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1 Introduction

In univariate, conditionally heteroskedastic, dynamic regression models, the de-

pendent variable, yt, is typically assumed to be generated by the following equations:

yt = µt(θ0) + σt(θ0)ξt,

µt(θ) = µ(zt, It−1;θ), (1)

σt(θ) = σ(zt, It−1;θ),

where µ() and σ() are two functions known up to the p×1 vector of true parameter
values θ0, zt are k contemporaneous conditioning variables, It−1 denotes the infor-

mation set available at t−1, which contains past values of yt and zt, and ξt is a mar-
tingale difference sequence satisfyingE(ξt|zt, It−1;θ0) = 0 and V (ξt|zt, It−1;θ0) = 1.
As a consequence, E(yt|zt, It−1;θ0) = µt(θ0) and V (yt|zt, It−1;θ0) = σ2t (θ0).

The most common method of estimation for these models is a Gaussian pseudo-

maximum likelihood procedure, in which the estimator, θ̃T say, is obtained by

maximising the criterion function
PT

t=1 lt(θ), where lt(θ) = −12 ln 2π− 1
2
lnσ2t (θ)−

1
2
ξ2t (θ), ξt(θ) = [yt − µt (θ)] /σ(θ). This objective function becomes a proper log-
likelihood function if and only if the distribution of ξt given zt, It−1 and θ0 isN(0, 1).

However, an important property of θ̃T is that it remains root-T consistent with a

limiting Gaussian distribution when the conditional mean and variance functions

are correctly specified, even though the assumption of conditional normality may

be violated (see Bollerslev and Wooldridge (1992)). The proof is based on the fact

that under correct specification of µt (θ) and σt(θ), the pseudo log-likelihood score,

st(θ) = ∂lt(θ)/∂θ, becomes a vector martingale difference sequence when evaluated

at θ0.

Despite this property, empirical researchers routinely apply the so-called Jarque-

Bera (JB) normality test to (1) in order to assess if the conditional distribution of

the observed series is indeed normal (see Jarque and Bera (1980) and Bera and

Jarque (1981)). Their test was originally developed for the special case in which

the conditional variance is constant (= ω, say) and does not affect µt(θ), and the

conditional mean parameters, δ say, and ω are variation free. It is based on the
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following statistics:

JBNT =
¡
JBST

¢2
+
¡
JBKT

¢2
,

JBST =

r
T

6

h
m3T (θ̃T )− 3m1T (θ̃T )

i
,

JBKT =

r
T

24

h
m4T (θ̃T )− 3

i
,

where

mjT (θ̃T ) =
1

T

TX
t=1

ξjt(θ̃T )

is the jth non-central empirical moment of the estimated standardised innovations

ξjt(θ̃T ). As noted by these authors, m1T (θ̃T ) = 0 ∀T if the regression function µt(θ)
includes a constant term, in which case the expression for JBST simplifies slightly

to:

JBS
0

T =

r
T

6
m3T (θ̃T ), (2)

which is the formula presented in many Econometrics textbooks for the special case

in which µt(θ) is constant.

The JB test was formally derived as a LagrangeMultiplier (LM) test of normality

of the regression residuals versus the alternative that the (conditional) distribution

of ξt belongs to the Pearson family. A closely related test was proposed by Kiefer

and Salmon (1983) (KS), who developed an LM test for normality against a Hermite

polynomial expansion of the (conditional) density of ξt. If one concentrates on the

first four terms of such an expansion, this alternative test is based on the following

statistics:

KSNT =
¡
KSST

¢2
+
¡
KSKT

¢2
,

KSST = JBST = JB
S0
T −

r
3T

2
m1T (θ̃T )

KSKT =

r
T

24

h
m4T (θ̃T )− 6m2T (θ̃T ) + 3

i
= JBKT −

r
3T

2

h
m2T (θ̃T )− 1

i
If the conditional variance is constant, and there is functional independence

between conditional mean and variance parameters, as assumed by all these authors,

then we have that m2T (θ̃T ) = 1 ∀T , so that both tests numerically coincide. Under
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these special maintained assumptions, it can also be shown that the joint asymptotic

distribution of KSST and KS
K
T is spherical Gaussian when ξt given zt, It−1 and θ0 is

N(0, 1), which implies that both KSNT and JB
N
T have a null asymptotic chi-square

distribution with 2 degrees of freedom.

2 The main results

As mentioned by Davidson and MacKinnon (1993) in section 16.7 of their text-

book, while the asymptotic distribution of KSST and KS
K
T remains valid in models

in which σ2t (θ) is not constant, the same is not necessarily true of JB
K
T . Intuitively,

the reason is that if we regard KSKT as a moment test based on the condition

E
©£

ξ4t (θ)− 3
¤− 6 £ξ2t (θ)− 1¤ª = 0,

the inclusion of the term−6 £ξ2t (θ)− 1¤ is precisely what makesKSKT orthogonal to
all the elements of the Gaussian pseudo-ML score st(θ). The same point has recently

been made rather forcefully by Bontemps and Meddahi (2002), who formally prove

this result in the more general case in which there is no separation between the

parameters affecting the mean and variance functions, and ξt(θ) is evaluated at some

root-T consistent estimator of θ, possibly different from the pseudo-ML estimator

θ̃T .

Nevertheless, the exclusion from JBKT of the additional termr
3T

2

h
m2T (θ̃T )− 1

i
(3)

does not necessarily lead to asymptotic size distortions when it is not identically

zero. In particular, there will be no size distortions if (3) is op(1). The following

result establishes a necessary and sufficient condition for this to happen:

Proposition 1 Under the null of conditional Gaussianity
√
T

T

TX
t=1

h
ξ2t (θ̃T )− 1

i
= op(1)

if and only if

ξ2t (θ0)− 1 = wθ(θ0)0st(θ0),
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where

wθ(θ0) = I−1(θ0)E
©£

ξ2t (θ0)− 1
¤
st(θ0)

¯̄
θ0
ª
,

and

I(θ0) = E [st(θ0)s0t(θ0)|θ0]

is the asymptotic information matrix.

Given that the above condition involves a rather complicated system of nonlinear

differential equations, it is not possible to explicitly characterise which models for

µt(θ) and σ2t (θ) will satisfy it, so one has to proceed on a model by model basis.

It turns out that such a condition is satisfied for the family of Garch-m models

analyzed by Hentschel (1995). More formally,

Proposition 2 Consider the following stochastic process for yt:

yt = µt(θ0) + σt(θ0)ξt

µt(θ) = π + γσ2t (θ)

σ2t (θ) = p
2/λ
t (θ)

pt(θ) = (λω + 1− β) + pt−1
©
λαfυ

£
ξt−1(θ)

¤
+ β

ª ¾ if λ 6= 0

lnσ2t (θ) = 2ω + 2αf
υ
£
ξt−1(θ)

¤
+ β lnσ2t−1(θ) if λ = 0

f
£
ξt−1(θ)

¤
=

q£
ξt−1(θ)− b

¤2
+∆− c £ξt−1(θ)− b¤

ξt|It−1 ∼ N(0, 1).

Then, the condition in Proposition 1 is satisfied in the limit as ∆→ 0.

In this respect, note that ∆ is simply a small positive number used to approxi-

mate the absolute value function by means of a rotated hyperbola, so that σ2t (θ) is

everywhere differentiable, including at ξt−1(θ) = b.

Hentschel’s (1995) family of models is remarkably rich, and nests many popular

examples in the literature, including the standardGarch-m (λ = υ = 2, b = c = 0),

the Nagarch-m (λ = υ = 2, b 6= 0, c = 0), the GJR Garch-m (λ = υ = 2, c 6= 0,
b = 0), the Aparch-m (λ = υ 6= 0, b = 0, |c| ≤ 1), the absolute value Garch-
m (λ = υ = 1, b 6= 0, |c| ≤ 1) and the Egarch-m model (λ = 0, υ = 1)). In
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contrast, the Quadratic Garch-m model of Sentana (1995) cannot be nested in his

framework. Nevertheless, an argument similar to the one used to prove Proposition

2 shows that (3) is also op(1) in that case.

3 Conclusions

We have shown that the JB normality test, originally devised for constant con-

ditional variance models with no functional dependence between conditional mean

and variance parameters, can be safely applied to the broad class of Garch-m

models discussed by Hentschel (1995), as well as to the Quadratic Garch-m model

of Sentana (1995). Nevertheless, apart from the obvious situation in which ∆ > 0,

it is possible to find examples of other Arch models in which such a condition is

not satisfied (for instance, the symmetric variant of the Egarch model proposed

in chapter 13 of Barndorf-Nielsen and Shephard (2001), in which f
£
ξt−1(θ)

¤
effec-

tively takes the form Φ−1
©
F1
£
ξ2t−1(θ)

¤ª
, where F1(.) is the cumulative distribution

function (cdf) of a chi-square random variable with one degree of freedom, and

Φ−1(.) is the inverse cdf of a standard normal).

In addition, we can combine the expression for st(θ) in the Appendix with the

analogue of Proposition 1 for ξt(θ) to prove that the asymptotic distribution of√
Tm1T (θ̃T ) will not be op(1) when σ2t (θ) is time-varying. As a result, the test

statistic JBS
0

T in (2) will be incorrectly sized in Hentschel’s model despite the fact

that µt(θ) includes a constant term.

Therefore, our recommendation would be to use the version proposed by KS

despite the fact that the asymptotic size of the JB normality test for regression

residuals commonly employed by practitioners is often correct, because the limiting

null distribution ofKSNT never depends on the particular parametrisation used, and

the additional computational cost is negligible.
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Appendix

Proofs

Proposition 1
A straightforward application of the results in Arellano (1991) implies that

√
T

T

TX
t=1

h
ξ2t (θ̃T )− 1

i
=

√
T

T

TX
t=1

£
ξ2t (θ0)− 1 +Φ0(θ0)I−1(θ0)st(θ0)

¤
+ op(1),

where

Φ(θ0) = E

·
∂ξ2t (θ0)

∂θ

¯̄̄̄
θ0

¸
= −E ©£ξ2t (θ0)− 1¤ st(θ0)¯̄θ0ª .

But since
√
T

T

TX
t=1

·
ξ2t (θ0)− 1
st(θ0)

¸
d→ N

½µ
0
0

¶
,

·
2 −Φ0(θ0)

−Φ(θ0) I(θ0)
¸¾

under the null of conditional normality, then (3) will be op(1) if and only if ξ2t (θ0)−1 can
be written as an exact linear combination of st(θ0).

Proposition 2

We prove first the general case in which λ 6= 0 and λ 6= υ. Later on, we prove those

special cases. As a by-product, we also provide analytical expressions for the derivatives

of the conditional mean and variance functions in Hentschel’s model with respect to the

different parameters, which can be used to speed up the computations and provide more

reliable standard errors and test statistics.

The general case

In order to obtain the Gaussian pseudo log-likelihood score, we need the derivatives
of the conditional mean and variance functions with respect to the nine-dimensional pa-
rameter vector θ = (π, γ,ω,α, b, c,β, υ,λ)0. In this respect, it is important to note that
the partial derivatives of µt(θ) with respect to all the parameters except π and γ will be
given by the following expression:

∂µt(θ)

∂θj
= γ

∂σ2t (θ)

∂θj
= γσ2t

∂ lnσ2t (θ)

∂θj
j = 3, . . . 9,
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while the partial derivatives with respect to π and γ will be

∂µt(θ)

∂π
= 1 + γ

∂σ2t (θ)

∂π
= 1 + γσ2t (θ)

∂ lnσ2t (θ)

∂π
,

∂µt(θ)

∂γ
= σ2t (θ) + γ

∂σ2t (θ)

∂γ
= σ2t (θ) + γσ2t (θ)

∂ lnσ2t (θ)

∂γ
.

Similarly, the partial derivatives of σ2t (θ) with respect to π, γ,ω,α, b, c,β and υ
will be given by the expression

∂σ2t (θ)

∂θj
=
2

λ
p
2
λ
−1

t (θ)
∂pt(θ)

∂θj
=
2

λ
σ2t (θ)

∂pt(θ)

∂θj

1

pt(θ)
j = 1, . . . 8,

so that
∂ lnσ2t (θ)

∂θj
=

∂σ2t (θ)

∂θj

1

σ2t (θ)
=
2

λ

∂ ln pt(θ)

∂θj
j = 1, . . . 8.

However, the partial derivative with respect to λ will be given by

∂σ2t (θ)

∂λ
=

2

λ
p
2/λ
t (θ)

µ
−1
λ
ln [pt(θ)] +

∂pt(θ)

∂λ

1

pt(θ)

¶
=

2

λ
σ2t (θ)

µ
−1
λ
ln [pt(θ)] +

∂pt(θ)

∂λ

1

pt(θ)

¶
,

from where

∂ lnσ2t (θ)

∂λ
=

∂σ2t (θ)

∂λ

1

σ2t (θ)
=
2

λ

µ
−1
λ
ln [pt(θ)] +

∂ ln pt(θ)

∂λ

¶
.

Now, if we exploit the fact that σλt (θ) = pt(θ), and

∂ lnσt−1(θ)
∂θj

=
∂σt−1(θ)

∂θj

1

σt−1(θ)
=
1

2

∂ lnσ2t−1(θ)
∂θj

∀j,

so that

λσλt−1(θ)
∂σt−1(θ)

∂θj

1

σt−1(θ)
=
1

2
λpt−1(θ)

∂ lnσ2t−1(θ)
∂θj

∀j,

we will have that

∂pt(θ)

∂π
= −αλυpt−1(θ)fυ−1

£
ξt−1(θ)

¤
f 0
£
ξt−1(θ)

¤ 1

σt−1(θ)
+ gt−1(θ)

∂ lnσ2t−1(θ)
∂π

,

where

gt−1(θ) =
1

2
λpt−1(θ)

·
αλfυ

£
ξt−1(θ)

¤
+ β

−αυ £ξt−1(θ) + 2γσt−1(θ)¤ fυ−1 £ξt−1(θ)¤ f 0 £ξt−1(θ)¤
¸
,
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and

f 0
£
ξt−1(θ)

¤
=

ξt−1(θ)− bq£
ξt−1(θ)− b

¤2
+∆

− c.

In this respect, note that the non-differentiability of the absolute value function is
reflected in the fact that

lim
∆→0

f 0
£
ξt−1(θ)

¤
=


1− c if ξt−1(θ)− b > 0
−c if ξt−1(θ)− b = 0
−1− c if ξt−1(θ)− b < 0

.

Similarly

∂pt(θ)

∂γ
= −αλυpt−1(θ)fυ−1

£
ξt−1(θ)

¤
f 0
£
ξt−1(θ)

¤
σt−1(θ) + gt−1(θ)

∂ lnσ2t−1(θ)
∂γ

,

∂pt(θ)

∂ω
= λ+ gt−1(θ)

∂ lnσ2t−1(θ)
∂ω

,

∂pt(θ)

∂α
= λpt−1(θ)fυ

£
ξt−1(θ)

¤
+ gt−1(θ)

∂ lnσ2t−1(θ)
∂α

,

∂pt(θ)

∂b
= −αυλpt−1(θ)fυ−1

£
ξt−1(θ)

¤
f 0
£
ξt−1(θ)

¤
+ gt−1(θ)

∂ lnσ2t−1(θ)
∂b

,

∂pt(θ)

∂c
= −αυλ £ξt−1(θ)− b¤ pt−1(θ)fυ−1 £ξt−1(θ)¤+ gt−1(θ)∂ lnσ2t−1(θ)∂c

,

∂pt(θ)

∂β
= pt−1(θ)− 1 + gt−1(θ)

∂ lnσ2t−1(θ)
∂β

.

The derivatives with respect to υ and λ are slightly trickier

∂pt(θ)

∂υ
= pt−1(θ)αλfυ

£
ξt−1(θ)

¤
ln f

£
ξt−1(θ)

¤
+ gt−1(θ)

∂ lnσ2t−1(θ)
∂υ

,

∂pt(θ)

∂λ
= ω + pt−1(θ)

£
ln [pt−1(θ)] ·

©
αλfυ

£
ξt−1(θ)

¤
+ β

ª
/λ+ αfυ

£
ξt−1(θ)

¤¤
+gt−1(θ)

∂ lnσ2t−1(θ)
∂λ

.

According to Proposition 1, we need to find a time-invariant linear combination of
the score that equals ξ2t (θ)− 1 for all t in order for the kurtosis component of the usual
Jarque-Bera test to show no size distortions. But since

st(θ) =
1

σt(θ)

∂µt(θ)

∂θ
ξt(θ) +

1

2

1

σ2t (θ)

∂σ2t (θ)

∂θ

£
ξ2t (θ)− 1

¤
,
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and both µt(θ) and σ2t (θ) depend exclusively on information known at time t − 1, it
must be the case that such a linear combination, provided that it exists, will satisfy the
following system of simultaneous partial differential equations:

w0θ(θ)
∂µt(θ)

∂θ
= 0,

w0θ(θ)
∂ lnσ2t (θ)

∂θ
= 1,

where w0θ(θ) is a vector of time-invariant weights, which can, nevertheless, be arbitrary
functions of θ. But since

w0θ(θ)
∂µt(θ)

∂θ
= wπ(θ) + wγ(θ)σ

2
t (θ) + γσ2t (θ)w

0
θ(θ)

∂ lnσ2t (θ)

∂θ
,

it is easy to verify that if we choose wπ(θ) = 0 and wγ(θ) = −γ, the first condition will
be satisfied provided the second one is. In this respect, we shall next prove that the linear
combination:

w0θ(θ) = (0,−γ,
λω + 1− β

2
,
αυ

2
,− b
2
, 0, 0, 0, 0)

will become arbitrarily close to satisfying such a requirement as ∆→ 0.
We will do so recursively, by proving that w0θ(θ)∂ lnσ

2
t (θ)/∂θ = 1 if the same linear

combination was 1 in t − 1, under the implicit assumption that lnσ20(θ) has been para-
metrised in such a way that w0θ(θ)∂ lnσ

2
0(θ)/∂θ = 1. But first, let us look at the linear

combination w0θ(θ)∂pt(θ)/∂θ, which will be given by

γαλυpt−1(θ)fυ−1
£
ξt−1(θ)

¤
f 0
£
ξt−1(θ)

¤
σt−1(θ)

+
λ

2

½
λω + 1− β + αυpt−1(θ)fυ

£
ξt−1(θ)

¤
+bαυpt−1(θ)fυ−1

£
ξt−1(θ)

¤
f 0
£
ξt−1(θ)

¤ ¾+ gt−1(θ)
=

λ

2

©
λω + 1− β + pt−1(θ)

£
αλfυ

£
ξt−1(θ)

¤
+ β

¤ª
+
λ

2
pt−1(θ)αυfυ−1

¡
ξt−1

¢ ©
fυ
£
ξt−1(θ)

¤− ¡£ξt−1(θ)¤− b¢ f 0 £ξt−1(θ)¤ª .
Given that

f
£
ξt−1(θ)

¤− £ξt−1(θ)− b¤ f 0 £ξt−1(θ)¤
converges to 0 as ∆→ 0 regardless of the sign of ξt−1(θ)− b, then the above expression
can be re-written in the limit as:

w0θ(θ)
∂pt(θ)

∂θ
=

λ

2

©
λω + 1− β + pt−1(θ)

£
αλfυ

£
ξt−1(θ)

¤
+ β

¤ª
=

λ

2
pt(θ),

which means that w0θ∂ ln pt(θ)/∂θ = λ/2. But since wλ(θ) = 0 in our case, then

w0θ(θ)
∂ lnσ2t (θ)

∂θ
=
2

λ
w0θ(θ)

∂ ln pt(θ)

∂θ
= 1

as required. ¤
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The case υ = λ

In this context, a straightforward application of the chain rule yields

∂pt(θ)

∂λ
= ω + pt−1(θ)

½
ln [pt−1(θ)] ·

©
αλfλ

£
ξt−1(θ)

¤
+ β

ª
/λ

+αfλ
£
ξt−1(θ)

¤
+ αλfυ

£
ξt−1(θ)

¤
ln f

£
ξt−1(θ)

¤ ¾
+ gt−1(θ)

∂ lnσ2t−1(θ)
∂λ

,

where gt−1(θ) must be evaluated at υ = λ.

But given that in the previous section we have proved that in general wυ = wλ = 0,

then it is clear that in this case we can achieve the same outcome with wλ = 0 alone. ¤

The case λ = 0

The only remaining example to analyze is the limiting case of λ→ 0, which converges
to an egarch-m model for υ = 1. More specifically, the log of the conditional variance
function will be given by

lnσ2t (θ) = 2ω + 2αf
υ
£
ξt−1(θ)

¤
+ β lnσ2t−1(θ).

Tedious but otherwise straightforward algebra shows that in this case, the appropriate
linear combination will be given by the vector

w0θ =
µ
0,−γ, 1− β

2
,
αυ

2
,− b
2
, 0, 0, 0

¶
,

which is precisely the limit as λ→ 0 of the vector obtained for the general case.
To prove it formally, let us obtain all the required derivatives. In particular, if we call

ht−1(θ) = β − αυ
£
ξt−1(θ) + 2γσt−1(θ)

¤
fυ−1

£
ξt−1(θ)

¤
f 0
£
ξt−1(θ)

¤
,

then

∂ lnσ2t (θ)

∂π
= −2αυfυ−1 £ξt−1(θ)¤ f 0 £ξt−1(θ)¤ 1

σt−1(θ)
+ ht−1(θ)

∂ lnσ2t−1(θ)
∂π

,

∂ lnσ2t (θ)

∂γ
= −2αυfυ−1 £ξt−1(θ)¤ f 0 £ξt−1(θ)¤σt−1(θ) + ht−1(θ)∂ lnσ2t−1(θ)∂γ

,

∂ lnσ2t (θ)

∂ω
= 2 + ht−1(θ)

∂ lnσ2t−1(θ)
∂ω

,

∂ lnσ2t (θ)

∂α
= 2fυ

£
ξt−1(θ)

¤
+ ht−1(θ)

∂ lnσ2t−1(θ)
∂α

,
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∂ lnσ2t (θ)

∂b
= −2αυfυ−1 £ξt−1(θ)¤ f 0 £ξt−1(θ)¤+ ht−1(θ)∂ lnσ2t−1(θ)∂b

,

∂ lnσ2t (θ)

∂c
= −2αυ £ξt−1(θ)− b¤ fυ−1 £ξt−1(θ)¤+ ht−1(θ)∂ lnσ2t−1(θ)∂c

,

∂ lnσ2t (θ)

∂β
= lnσ2t−1(θ) + ht−1(θ)

∂ lnσ2t−1(θ)
∂β

,

∂ lnσ2t (θ)

∂υ
= 2αfυ

£
ξt−1(θ)

¤
ln f

£
ξt−1(θ)

¤
+ ht−1(θ)

∂ lnσ2t−1(θ)
∂υ

.

Hence,

w0θ
∂ lnσ2t (θ)

∂θ
= 2γαυfυ−1

£
ξt−1(θ)

¤
f 0
£
ξt−1(θ)

¤
σt−1(θ) + 1− β + αυfυ

£
ξt−1(θ)

¤
+αυbfυ−1

£
ξt−1(θ)

¤
f 0
£
ξt−1(θ)

¤
+ ht−1(θ)w0θ

∂ lnσ2t−1(θ)
∂θ

.

But if we assume once more that lnσ20(θ) has been parametrised in such a way that
w0θ(θ)∂ lnσ

2
0(θ)/∂θ = 1, then we are left with:

w0θ
∂ lnσ2t (θ)

∂θ
= 1 + αυfυ−1

£
ξt−1(θ)

¤ ©
f
£
ξt−1(θ)

¤− £ξt−1(θ)− b¤ f 0 £ξt−1(θ)¤ª ,
which again goes to 1 as ∆→ 0 regardless of the sign of ξt−1(θ)− b. ¤
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