701 .6893 .6932 2 A .0786 .0940 .0854
3 0 .0142 .0159 .0161 3 5 .9941 .9955 .9952
4 2 .3059 .3245 .3261 4 2 .0179 .0215 .0198
5 0 .0148 .0169 .0169 5 -3 .6957 7261 .7153

NOTE: Results are with 1,000 resamples and are based on 100,000 replications of the test.
The nominal level is .05.

NOTE. Results are with 1,000 resamples and are based on 100,000 replications of the test.
The nominal level is .05.
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withheld.) The data, summarized in Table 8, come from the
Diabetes in Early Pregnancy study (Mills et al. 1988). Fish-
er’s exact test for 2 X 2 tables is used to give p values for
each of the 55 comparisons between the treatment and con-
trol groups. The null hypothesis in each test is that the pro-
portion of subjects with the condition is the same in the two
groups, whereas the alternative is that the proportion is higher
in the treatment group. Notice that for the SR method, we
can either take 7; to be the test statistics from Fisher’s exact
test after normalization or we can use the p values from
Fisher’s exact test by noting that the event 7'> ¢ is equivalent
to P < p, where P and p are the random and observed p
values corresponding to 7 and ¢. We used the p values due
to their availability in this case.

If in addition to performing the hypothesis tests, it is de-
sired to report adjusted p values for the comparisons, a single-
step resampling method (SS) is available (Westfall and
Young 1989). By resampling for each comparison this
method estimates the probability that when all null hy-
potheses are true, a p value as small as that observed will
result. It is easy to see that the value of a¥ of the SR method
that corresponds to the smallest observed p value will equal
the adjusted p value of SS, and that each subsequent o will
be smaller than the corresponding p value of SS. The a’s
generated by the SR method can be used to determine ad-
justed p values in the following way: Max,.,-, a¥ is the
adjusted p value for the hypothesis corresponding to #x—,+1),
and equals the smallest level at which the corresponding hy-
pothesis could be rejected by the SR method when controlling
the experimentwise error rate. In Table 9 we provide a com-

Table 8. Number of Babies With Each Malformation Type

Group Group
Malformation Malformation
code Diabetic  Nondiabetic code Diabetic  Nondiabetic
1 7 2 29 45 24
2 3 0 30 38 7
3 2 1 31 1 0
4 60 22 32 44 8
5 3 0 33 0 1
6 3 1 34 2 0
7 1 1 35 1 1
8 3 0 36 12 2
9 3 0 37 3 0
10 3 0 38 6 2
11 2 0 39 8 2
12 26 9 40 10 4
13 21 6 41 8 5
14 18 12 42 7 5
15 15 8 43 1 0
16 23 6 44 1 0
17 20 9 45 5 2
18 10 0 46 2 4
19 8 3 47 2 4
20 1 1 48 28 16
21 1 2 49 28 15
22 1 0 50 10 17
23 8 3 51 13 18
24 8 3 52 1 6
25 107 52 53 4 0
26 24 16 54 16 5
27 19 4 55 4 1
28 6 15

NOTE: There were 467 babies born to diabetic women and 277 babies born to nondiabetic
women.
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Table 9. Unadjusted and Adjusted p Values for DIEP Data

Adjusted p value

Malformation
number p value SS SR

32 .00033 .0026 .0026
30 .00097 .0095 .0088
18 .00916 1172 .1090

4 .02424 3119 .2885
27 .03290 .3998 .3604
16 .04228 .4954 4436

NOTE: Adjusted p values are based on 10,000 with replacement resamples.

parison of the adjusted p values obtained by the SS method
to those obtained by the SR method on the malformation
data. The results reported are for the six comparisons that
had observed p values less than .05, because these are the
most interesting. Both methods are based on the same 10,000
with replacement samples of size 744 from the 744 subjects.
Note that the Bonferroni, Holm, and Hochberg methods
would all fail to reject all but the null hypothesis correspond-
ing to malformation #32 when testing with o = .05. It is
thought that the improvement over SS that SR will attain
should be more pronounced when the number of false null
hypotheses is large.

7. CONCLUSIONS

After submission of the original version of this article, I
was alerted to the work of Westfall and Young (1993).
Westfall and Young considered the same step-down algo-
rithm as that given here. But while we have presented the
method in the case of multiple outcomes where the marginal
distributions are all the same, Westfall and Young considered
a more general hypothesis testing setup. The hypotheses do
not have to be comparisons between the means of several
outcome variables, but could come from any set of hy-
potheses under consideration. In such a case, the p values
are used instead of the test statistics to perform the adjust-
ments, so that a common scale is used. To show that the SR
method is asymptotically consistent (i.e., that the experi-
mentwise type I error rate actually approaches the nominal
level), Westfall and Young assumed that the following six
conditions are met (Westfall and Young 1993, p. 213: (8)
is condition 2.1 on p. 42, (10) is in sec. 2.6, and (11)-(13)
are eqs. 1-3 on p. 213).

Subset Pivotality (8)

Let P be the k-dimensional vector of random p values for
the univariate tests. The distribution of P has the subset piv-
otality condition if the joint distribution of the subvector
{P; . i € S} is identical under the restrictions MN;es H; and
N, H;, for all subsets S = {iy, ..., i,} of true null hy-

potheses.
The p values are continuous random variables. (9)
Adjusted p values can be obtained without error. (10)

Let P,(-N) be the p values for a sample of size N. An arbitrary
subset of {1, ..., k} is denoted by S. Then under the null
hypotheses H; for i € .S,
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N) P
maxP,U—>O as N— oo,
ies’

(11)

where - means convergence in probability and S’ is
the complement of S. Let xng)“ be the « quantile of
min;cg PfN) when all the null hypotheses are true. Then
there exists ¢, > 0 such that

(N)a

min xg = =e¢,, forallN. (12)
s
Also, under the null hypotheses H; for i € S,
min P > P* as N— oo, (13)

i€S

where > means convergence in distribution and P* is a
continuous random variable.

For the special case of multiple outcomes considered here
(Sec. 3), subset pivotality is always satisfied. Conditions
(11)—(13) are difficult to verify with real data. They involve
the joint distribution of p values, whereas in real applications
the dependence structure of the p values is usually unknown.
For Theorem 2, we have required only that

E[G(X,, ..., Xon)] < o0, (14)

which is always satisfied if one considers the statistics 7; to
be 1 — P;, where P; is the random p value for component
i. Therefore, in the case of testing the means of multiple
outcomes, we have shown in general that the method is
asymptotically conservative (i.e., the probability that any
type I error is committed is asymptotically bounded above
by ), which is clearly weaker than asymptotically consistent.
This shows the robustness of the SR method with respect to
the test used to perform the univariate comparisons, one of
its fundamental strengths. For Theorem 1, we assume that
adjusted p values can be evaluated without error [i.e., (10)],
so an analogy can be made between the proof of Theorem
1 and the proof of consistency given by Westfall and Young.
The proof of Theorem 2 is necessarily more involved, because
it deals with the error present in adjusted p values. Theorem
2 also handles the discrete as well as the continuous case,
which is not dealt with in general by Westfall and Young.

Because it is expected that step-up methods will generally
have higher power than step-down methods when there are
many false null hypotheses, a step-up resampling method is
desirable. I am already pursuing this goal.

An advantage of the SR method is the ready availability
of adjusted p values for the univariate tests. In addition to
deciding whether to reject or accept each null hypothesis, it
is simple to calculate adjusted p values for the comparisons
by enforcing monotonicity on the o* sequence.

Even if parametric tests are used to obtain the unadjusted
p values (and test statistics), the adjusted p values obtained
by the SR method are distribution free. Moreover, if the
assumptions behind the parametric univariate tests are false,
the method is still asymptotically conservative. It is not nec-
essary for the univariate distributions of the data to be known
even approximately. The method has been shown to provide
excellent experimentwise type I error rate control while pro-
viding increased power to reject individual hypotheses when
compared to the method of Hochberg (1989). It has also
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been shown to perform better than the step-up method of
Dunnett and Tamhane (1992) when unequal correlations
exist. Therefore, the SR method should be the method of
choice for multiple comparisons when the distribution or
correlation structure of the data is unknown.

APPENDIX: PROOFS

Proof of Theorem 1

Without loss of generality, we may assume that H,, ..., H,are
true, Hyyy, ..., Hy are false, and max, ;o t, = {,ywith | </ <r
< k. Let A be the event a type I error occurs,

= k—
A={Tu > eP, Tg-1)> e, L Ty > e}

Therefore, the event that a type I error occurs is a subset of the
event that the largest test statistic corresponding to a true null hy-
pothesis exceeds ¢ . Letting Py, stand for the probability under
H,, ..., H, we have

Py{A} < Py{max T;= ¢}, (A.1)
1= j=l

and we know from SR Algorithm 2 that
a= PH(,){ Tf:; = e},

where ng is the maximal test statistic from the components cor-
responding to H(y), . . . , H,. Because this set contains {1,2,...,
1}, we have

a = Py{max T;= p{’}.
1<j=l

Substituting this into (A.1) gives

Py, {type I error} < a.

Proof of Theorem 2

As in the proof of Theorem 1, we start by assuming that H, . . .,
H, are true, H),,, ..., Hy are false, and max,; t; = ¢, with |
</ <r=<k.Let Adenote the event a type I error occurs,

A= {ozf <o,y <, ..., Qo <)

For notational simplicity, let X,y = (X|, . .
..., Xon). We have

PH,{AIXZN = EzN}

., Xon) and xon = (X,

= PH,{D‘:—rH < a|Xon= 2‘.2N}

| M
= PH,{M > I[max T = ty] < a|Xon = lzN]
=1 !
1 M
< PH,{— > I[max Tj = max £;] < a|Xoy = &N] ,
/‘41-=1 1=is/ I<i</
(A.2)

where the maximum in the third line extends over all i correspond-
ing to ¢(;), . . . , ¢y and the second inequality comes from the fact
that the set of indices corresponding to ¢y, . . ., ¢ includes the
set {1, ..., /}. Because the event in (A.2) depends only on the
first / components, we may consider the truncated data X‘ll), ceey
X(zl}v, which consist of only the first / components of X, .
Under H,, ..., H,, _X(l[), R X‘;}V are independent and identically
distributed with distribution function F?, the joint distribution of
the first / components of X; obtained from F by integrating out the
last k — [ components. Define the event

.. a..XZN'
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E;={max T} = max t},
I=<i</ 1=<i</

Jj=1L..., M.

If we integrate (A.2) over all x,y, we get

Py {A} sf {

21[E1<a

J=1

o) o) )
Xon = X2N] dF(I)(xl )

L dFO(x), (A3)

where the P inside the integral is the conditional probability with
respect to resampling from the fixed original data values. Now con-
sider taking the limit as M goes to infinity on both sides of (A.3).
The bounded convergence theorem enables us to pass the limit
inside the integral, and the law of large numbers results in a new
right side for (A.3):

dF® (x(l)

. !
lim Py{Ad} < f(l) o o dFO(x"y ...
X

M- 28 P{Eg| X=X N} <a
(A4)

where s is arbitrary from 1, ..., M. Recall that the resample X},

.y X;‘N0 is a with replacement sample from x,, . . ., X,». Similarly,
letZ,, ..., Z,y, be the truncated resample consisting of the first /
components of XY, ..., X3y,. Therefore, Z,, .. ., Z,y, are inde-
pendent and 1dent1cally distributed with dlstnbutlon function
F§ N (zw) given by

S Ixj<z,,,j=1,...,1]
2N ’

F{(z,) =

the empirical distribution function of the original truncated sample.
We can now express (A.4) as

lim Py {4}
M- oo

dFO(x"y .. dFO(xR). (A.5)

<f O 1[5, dF3(2,)...dFY (223,)] <
ot B 4EN (T N (Zan, o

Event E; occurs when a certain function of z,, . . ., z, ~ (ie., the
maximum of the first / test statistics) exceeds the same function of
Xy, - . . » X2, (Recall that the test statistics ¢, . . ., #; are based on
an initial sample of size 2N, even though resampling occurs from
the growing sample of size 2N.) Therefore, event E is independent
of N. If we now consider the limit superior of (A.5) as N goes to
infinity, we get

lim lim Py {4}

N—>oo M—>oo

st“;de“)(zl)
+ | 1| | dF¥(z
[ 1] aroa

CdFD(zyy,) < a] dFO(x{y ...

CdFD(zyy,) = a] dFOx"y ..,

(A.6)

using the fact that for every x” in the space of sequences from R/,

fim 1[ dF{(z,) ..
E

dFI(\P(ZzNo) = a]
N—>oo

< I[f dF(z,) . .. dF(zyy,) < a] .
E,

The value of the second integral in (A.6) is either positive or zero.

377

Case 1: The Second Integral of (A.6) Equals Zero
If this is the case, then (A.6) becomes

lim lim Py {4}

N—->ow M—>o
< f IU dF(z,) ... dF(z5,) < a| dFO(x{") ... (A7)
E
The inner integral in (A.7) can be written as

dF(I)(Zl) e dF(I)(ZZNo).

I /
J;ZN(.:G(ZI ..... ZZNO)ZG(X:) ..... X§73/o)

From (6), we assert that there exists at least one number U such
that

f dF(z,) . .. dFU)(ZZNo) < a. (A.8)
120G G (212N 2U
Let U* = inf{ U: (A.8) holds }. Then we have
I[JZZNO:G(zl ,,,,, 228 =G (x{"..x$P0) dF(zy) . .. dFU)(lzNo) <a«a
=I1[G(x{", ..., xP) > U*].
This makes (A.7) become
lim lim Py {4}
N—>oo M-
< f 1NG(x{", ..., x$%) > U1 dFO(x ") . .. dFO(xRy).
(A9)

If U* satisfies (A.8), then we are done. If not, then there is a se-
quence of numbers { U, } that satlsfy (A.8) and converge to U*.
The indicator functions I [G(xwo) = U;] converge pointwise to
the indicator function I[G (x 2 No) > U*], so that the bounded con-
vergence theorem gives

dFO(x{") .. dFO(x$%) < .

{) 1)
L&)« G(x$h)>U*

When combined with (A.9), we have the desired asymptotic bound
on Py {A4}.

Case 2: The Second Integral of (A.6) Equals y > 0.

In this case we may assume that there is at least one number U
such that

dFO(z,) ... dF(z,y,) = a. (A.10)

LanIG(ZzNQZU

Let U* = sup{U:(A.10) holds}. As in the previous case, we can
show that (A.10) holds for U* as well. Thus G(Xx,) has an atom
at U* but not at any other U satisfying (A.10). Therefore,

fl[f L dFO(z,) ...
220G (22 2G (x5

dF D (z,y, =a] dFO(x{"y .. dFO(xR,

= | IIG(X$) = U¥1dFO(x\"y ... dFO(x$%) = v,
0

(A.11)

while at the same time we have
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I[f ' dF(I)(Zl) . e dF(l)(ZZNo) <«
228G (228 =G (x5 %)

= I1G(x3%)]-
Plugging (A.11) and (A.12) into (A.6), we get

(A.12)

lim lim Py,{A4}

N—>oo M—>x

< fI[G(x‘z’]vop U1 dFO(x{") . dFO(x$) + v

[ 16x80) = U*1drO?) .. dFoaR,)

- [ 16Xy = v aFO?) O +
= Q.

The result follows by realizing that this is an asymptotic bound on
Py {A4}.

[Received April 1993. Revised March 1994.]
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