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SUMMARY
The paper shows how possible change in a system generating a time series may be
studied by comparing forecasts made from a model built on data prior to the suspected
change with data actually occurring. An environmental example illustrates the
decomposition of the overall criterion into relevant components and shows how
difficulties can occur in distinguishing alternative models for change. The relation
to surveillance problems and to intervention analysis is briefly discussed.
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1. INTRODUCTION

SUPPOSE a system has been subjected to a change. A natural way to consider the possible
effect of that change is to compare, with actuality, forecasts made from a stochastic model
which was appropriate before the change. Such a model determines the probability structure
of its forecast errors and a specified change in the model results in a calculable change in that
structure. Hence, appropriate functions of the forecast errors may be calculated which point
to specific changes in the model.

The object of this paper is to illustrate this, using some environmental data. One point
that emerges is that changes in the model of different kinds may not be easily distinguishable.

2. A TiME SERIES MODEL FOR THE OZONE DATA
Following notation and methodology used for example in Box and Jenkins (1970), denote
a time series by the sequence ... z,_;, 2, 7,4, ... Also define a white noise series ... a,_y, a, a4, ...
as a sequence of independently and normally distributed random shocks with mean zero and
variance o®. The values z, of the time series are then supposed to be generated by the linear
filtering operation

z,=(B)a, ¢y
where (B) =1+, B+, B*+... and B is the back shift operator such that Ba,= g, ;.
Alternatively, the model may be written in the form 7(B) z, = a,, where
w(B) =y (B)=1—myB—m, B*—....

For 180 successive values from January 1956 to December 1970 of the monthly average
atmospheric ozone concentration at Azusa, California, Tiao et al. (1975), obtained a model
with

— —_ 12
zﬁ(B)=(1 011:)_(11?12023 ), 6;=—015,0,=091 and o%=1-00. [9))

This model was used to produce minimum mean square error forecasts (all from the
origin December 1970) for the next 24 months. They are compared in Fig. 1 with what actually
happened.
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The comparison is of interest because new automobile emissions standards were introduced
at the end of 1970. The diagram gives the impression that after 1970 the levels were lower
than expected, but caution is needed because (i) forecasts are subject to error, (ii) for forecasts
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Fic. 1. Forecasts made in December 1970 of ozone concentration at
Azusa, California, compared with actuality.
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made from the same origin, successive forecast errors for the model in (2) are necessarily highly
positively correlated giving a false impression of the consistency of discrepancies.

3. AN OverRALL CHECK
The minimum mean square error forecast of z; made at an origin conveniently taken to be
zero is denoted by 2(/), where / = 1,2, ..., is called the lead time. It is readily shown that the
lead [ forecast error ¢, = z;—2(/) is given by

!
o= 214 &)
j=1

where s, = 1. Now, for the forecasts of z,, ..., z,,, writing a’ = (a,...,a,) and e = (e, ...,e,)
the transformation from random shocks to forecast errors is e = {sa, where Y is an m xm
lower triangular matrix with diagonal elements equal to unity, first subdiagonal elements
equal to i, second subdiagonal element equal to ,, and so on. Conversely, a = e where
7 = Y1, and it is readily confirmed that 7 is an m x m lower triangular matrix with diagonal
elements equal to unity and the jth subdiagonal elements equal to —;,j=1,...,m—1.

Now the m x m covariance matrix for the vector e is V = E(ee’) = Yys'0. It follows that
if the original model is appropriate during the period /=1,...,m, then Q =¢'V~'e is
distributed as ¥ with m degrees of freedom, where V! = =’ mt/o2. If, on the other hand, the
model changes in some way we may expect that Q will be inflated.

Now rather than compute Q from the e, it is easier to employ the identity

m
QO=¢Vle=en'me/o?=a'alo® = a—zglalz. )

Thus, Q is the standardized sum of squares of the one-step ahead forecast errors, aj, ..., @y,
and as we suggested in our joint paper with Hamming, an overall test of the continuing
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appropriateness of the model during the period /=1, ...,m is achieved by referring Q to a
x® table with m degrees of freedom. Further, this is equivalent to the appropriate test applied
to all the lead / forecast errors e, /=1, ...,m.

Since in practice o? is estimated from »n data values to which, say, p parameters have been
fitted, a closer approximation might refer Q/m, where 0 = 623" a?, to an F table with
m and n—p degrees of freedom. However, when # is large, this refinement would make little
difference to the result which is in any case approximate since it does not allowt for errors
of estimates of the parameters of the original series.

For the ozone data and with the model fitted to the 180 observations z_;gg, Z2_179, ---»Z_15
occurring before 1971, we find that Q = 36-0 which is close to the 5 per cent value of y* with
24 degrees of freedom and suggests that the deviations from the forecast are real.

4. COMPONENTS OF x2

The quantity Q provides an overall criterion having, like all overall criteria, the advantage
that it is unnecessary to be specific about the nature of the feared discrepancy, but the
disadvantage that it lacks sensitivity when compared with a more specific criterion which
assumes that we have guessed correctly what to be afraid of. We now illustrate how the Q
statistic may be decomposed into components associated with various relevant alternatives.

4.1. Relevant Alternatives

The implication of the overall 2 test is that after 1970 the model has changed in some way
or other. In speculating on 4ow it has changed, we must on the one hand confront theoretical
explanations (generated by knowledge of the system) with the data, and on the other allow
examination of the data, and particularly of residuals, to suggest theoretical explanations.
In particular, it becomes important to know the species of basic patterns which different
kinds of discrepancies would inject into the residuals.

“Off the cuff” conjectures would certainly include (a) a change in level of z,, (b) a change
in one or both of the stochastic parameters 6, and 6,. However, those having knowledge of
the chemistry and meteorology involved pointed out that it was only during the “summer”
months (June-October) that the new emission standard would be expected to make much
difference; also, it was known that the number of cars fitted with the new control devices
would be roughly twice as high in the second year as in the first. This suggested that we might
expect (c) a shift in level of z, in the summers only, with the shift in the second summer about
twice that in the first. For reference purposes we refer to this last possibility as the “Met
model”.

Possibilities (a) and (c) above can be allowed for by substituting z,— X% B, x;, for z, in
the model (1), where B; are parameters and x;, are appropriate indicator variables. In all
cases, x;; would be zero before # = 0. For example, to accommodate model (a) we can set
k=1, xy=1,1=1,...,24; and to accommodate model (c) we can set k =2 with ;=0
and xyq =1, for /=6,7,8,9,10, xy =2 for [/ =18,19,20,21,22 and x, =0 elsewhere. The
same general device can, of course, be used to model other changes believed to affect z; directly
such as time trends and new exogenous variables. Allowing these possibilities our model can
be written

®
a, = m(B) (Zz“gllgj xﬂ)- ®)

To determine the effect of changes in the parameters of the stochastic model, suppose that,
prior to time zero, w(B) = my(B) and the stochastic parameters included in the model had

T To gain some idea of how close the approximation is, a brief investigation of this source of error was
made for an autoregressive process of order p. With estimates based on # initial observations, estimation
errors inflate the mean value of y? calculated from (4) by a factor approximating 1+ (p/n).
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values 6y, ...,0,,. Further, suppose that using these values the calculated shocks were
Qo1 o> Ao ' ‘
Then, after expansion, approximately

k r
Aoy = leBj X+ Zl(ei = Oi) Wyt a, (6
j= i=
where

— 0q,
20,

?

The values of Xy, Xy, Wy, Wy corresponding to By, By, 6, and 6, for the ozone example are
plotted in Fig. 2 together with the values of a,;. The speculations mentioned above imply
that the residuals a,; contain a deterministic component proportional either to Xy, X, Wy
or Wy, or to some linear combinations of them.
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F1G. 2. Values of a,,;, Xy, Xy, Wy, Wy for the ozone data.

Analysis of residuals, relative to the possibilities discussed, is a quest for patterns of the
appropriate kind. Inspection and simple plotting suggest that the Met model (possibility (c))
might account for the discrepancies but so might changes in the stochastic parameter 6,.
More precisely the individual contributions to the overall 2 are: (i) 13-70 for B; alone (level
change), (ii) 17-01 for B, alone (Met model), (iii) 10-37 for 6, alone (a change of the first
parameter) and (iv) 14-75 for 6, and 6, (changes in both parameters) where, for example,

24 2 24
13-70 = (z aO’IXu) /(z Xg,oz).
=1 =1

If we fit equation (6) by least squares, we have
Bi=-043, By=—071, 8,—8,=—011, 6,— 6, =—007.
(0-24) (0-24) (0-18) (0-02)
From the analysis of the overall ¥? given in Table 1 it may be concluded that:

(i) much of the forecast discrepancy can be explained by the Met model associated with
B, alone;
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(ii) after the contribution of that model is taken account of, additional contributions
from level shift B8, and shift in 6, are not substantial;
(iii) there is, however, evidence of a slight but significant shift in 6,.

In connection with this last component it must be remembered that the “Met model” given
here is rather rough. Ideally it should take more accurate account of the increase in cars
fitted with new engines, and also of the differential effectiveness of the new engines at different
seasons. These inadequacies could produce pseudo-seasonal components and hence the
apparent need for a slight change in 6, which was found.

TABLE 1

Analysis of x* showing contributions of possible discrepancies

Source d.f. X2

Due to B, (Met model) 1 170
Extra for 8; (Level shift) 1 2:5
Extra for shift in 6, 1 07
Extra for shift in 6, 1 50
Remainder 20 10-8
Total 24 360

A possibility which seems most worrisome to many users of time series analysis, and tends
to come to mind first, is that the stochastic parameters determining the “memory” of the
system may change by amounts sufficient to cause serious inaccuracies in forecasts. Now it
should be noted that if the only possibility tested in the above example had been that 6, and
0, might have changed, the large contribution of 14:75 to x? might have seemed totally
convincing, and also 6, would have been identified as the major contributor. The above
analysis cannot, of course, prove that a change in 6, has not occurred. It does show, however,
that if level changes in z; of a kind that makes practical sense are taken account of, the evidence
that a change in 0, is needed, vanishes.

This is, of course, because the possibilities considered are closely related. Changes in
level of z; associated with such variables as X;; and X,; will obviously produce serial correlation
in a,;. But consider also the residual component produced by a change in the parameter 6,.
This is

oq

Wy = ~ 0, A —(1=0yB)ay,; 4.

Since 6y, is small in magnitude, the corresponding contribution to ¥ is roughly

L ? > 2 2 2 5 2 2
2 1Ay a5 )0t =0 2ag 1,
1=2 =2 1=2

where r; is the sample autocorrelation at lag 1 of the ay;. Thus, changes in level of z, as well
as changes in 6, are detected by the existence of serial correlation in the residuals. It follows
that, although in this example the residuals a,; are obviously serially correlated, this need not
mean that 6, has changed.

Investigations as to whether, where and how often changes in stochastic parameters might
occur in real series are not easy to carry out and little seems to have been done. One result
that is clear, however, from the above discussion is that in any such investigation all plausible
possibilities ought to be considered and we should not jump too hastily to the conclusion
that shifts are necessarily due to changes in stochastic parameters.
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5. RELATION TO SURVEILLANCE OF FORECASTING SYSTEMS

The ozone data used for illustration are here presented in the manner which we first received
them—complete in December 1972. The problem we have discussed is, however, related to,
but is different from, the problem of sequential surveillance of routine forecasting schemes.
In that problem, data in the form of one-step ahead forecast errors from an operating scheme
are available sequentially and a continuous monitoring is carried out to detect possible
changes in the model. An early suggestion was that the g, be plotted on a cumulative sum
chart. This usually provides a good catch-all criterion and for the present data such a chart
points strongly to the possibility of change although not, of course, to its specific nature.
The essential idea involved in the cusum chart is the sequential plotting of the likelihood
ratio statistic. If a change in Jevel of the g, themselves is being sought this leads at once to
the criterion of the cumulative sum. However, as was pointed out, for example by Box and
Jenkins (1966), for other alternatives such as a change in levels of one or more of the stochastic
parameters, different cumulative plotting methods are appropriate. Some of these are discussed
by Ledolter (1975) in a recent thesis.

6. RELATION WITH INTERVENTION ANALYSIS

In our earlier work (1965, 1975) methods were described for estimating the effect of an
“intervention” at a known point in a time series.

This situation differed from that discussed here in that the parameters of the time series
model were estimated from substantial quantities of data available after, as well as before,
the intervention.

However, these earlier methods can perfectly well be applied to examples like the present
one and the results will be essentially similar if the period after the intervention is short. We
believe the present procedure is worth separate consideration because of its simplicity and
intuitive appeal. It is very natural to learn about a system by comparing a set of forecasts
made at some point of possible change with actuality.
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