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ABSTRACT

Random Walk Hypotheses and Profitability of Momentum Based Trading Rules

Chandramouliswaran Venkataramani

Michael Steele

The main conclusion of this thesis is that for all assets examined here momentum based
trading rules yield superior risk adjusted returns compared to buy-and-hold strategies under
both weekly and monthly time periods. Furthermore, for weekly data from the CRSP
NYSE-AMEX equal-weighted index, the CRSP NASDAQ value-weighted index, the CRSP
NASDAQ equal-weighted index, small cap stocks, and certain sectors, technical trading
rules outperform the buy-and-hold strategies before adjusting for risk and after adjusting
for transaction costs. The consequence of these conclusions is that technical trading rules
are useful.

The first chapter of this thesis largely serves to update and refine the results of Lo and
MacKinlay’s 1988 article on testing Random Walk Hypotheses. Chapter 2 and Chapter 3
address the main results summarized above. The profitability of momentum based trading
rules, specifically the filter rule, applied to market indexes, decile portfolios, and sector-
sorted portfolios are examined with the help of several risk adjusted measures. Furthermore,
the connection between returns to the filter rule and lag one autocorrelation is established.
Chapter 4 then serves to complete our assessment of the profitability of technical trading
rules, which we do by examining the performance of the MACD indicator and the Moving

Average strategy.
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Introduction

The central aim of this thesis is to examine the following question “Are past prices indica-
tive of future prices?” Although this question indirectly depends on the model for prices,
historically the majority of research has focused on two areas, test for autocorrelation in
the return series and the performance of trading strategies.

We begin this dissertation with an analysis of the “Random Walk Hypothesis” along
the lines of Lo and MacKinlay (1988). Our aim is two-fold; first, we extend their analysis
by including asset return data that have become available since the time of their tests and
secondly, we address issues that were not considered by Lo and MacKinlay by performing
a sector-by-sector analysis of Lo and MacKinlay’s random walk hypothesis.

Data for this exercise and the rest of the thesis are the weekly and monthly values from
the CRSP NYSE-AMEX value-weighted index, CRSP NYSE-AMEX equal-weighted index,
S&P 500 index, CRSP NASDAQ value-weighted index, CRSP NASDAQ equal-weighted
index, ten size-sorted portfolios and ten sector-based portfolios. From the analysis of weekly

data four key observations emerge from the results.

e For data corresponding to 1962-2001 from the major market indexes we find that the
Lo and MacKinlay’s random walk hypothesis is overwhelmingly rejected by the CRSP
NYSE-AMEX equal-weighted index which has a lag 1 autocorrelation of approxi-
mately 26%. The most significant rejections though occur for the CRSP NASDAQ

equal-weighted index which has a lag 1 autocorrelation of approximately 37%.

e Among size-sorted portfolios, Decile 1 (portfolio of smallest firms) exhibited the

strongest evidence against the Lo and MacKinlay’s random walk hypothesis and the



evidence became weaker as we proceed from the lower deciles to the higher deciles.

e Further, for sector-sorted portfolios formed with equal-weighting of stocks, all sectors
except the Utilities sector showed strong evidence against the Lo and MacKinlay’s
random walk hypothesis and in particular the lag 1 autocorrelation for the Services

sector was 32% for the overall period 1962-2001.

o Rather remarkably it appears that behavior of the market as a whole has moved
towards the random walk behavior after 1985. This follows from the fact that for
all the assets examined here, the evidence against Lo and MacKinlay’s random walk
hypothesis has either dropped considerably or completely vanished in the post Lo and
MacKinlay (1988) period, 1986-2001.

The statistically significant rejections of the Lo and MacKinlay’s random walk hypoth-
esis suggests the possibility of economically meaningful trading rules. The filter rule is
probably the trading rule with the richest academic tradition. In the second and third
chapter we detail our investigation of the filter rule. The data for this investigation is sim-
ilar to the data used for testing the random walk hypothesis except that now the returns
are adjusted for dividends.

Our approach to assessing the performance of the filter rule is rather comprehensive
as we use three metrics: performance measures before adjusting for risk, risk adjusted
performance measures, and market timing tests and in all three cases we take the buy-
and-hold strategy as the benchmark strategy. Our analysis of the filter rule leads to five

interesting observations for weekly data.

e For the 1962-2001 period, the 5%-filter rule outperforms the buy-and-hold strategy
before adjusting for risk for data from the CRSP NYSE-AMEX equal-weighted index,
the CRSP NASDAQ value-weighted index, and the CRSP NASDAQ equal-weighted

index.

e To illustrate the superior performance of the filter rule consider its performance on

the CRSP NASDAQ value-weighted index. The terminal value of a $1 investment



as a result of following the filter rule is 6.58 times the amount that results from
using the buy-and-hold strategy and at lower risk. Furthermore, the one-way break
even transaction cost is 1.70%, a rather large number considering the fact that most

academic studies typically use 1/20 of 1%.

e After accounting for risk, the 5%-filter rule performs at least as well as the buy-and-
hold strategy for all the indexes except the S&P 500 index. In fact, if one uses the
maximum drawdown as the risk measure, then the 5%-filter rule has significantly

lower risk than the buy-and-hold strategy for all the indexes.

e For the size-sorted portfolios we find that the 5%-filter rule significantly outperforms
the buy-and-hold strategy for all portfolios except Decile 10 the portfolio of the largest

firms before adjusting for risk.

e For data from the sector-based portfolios, before adjusting for risk, the 5%-filter rule
does at least as well as the buy-and-hold strategy for data from Basic Industries,
Construction, Durables, Utilities, Trade, Finance, Oil and Coal, and Services. After

adjusting for risk, the 5%-filter rule beats the buy-and-hold strategy for all sectors.

An important observation that arises from the results to the filter rule is the strong rela-
tionship between lag one autocorrelation of weekly returns and the excess returns (difference
between annualized returns to the filter rule and the annualized returns to the buy-and-
hold strategy). Similar to our observations while examining the random walk hypothesis,
wherein for all assets examined there was a considerable drop-off in the evidence between
1962-1985 and 1986-2001, we see that the performance of the filter rule declines as we move
from the 1962-1985 period to the 1986-2001 period. Proceeding along the lines of Corrado
and Lee (1992) we regressed the excess returns on the lag one autocorrelation to find that
a strong linear relationship (R? = 50%) exists between them. Furthermore, we find that
for a 10% increase in lag one autocorrelation there is a 2.39% increase, on average, in the
excess returns. These results serve confirm our intuition about the relationship between

autocorrelation in returns and profitability of momentum based rules which aim to exploit



trends in prices.

Finally, in Chapter 4 we continue the investigation of momentum strategies, and in
particular we analyze the moving average convergence divergence indicator and a moving
average strategy. In essence, the filter rule appears to dominate the two strategies consid-

ered, except in the following two scenarios.

e We find that for weekly data from the S&P 500 index the 40-period moving average
strategy outperforms the buy-and-hold strategy with a one-way break even transaction
cost of 0.48% which is different from the results to the moving average convergence
divergence indicator and the filter rule, both of which fail to beat the buy-and-hold

strategy.

e Unlike the results to the major market indexes and size-sorted portfolios for data from
sector-based portfolios there is no single strategy that seems to dominate. Before
adjusting for risk, the 40-period moving average strategy dominates on the basis of
one-way break even transaction costs for five out of ten sectors, but after adjusting

for risk the moving average convergence divergence indicator dominates.

In summary, the results to the random walk hypothesis, the filter rule and the results for
the MA and MACD strategies do confirm the ability of past prices to forecast future prices
at least for weekly data from the CRSP NYSE-AMEX equal-weighted index, the CRSP
NASDAQ indexes, size-sorted portfolios Deciles 1-9 and certain sector-based portfolios.
Furthermore, we find that on risk-adjusted basis the momentum strategies earn superior

returns compared to buy-and-hold strategies for almost all portfolios.



Chapter 1

Random Walk Hypotheses : An Extended and

Refined Empirical Investigation

The main goal of this chapter is to extend and to refine the analysis of Lo and MacKinlay
(1988). First, to gain some basic experience, we simply replicate the analysis of Lo and
MacKinlay (1988) with two small twists. Specifically, we extend the time frame to include
asset return data that have become available since the time of their tests, and we also
examine ten size-sorted portfolios instead of five considered by Lo and MacKinlay.

The second part of our analysis is more substantial, and it addresses issues that were
not considered by Lo and MacKinlay (1988). Specifically, we perform a sector-by-sector
analysis of Lo and MacKinlay’s random walk hypothesis, and we test Lo and MacKinlay’s
random walk hypothesis for the CRSP NASDAQ equal-weighted index, the CRSP NASDAQ
value-weighted index and the S&P 500 index.

This chapter is organized in six sections, and in the first of these we briefly describe
several variations of the random walk hypothesis that have been considered earlier, with
particular attention to the Lo and MacKinlay version of the random walk hypothesis. This
section also summarizes the major findings of Lo and MacKinlay (1988) and defines the
variance ratio test that is central to the remaining analysis of the chapter. In Sections 1.2
and 1.3 we test the Lo and MacKinlay version of the random walk hypothesis for several

market indexes and size-sorted portfolios, while Sections 1.4 and 1.5 report results of testing



on sector-sorted portfolios and other market indexes. Finally in Section 1.6 we offer some

concluding remarks.

1.1 Random Walk Hypotheses and The Lo-MacKinlay approach

IfP, t=0,1,2,..., denotes a sequence of prices of a financial asset, then the random walk
hypothesis for that asset is the assertion that the log-price process p; = log P, satisfies a

model of the form

Pt =W+ pi-1+ €, (1.1)

where p is understood to be a constant and where the terms ¢, t = 0,1,2,... , are un-
derstood to represent a noise process that can be specified in several different ways. To be
sure, any test of such a hypothesis requires one to make assumptions that fully specify the
process {¢;}, and, if one follows the lead of Campbell, Lo, and MacKinlay (1997, pp. 31-33),
then there are at least three models one should consider.

If we denote these models by RWH-I, RWH-II, and RWH-III, then they may be sum-

marized as

RWH-1 : ¢ iid, ¢~ N(0,02),

RWH-II : ¢ independent, E(e) =0, E(e)=o0? < o0,
and

RWH-IIT : ¢ possibly dependent with FE(e) =0,

E(€)=0? <o, and FE(ee ;) =0 forallk=1,2,....

MoTIVATING THE LO-MACKINLAY MODEL

These models are of increasing generality, so a rejection of RWH-IIT automatically en-
tails rejection of RWH-I and RWH-II. Lo and MacKinlay (1988) began their analysis by
considering RWH-I, and they quickly observed that RWH-I is far too restrictive to be of

much interest since it fails to capture some basic features of price processes. First, the daily



return processes p; — p¢—1 are in most cases empirically found to be significantly leptokurtic,
and, second, the daily volatility Var(e;) in the return processes is often observed to change
significantly over time. For these reasons, Lo and MacKinlay (1988) turned their attention
to a model that is more elaborate than RWH-I and RWH-II, yet which stops short of the
fully general model RWH-III. The problem is that such a general model does not lend itself
to effective testing. The Lo and MacKinlay version of the random walk hypothesis limits
the generality of RWH-III by allowing for only certain types of heteroskedasticity in the

noise process, which we will make precise below.
MIXING PROCESSES

The critical issue is the specification of the degree and type of heteroskedasticity that one
allows, and here Lo and MacKinlay take their lead from the heteroskedasticity-consistent
methods of White (1980) and White and Domowitz (1984) where mixing processes are used
to help express the type of heterogeneity and the amount of dependence in the noise process.
Before we can define the proposed model we consider two kinds of dependence measures

and the associated notion of mixing.
Definition 1.1 (Measures of Dependence). If (2, F, P) is a probability space, and A

and B are two sub-o-fields of F, we have the dependence measures:

a(A,B) = sup|P(ANB)—-P(A)P(B)|, A€ A,BeB.

#(A,B) = sup|P(BJA) - P(A)|, Ac A,B€B,P(A) >0.

Definition 1.2 (Mixing Processes). Let {X; : t € Z} denote a sequence of random
variables defined on the probability space (R, F,P), and for —oo < J < L < o0

.7:} :O'(XJaXJ-I—la"'aXL)a and

a(n) = sup a(F o, Fi5a)
n



and

The sequence {X; : t € Z} is then said to be a-mizing if lim, o a(n) = 0 and ¢-mizing if
limy, o #(n) = 0.
Definition 1.3 (Size of Dependence). For A € R we say that a sequence {X; : t € Z}

—)\—e)

is a-mizing of size X provided that for some € > 0 one has a(n) = O(n . Similarly, we

say that a sequence {X; : t € Z} is ¢p-mizing of size A provided that for some € > 0 one has

$(n) = O(n=>7°).

A high degree of dependence in the random sequence is associated with small values
of X\, while small degree of dependence is associated with large values of A. For a more
extensive discussion of mixing processes and properties of mixing processes the reader is
referred to White (2001, pp. 46-53) and Eberlein and Taqqu (1986, pp. 165-192), but these

definitions are all we need to specify the models that follow.

The Lo-MacKinlay Model, or the RWH-LM

Now that we have recalled the notions of mixing processes, we can formalize the Lo-
MacKinlay model (or the RWH-LM for short). Precisely, for integer N, a log-price process
pt=loghP, t=0,1,2,..., N is said to be consistent with the RWH-LM provided that it

satisfies the following five conditions:
1. For all ¢ and all k£ # 0, we have E(¢;) = 0 and E(eie,g) = 0,
2. For all t, E(e%et_jet_k) = 0 for each nonzero j and k where j # k,
3. imyo0 & SN E(€) = 08 < o,
4. The process {€; : t > 1} is ¢-mixing of size r/(2r — 1), for r > 1.

5. The process {€ : t > 1} is such that for all ¢ and for any k > 0, there exists some

6 > 0 for which E{|ee;i[2M9)} < A < 0.



Here we should note that one can replace the ¢-mixing assumption with the assumption

that

4'. The process {€; : t > 1} is a-mixing with size r/(r — 1), for r > 1.

While condition (1) retains the essential property of RWH-IIT that the noise process is
uncorrelated, conditions (3), (4) and (5) are used to limit the degree of dependence in the
noise process so that versions of central limit theorems and laws of large numbers still apply.
On the other hand, condition (2) is more technical and it is assumed — at least in part
— because it helps to simplify the computation associated with the variance ratio statistic

which is developed in the next subsection.

The Variance Ratio Test

Consider a set of N + 1 observations pg, p1,. .. ,pn of the log price process {p;}, and further
assume that for integers n > 1 and ¢ > 1, the number of observations NV satisfies N = ng so
that the observations can be broken into n blocks each of size q. The fundamental inputs
to the variance ratio test are the single period return r; = p; — p;—1 and the associated
g-period return r4(q) = py — pt—q = 1t +1re—1+ - +14—g+1. We will analyze the behavior of

r¢ and r4_q in terms of the autocorrelation coefficient p(k) between r; and ryy, given by

Cov (rs, Tt+k)
\/ Var(r;) Var (i) ’

0<k<N,

p(k) =

We now specify the theoretical version of the variance ratio test. Lo and MacKinlay

(1988) defined the theoretical variance ratio VR(q) by the formulation

VR(q) = féﬁn 1+2§: (1.2)

In the simplest case when ¢ = 2, the variance ratio VR(2) is the ratio of the two-period

return to twice the variance of a one-period return. Formally, from equation (1.2) we see



that

=14 p(1). (1.3)

In particular, if asset returns satisfy RWH-LM then VR(2)=1 since RWH-LM p(k) = 0 for
all £ > 1. Furthermore, from formula 1.3 we see that the variance ratio will exceed one if
the return process exhibits positive autocorrelation, and the variance ratio will be less than

one if the return process exhibits negative autocorrelation.
SAMPLE VERSION

In essence the sample version of the variance ratio test simply takes the definition of
the theoretical VR(q) and replaces its numerator and denominator by appropriate analogs.
Still, before we can make this definition precise, we need a few additional statistics. Here
one should note that the statistics used will all depend on the sample size parameter depend
on N = ng, but this dependence will be suppressed here to maintain consistency with Lo

and MacKinlay (1988).

1. The estimate ji of the drift term y is defined as

1 U 1
fio= n—q;(pk—pk_l)=n—q(pnq—po)-

2. Two estimates for the volatility in the process {e;} are given by the statistics 52 and
o2(q). The statistic o2 is defined as

R——

Ga = Y (pr—pe1 — ),

ng —1 —

and the statistic 32(q) is defined as

nq

o:(a) = %Z(pk—pk—q—Qﬂ)Q, where
k=q
m = qng—q+1)(1— =),
ng

10



. The variance ratio statistic VR(g), the sample version of the theoretical ratio (1.2)

that defines VR(q), is defined as the ratio of the two volatility estimates,

VR(q) = 52 (1.4)

. The sample autocorrelation coefficient between r; and r;y is represented using p(k),

where
ﬁ Eéik(rt —7N)(ri—k —TN)

N —
% Zt:1(7"t —7n)?

p(k) =

, 1<E<N,

- N
where Ty = + 30;0 7.

. A sample version of the relationship between the variance ratio statistic and the
estimated autocorrelation in returns given by equation (1.2) is

-1

=2

VRig) 5 1+ @ﬁ(k% (L5)
k=1

where 5 denotes convergence in probability.

.For1 <j <gq-—1,let §(j) = lim,_, Var(p(y)), the variance associated with the
limiting distribution of the sample autocorrelation coefficient. A heteroskedasticity-

consistent estimator 4(j) of the parameter §(j) is given by

s Sordiii (k= Pe—1 — 2)* (Pr—j — Pk—j—1 — 1)°

i(7) =
) 5 o~ pes —

. With the help of the estimator 3(]) we can define a heteroskedasticity-consistent
estimator of the parameter §(q) = lim,,_,», Var(VR(q)), the variance associated with
the limiting distribution of (VR(q)), as

q—1 N2
Bg) = zjﬁﬂjﬂ]&ﬁ.

1

S

11



Finally, the variance ratio test denoted by z*(q) is defined as

g = YO D (16)

Vo

Furthermore, Lo and MacKinlay (1988) argue that the variance ratio test z*(g) used to test

the RWH-LM is asymptotically standard normal, that is z*(g) 4 N 0,1).

The Findings of Lo and MacKinlay

Lo and MacKinlay used their version of the variance ratio test to study the hypothesis
that a log-price process p; satisfies RWH-LM for weekly and monthly data for the CRSP
NYSE-AMEX value-weighted index and the CRSP NYSE-AMEX equal-weighted index
from 1962-1985. In addition to looking at indexes that represent the overall market, Lo
and MacKinlay also used data from 5 size-sorted portfolios and 625 individual securities.

Among their conclusions five seem to be particularly noteworthy.

1. The authors find strong evidence against RWH-LM in the overall period 1962-1985

and in all sub-periods.

2. On the basis of the weekly returns of the NYSE-AMEX market indexes for the 1962-

1985 period and all sub-periods the RWH-LM is strongly rejected.

3. Further, on the basis of the weekly returns of five size-sorted portfolios formed using
assets from the NYSE-AMEX universe for the 1962-1985 period and all sub-periods
the RWH-LM is strongly rejected.

4. On the other hand, the monthly returns of the NYSE-AMEX market indexes offered

no evidence against the RWH-LM in any sample period.

5. Based on the results of five size-sorted portfolios, the authors infer that the rejection

of the RWH-LM is primarily due to the effect of small stocks.

12



1.2 Test of RWH-LM for Market Indexes

In the first of the new analyzes considered here, we examined the RWH-LM using return
data from the CRSP NYSE-AMEX value-weighted index, the CRSP NYSE-AMEX equal-
weighted index, and the 10 size-sorted portfolios for the period 1962-2001. We will briefly
describe the data collection and construction process before giving a detailed report of our

analysis. !

DATA

Our test of the RWH-LM focuses on the 2059 week time span from July, 1962 to De-
cember, 2001, and we consider both weekly and monthly returns. Daily data were not used
because, as Lo and MacKinlay (1988) observe, such data can suffer from serious biases due
to infrequent trades in some stocks.

Since the CRSP database consists of daily and monthly data for all the CRSP market
indexes and the S&P 500 index, we had to use the daily return files to construct weekly
return data for all the return indexes used in this dissertation. The weekly return data
were computed here in a way that parallels the method used by Lo and MacKinlay (1988);
specifically the weekly return for a financial asset is defined as the return from Wednesday’s
closing price through the following Wednesday close, with a more elaborate rule? employed
should following Wednesday close not be available.

We use only nominal returns in this chapter following the lead of Lo and MacKinlay
(1988), who argue that “since the volatility of weekly nominal returns is so much larger
than that of the inflation and Treasury-bill rates, the use of nominal, real, or excess returns

in a volatility-based test will yield practically identical inferences.”

!We note that both the data collection process and the computation of the test statistics are carried
out using SAS programs which are run in an Unix environment. For further details about the computing
environment and for a copy of the SAS programs please contact the author.

2Specifically, when the following Wednesday’s closing price was unavailable we used the following Thurs-
day’s closing price. If both the following Wednesday’s price and the following Thursday’s price were un-
available we used the following Tuesday’s closing price. In case all three closing prices were unavailable we
assigned a missing value to the corresponding week’s return.
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PRESENTATION OF THE RESULTS

In each of the tables given in this chapter, we report for ¢ = 2, ¢ = 4, and ¢ = 8 the
values of the variance ratios VR(g) and the corresponding test statistic z*(g). Moreover,
each table contains results for both weekly and monthly data, and each table is subdivided
into three major columns with each column corresponding to a particular time period.
The first column displays the results for the entire sample period 1962-2001, while the
second corresponds to the first sub-period 1962-1985 and is designed to match closely with
the overall time period of Lo and MacKinlay (1988). Finally the third column provides
the analysis of the sub-period 1986-2001 which updates the Lo-MacKinlay analysis to the

present.

CRSP NYSE-AMEX equal-weighted index
From Table 1.1 there are three observations that seem noteworthy.

o For weekly data the RWH-LM is rejected for the overall period 1962-2001 and the lag

1 autocorrelation for the weekly returns is approximately 26%, a notably large value.

e The values obtained in the first sub-period 1962-1985 match closely the values obtained

in Lo and MacKinlay (1988).

e Even though the RWH-LM continues to be rejected with data for the second sub-
period 1986-2001, one finds that the rejections are lower than those of the first sub-

period.

DETAILED RESULTS

From the table one sees that the RWH-LM is rejected at a 5% significance level for
weekly return data of the CRSP NYSE-AMEX equal-weighted index for the overall period
1962-2001. The value of the variance ratio for ¢ = 2 for the time-period 1962-2001 is 1.26, so,

from equation (1.5) and the first entry in Table 1.1 we can infer® that p(1) is approximately

SWe note that while VR(2) — 1 can be interpreted as lag 1 autocorrelation coefficient, the relationship
between VR(q) — 1 and p(q) for ¢ > 2 is not straightforward. For further details the reader is referred to Lo
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Table 1.1: VR and Z-scores: CRSP NYSE-AMEX equal-weighted index

The table reports the values of the variance ratio statistic and corresponding z-scores for returns of the CRSP
NYSE-AMEX equal-weighted index for the entire sample period 1962-2001, the sub-period 1962-1985, and the
sub-period 1986-2001. The observed variance ratios VR(q) are reported in the main row, with the corresponding
heteroskedasticity-robust test statistics 2*(¢) reported just below in parenthesis. Under RWH-LM the variance ratios
should equal 1 and the test statistic is asymptotically standard normal. Variance ratios significantly different from 1
have corresponding test statistics marked with an asterisk. The parameter g corresponds to the return period used
to form the variance ratios; for example when ¢ = 2 the variance ratio is the ratio of variance of two-period returns
to one-period returns.

Periods 1962-2001 1962-1985 1986-2001
Overall Time Period The Lo-MacKinlay period The post Lo-MacKinlay period
q values 2 4 8 2 4 8 2 4 8
Observations 2059 1226 833
Weekly 1.261 1.542 1.803 1.293 1.640 1.941 1.200 1.362 1.56
Data (5.489)* (1 6.776)* (7.348)* | ( 7.473)* (1 8.888)* (8.507)* | ( 1.706) ( 1.905) ( 2.338)*
Observations 474 282 192
Monthly 1.173 1.194 1.173 1.160 1.209 1.325 1.210 1.159 0.843
Data (13.408)* (2.052)* (1.160) | (2.553)* (1.750) ( 1.706) | ( 2.509)* (1.097) (-0.726)

26% for the weekly returns of the CRSP NYSE-AMEX equal-weighted index. The variance
ratio test statistic given below is statistically significant with a z-score of 5.48. The bottom

line is that there is strong evidence against RWH-LM.
RESULTS FOR SUB-PERIODS

The results for the period 1962-1985 are consistent with those obtained in Lo and
MacKinlay (1988). The lag 1 autocorrelation 5(1) in weekly returns is approximately 29%
during the period 1962-1985, a value that is in keeping with the value of 30% reported by
Lo and MacKinlay (1988).

Perhaps the most striking inference to be drawn from Table 1.1 is that for the sub-period
1986-2001 we find no evidence of deviation from the RWH-LM for the CRSP equal-weighted
index. The lack of persistence in the results across sub-periods is in stark contrast with the
findings of Lo and MacKinlay (1988) who find the rejections of the RWH-LM for the CRSP
NYSE-AMEX equal-weighted index to be pervasive over all sub-periods. Furthermore, we
note that the lack of significance against RWH-LM in the later sub-period 1986-2001 is an

indication that the behavior of the market is consistent with RWH-LM and is unlike the
and MacKinlay (1988)
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market behavior in the earlier sub-period 1962-1985.
MonNTHLY RETURN DATA

The results for monthly data of the CRSP NYSE-AMEX equal-weighted index provide
a different picture. Specifically, they show only weak evidence against the RWH-LM in all
the sample periods and they are much more in keeping with the earlier findings of Lo and
MacKinlay (1988). The lag 1 autocorrelation p(1) for the monthly returns of the CRSP
NYSE-AMEX equal-weighted index is approximately 17% for the period 1962-2001, and
this does yield a corresponding statistically significant z-score of 3.51, but this significance

in z-score does not persist when one considers different lags and different time periods.

CRSP NYSE-AMEX value-weighted index

From Table 1.2 there are three key observations to be made, and they are:

e The results shows no evidence against the RWH-LM for weekly return data both in

the overall time-period, and in the sub-period 1986-2001.

o However, for the sub-period 1962-1985, the evidence against the RWH-LM is consis-
tent with the findings of Lo and MacKinlay (1988). The lag 1 autocorrelation p(1)
in weekly returns is approximately 8% with a corresponding statistically significant

z-score of 2.26.

e For monthly data there is no evidence against the RWH-LM both in the overall period

and in any of the sub-periods.

1.3 Test of RWH-LM for Size-sorted Portfolios

Lo and MacKinlay (1988) argue that one motivation for the study of size-sorted portfolios
comes from the disparity in the behavior of the equal-weighted and value-weighted indexes.
Specifically, one wants to gain some insight in the rejection of the RWH-LM between the
CRSP NYSE-AMEX equal-weighted index and the CRSP NYSE-AMEX value-weighted
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Table 1.2: VR and Z-scores: CRSP NYSE-AMEX value-weighted index

The table reports the values of the variance ratio statistic and corresponding z-scores for returns of the CRSP
NYSE-AMEX value-weighted index for the sample period 1962-2001, the sub-period 1962-1985, and the sub-
period 1986-2001. The observed variance ratios VR(q) are reported in the main row, with the corresponding
heteroskedasticity-robust test statistics 2*(¢) reported just below in parenthesis. Under RWH-LM the variance ratios
should equal 1 and the test statistic is asymptotically standard normal. Variance ratios significantly different from 1
have corresponding test statistics marked with an asterisk. The parameter g corresponds to the return period used
to form the variance ratios; for example when ¢ = 2 the variance ratio is the ratio of variance of two-period returns
to one-period returns.

Periods 1962-2001 1962-1985 1986-2001
Overall Time Period The Lo-MacKinlay period The post Lo-MacKinlay period
q values 2 4 8 2 4 8 2 4 8
Observations 2059 1226 833
Weekly 1.04 1.068 1.088 1.082 1.157 1.214 0.99 0.961 0.938
Data (1.132) (1.083) (0.970) | ( 2.260)* ( 2.311)* (2.019)* | (-0.143) (-0.341)  (-0.400)
Observations 474 282 192
Monthly 1.041 0.994 0.998 1.054 1.043 1.184 1.026 0.905 0.71
Data (0.755) (-0.058) (-0.013) | (0.799) (0.338) (0.910) | (0.284) (-0.592) (-1.245)

index. From the results of the previous section a similar disparity continues to persist even
after including data from the 1986-2001. Following the lead of Lo and MacKinlay (1988)

we test the RWH-LM with the help of ten size-sorted portfolios.
PORTFOLIO CONSTRUCTION

Using stock return data on individual securities from the CRSP database, we construct
a ten-asset group consisting of size-sorted portfolios. At the end of each month (or week
for weekly data) all NYSE stocks were sorted by size (shares outstanding times price per
share) to determine the NYSE decile breakpoints. Subsequently, all NYSE, AMEX, and
NASDAQ stocks were allocated on the basis of their size to the ten size portfolios formed
using the breakpoints that had been determined by the NYSE stocks. Here, as usual, Decile
1 represents the portfolio of the smallest of firms while Decile 10 represents the portfolio of
the largest of firms.

Index values for each decile are constructed using both equal-weighting and value-
weighting of assets within each decile portfolio. Here, we only report the results for deciles

formed with value-weighting of stocks within each decile portfolio®.

“Results for equal-weighted portfolios are very similar to those obtained for value-weighted portfolios and
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Table 1.3: VR and Z-scores: Return Data by Decile

The table reports the values of the variance ratio statistic and corresponding z-scores for weekly and monthly returns
of the decile portfolios constructed using stocks from the NYSE, AMEX, and NASDAQ exchanges for the sample
period 1962-2001, the sub-period 1962-1985, and the sub-period 1986-2001. The observed variance ratios ﬁ(q) are
reported in the main row, with the corresponding heteroskedasticity-robust test statistics z*(g) reported just below
in parenthesis. Under RWH-LM the variance ratios should equal 1 and the test statistic is asymptotically standard
normal. Variance ratios significantly different from 1 have corresponding test statistics marked with an asterisk. The
parameter ¢ corresponds to the return period used to form the variance ratios; for example when ¢ = 2 the variance
ratio is the ratio of variance of two-period returns to one-period returns.

Periods 1962-2001 1962-1985 1986-2001
q value 2 4 8 2 4 8 2 4 8
Weekly Return Data 2059 1226 833
Decile 1 1.374 1.816 2.247 1.368 1.84 2.315 1.388 1.783 2.153
(Small) (7.819)*  (10.13)* (11.23)* | (8.605)* (10.82)* (11.18)* | (3.577)* (4.463)* (5.103)*
Decile 2 1.296 1.612 1.905 1.307 1.673 2.006 1.28 1.527 1.772
(5.979)*  (7.441)* (8.165)* | (7.864)*  (9.349)* (9.150)* | (2.542)* (2.979)* (3.431)*
Decile 3 1.257 1.514 1.74 1.275 1.59 1.855 1.234 1.414 1.596
(5.523)* (6.546)* (6.894)* | (7.277)* (8.366)* (7.861)* | (2.343)* (2.546)* (2.840)*
Decile 4 1.231 1.468 1.659 1.263 1.568 1.799 1.194 1.348 1.501
(4.991)*  (5.974)* (6.174)* | (7.144)* (8.230)* (7.462)* | (2.049)* (2.248)* (2.492)*
Decile 5 1.21 1.406 1.578 1.251 1.543 1.798 1.167 1.26 1.35
(4.281)*  (4.915)*  (5.192)* | (6.921)* (8.001)* (7.593)* | (1.737)  (1.649)  (1.707)
Decile 6 1.176 1.342 1.467 1.23 1.484 1.667 1.118 1.19 1.261
(3.989)*  (4.556)*  (4.531)* | (6.441)* (7.214)* (6.387)* | (1.393)  (1.356)  (1.412)
Decile 7 1.151 1.275 1.377 1.206 1.422 1.594 1.092 1.119 1.152
(3.496)* (3.718)* (3.685)" | (5.753)* (6.283)" (5.689)* | (1.123) (0.867) (0.831)
Decile 8 1.125 1.216 1.276 1.179 1.365 1.489 1.07 1.066 1.064
(3.055)*  (3.062)* (2.794)* | (5.144)* (5.536)* (4.724)* | (0.921) (0.517) (0.374)
Decile 9 1.081 1.132 1.175 1.14 1.273 1.372 1.025 0.997 0.986
(2.127)*  (1.990)*  (1.851) | (3.929)* (4.100)* (3.565)* | (0.366)  (-0.030)  (-0.090)
Decile 10 0.991 0.986 0.985 1.034 1.06 1.075 0.949 0.909 0.894
(Large) (-.271) (-.251) (-.169) (0.923) (0.867) (0.689) | (-0.980) (-0.980)  (-0.790)
Monthly Return Data 474 282 192
Decile 1 1.218 1.286 1.314 1.215 1.328 1.531 1.23 1.21 0.935
(4.292)*  (3.038)* (2.150)* | (3.305)* (2.730)* (2.812)* | (2.884)*  (1.413) (-.289)
Decile 2 1.191 1.209 1.195 1.18 1.245 1.402 1.216 1.145 0.846
(3.877)*  (2.272)*  (1.352) | (2.882)* (2.069)* (2.125)* | (2.739)*  (1.015) (-.719)
Decile 3 1.164 1.152 1.11 1.153 1.209 1.338 1.192 1.064 0.762
(3.454)*  (1.699) (0.769) | (2.531)*  (1.823) (1.806) | (2.506)*  (0.450) (-1.08)
Decile 4 1.168 1.133 1.079 1.161 1.193 1.33 1.185 1.042 0.723
(3.507)*  (1.475)  (0.555) | (2.673)*  (1.668)  (1.760) | (2.345)*  (0.290) (-1.26)
Decile 5 1.158 1.115 1.059 1.176 1.207 1.332 1.14 0.987 0.699
(3.305)*  (1.275)  (0.413) | (2.974)*  (1.821)  (1.801) | (1.750) (-.089) (-1.35)
Decile 6 1.128 1.086 1.02 1.138 1.169 1.266 1.12 0.974 0.701
(2.621)*  (0.940) (0.139) | (2.257)*  (1.441) (1.401) (1.507) (--180) (-1.36)
Decile 7 1.118 1.064 1.024 1.137 1.166 1.313 1.096 0.924 0.637
(2.410)*  (0.703) (0.168) | (2.232)*  (1.401) (1.626) (1.217) (--528) (-1.63)
Decile 8 1.084 1.027 0.954 1.098 1.104 1.172 1.07 0.914 0.662
(1.736) (0.297) (--313) (1.677) (0.900) (0.903) (0.840) (--572) (-1.50)
Decile 9 1.083 1.006 0.955 1.105 1.081 1.192 1.054 0.887 0.632
(1.650) (0.062) (--301) (1.679) (0.663) (0.978) (0.656) (--765) (-1.64)
Decile 10 1.021 1.007 1.067 1.037 1.042 1.199 1.005 0.95 0.885
(0.355)  (0.069)  (0.417) | (0.462)  (0.288)  (0.920) | (0.058) (-.313) (-.485)
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Decile-to-Decile Behavior

From Table 1.3 four important observations emerge.

e For weekly return data Decile 1 exhibits the strongest evidence against the RWH-LM
for the overall period 1962-2001.

e Evidence against the RWH-LM drops significantly as on moves from the smallest to

the largest decile.

e In fact, the portfolio of largest firms Decile 10 is the only decile portfolio that shows

no evidence against RWH-LM in any of the time periods.

e Furthermore, similar to what we observed with market indexes the evidence against

the RWH-LM is significantly weaker in the second sub-period 1986-2001.

DETAILED RESULTS

For weekly return data the evidence against RWH-LM is strongest for Decile 1. In fact,
for Decile 1 the value of the variance ratio test statistic z*(g) is 7.82 and is highly significant
in the overall period 1962-2001. However, as we proceed through the decile portfolios the
evidence against RWH-LM becomes weaker.

As in the case of market indexes, we may obtain estimates of the lag 1 autocorrelations
for returns on the size-sorted portfolios using the value of variance ratio for ¢ = 2. The lag
1 autocorrelation p(1) for Decile 1 in the overall period 1962-2001 is approximately 37%.
However, the lag 1 autocorrelation drops as one moves towards larger firms, and in fact the

lag 1 autocorrelation for Decile 10 is only -0.01%.
RESULTS FOR SUB-PERIODS

Compared to the first sub-period 1962-1985 the evidence against RWH-LM is lower in

the second sub-period 1986-2001 even though the test statistics continue to be significant.

can be obtained from the author.
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For example, for ¢ = 2, 2*(2) for 1962-1985 is 8.61 compared to 3.58 for the period 1986-
2001.

Starting with Decile 5 there is no evidence against RWH-LM for the sub-period 1986-
2001 while the overall period and the first sub-period continue to show strong evidence
against RWH-LM. Furthermore, between Deciles 5 and 9 there appears to be a large differ-
ence in the magnitude of the lag 1 autocorrelations between the first sub-period 1962-1985
and the second sub-period 1986-2001.

Also, unlike Deciles 1-9 which exhibit strong evidence against RWH-LM in at least one
time period, the portfolio of largest firms Decile 10 shows no evidence against RWH-LM in
any of the time periods. The evidence against RWH-LM is weak even during the 1962-1985

period during which Deciles 1-9 show significant evidence against RWH-LM.
MoNTHLY RETURN DATA

For monthly return data evidence against RWH-LM disappears completely for all periods
for almost all deciles. The smallest of firms represented by Decile 1 is the only asset that
still exhibits significant autocorrelation in returns in the overall period 1962-2001 and the
first sub-period 1962-1985. The lag 1 autocorrelation p(1) for Decile 1 during the period
1962-2001 is 22% and is consistent in terms of magnitude across all lags. Also, as in the
weekly returns case, the test statistic values drop in magnitude in the sub-period 1986-2001

when compared to the overall period 1962-2001 and the first sub-period 1962-1985.

1.4 Test of RWH-LM for Sector-sorted Portfolios

The use of sector-sorted portfolios and other indexes to test the RWH-LM is the key differ-
ence between the results here and those of Lo and MacKinlay (1988). One reason for the
use of sector-sorted portfolios here follows from the lead of Fama and French (1988) who
observe that since industry portfolios contain firms of different sizes, size-sorted portfolios

and sector-sorted portfolios are not proxies for each other and provide independent evidence
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in any analysis®.
PorRTFOLIO CONSTRUCTION

Using the Standard Industrial Classification (or SIC) codes we form 10 sector-based
portfolios. The 10 sectors are Basic Industries, Construction (includes Mining), Durables,
NonDurables, Transportation (includes Communication), Utilities, Trade, Finance (includ-
ing Real Estate and Insurance), Oil and Coal, and Services. As with decile portfolios we
used the weekly and monthly return data to construct index values for each sector. Also,
within each sector we construct both equal-weighted and value-weighted portfolios. Similar
to decile portfolios, the sector-based portfolios are continuously changing and are updated

every month (or week for weekly data).

Sectors formed with Equal-weighting of Stocks

We begin by highlighting key observations from Table 1.4.

o For weekly return data, all sectors except Utilities show strong evidence against RWH-

LM in all time periods.

e The Basic Industries sector, the Durables sector, the Trade sector, the Finance, Real
Estate, and Insurance sector along with the Services sector have weekly lag 1 auto-

correlations above 30% for the overall period 1962-2001.

e Similar to results from the previous sections, the magnitude of the rejections of RWH-

LM are lower in the second sub-period 1986-2001.

e For monthly return data, the Finance, Real Estate, and Insurance sector is the only

one for which the RWH-LM is rejected for all time periods.

DETAILED RESULTS

®To help us understand the concentration of firms by size within each sector we calculated some simple
descriptive statistics for each sector over the period 1962-2001. We noticed that the average decile ranks of
the firms within each sector ranged anywhere from 2.0 to 6.0. Further descriptive statistics can be obtained
from the author.
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Table 1.4: VR and Z-scores: Return Data by Sectors (Equal-Weighted)

The table reports the values of the variance ratio statistic and corresponding z-scores for weekly and monthly returns
of the sector-based portfolios constructed using equal-weighting of stocks from the NYSE, AMEX, and NASDAQ
exchanges for the sample period 1962-2001, the sub-period 1962-1985, and the sub-period 1986-2001. The observed
variance ratios VR(q) are reported in the main row, with the corresponding heteroskedasticity-robust test statistics
2*(q) reported just below in parenthesis. Under RWH-LM the variance ratios should equal 1 and the test statistic
is asymptotically standard normal. Variance ratios significantly different from 1 have corresponding test statistics
marked with an asterisk. The parameter ¢ corresponds to the return period used to form the variance ratios; for
example when ¢ = 2 the variance ratio is the ratio of variance of two-period returns to one-period returns.

Periods 1962-2001 1962-1985 1986-2001
g values 2 4 8 2 4 8 2 4 8
Weekly Return Data 2059 1226 833
Basic Industries 1.305 1.651 2.050 1.343 1.779 2.258 1.248 1.461 1.732
(6.730)*  (8.623)* (10.14)* | (8.744)* (10.86)* (11.46)* | (2.592)* (2.993)* (3.686)*
Construction 1.255 1.551 1.833 1.258 1.608 1.968 1.249 1.447 1.625
(6.021)*  (7.773)* (8.599)* | (6.960)*  (8.721)* (9.162)* | (2.650)* (3.004)* (3.316)*
Durables 1.302 1.646 1.968 1.318 1.707 2.077 1.286 1.583 1.862
(6.549)*  (8.275)* (8.987)* | (8.181)*  (9.865)* (9.841)* | (3.157)* (3.905)* (4.356)*
NonDurables 1.286 1.596 1.884 1.311 1.690 2.010 1.261 1.505 1.769
(5.150)*  (6.533)* (7.356)* | (7.953)*  (9.562)* (9.213)* | (2.434)* (2.918)* (3.494)*
Transportation 1.253 1.532 1.803 1.272 1.589 1.885 1.237 1.484 1.745
(6.087)*  (7.353)* (7.697)* | (7.744)*  (9.041)* (8.770)* | (3.147)* (3.753)* (4.078)*
Utilities 1.218 1.414 1.528 1.293 1.607 1.745 1.111 1.141 1.214
(5.584)*  (6.193)* (5.615)* | (7.042)*  (8.032)* (6.507)* | (1.487) (1.155) (1.335)
Trade 1.337 1.730 2.163 1.368 1.841 2.353 1.300 1.598 1.942
(6.772)* (8.771)* (10.31)* | (8.767)* (11.02)" (11.67)* | (2.987)* (3.658)"  (4.468)"
Fin, RE, Ins 1.319 1.687 2.097 1.330 1.730 2.137 1.294 1.590 2.022
(7.366)*  (9.222)*  (10.34)* | (7.490)* (9.162)* (9.391)* | (2.802)* (3.488)* (4.733)*
Oil and Coal 1.244 1.479 1.692 1.236 1.479 1.686 1.261 1.491 1.730
(7.567)*  (8.201)* (7.843)* | (6.473)*  (6.909)* (6.338)* | (4.177)* (4.607)*  (4.795)*
Services 1.325 1.705 2.072 1.329 1.758 2.234 1.323 1.656 1.918
(7.788)*  (9.579)* (10.06)* | (8.646)* (10.57)* (11.09)* | (4.174)* (4.916)* (4.880)*
Monthly Return Data 474 282 192
Basic Industries 1.260 1.408 1.517 1.261 1.444 1.749 1.251 1.297 0.982
(5.064)*  (4.383)*  (3.581)* | (4.079)* (3.743)* (3.968)* | (3.035)* (2.083)*  (-.087)
Construction 1.161 1.234 1.231 1.201 1.305 1.409 1.101 1.119 0.974
(3.485)*  (2.577)*  (1.561) | (3.378)* (2.514)* (2.038)* | (1.356) (0.910) (-.130)
Durables 1.208 1.229 1.149 1.192 1.260 1.365 1.237 1.206 0.922
(4.196)*  (2.425)*  (1.013) | (3.131)* (2.208)*  (1.951) | (2.899)*  (1.328) (--331)
NonDurables 1.191 1.204 1.138 1.170 1.230 1.352 1.221 1.170 0.883
(3.879)*  (2.248)*  (0.981) | (2.678)*  (1.915)  (1.848) | (2.877)*  (1.227) (-.565)
Transportation 1.198 1.207 1.229 1.182 1.241 1.445 1.223 1.188 1.056
(3.674)*  (1.987)*  (1.428) | (2.988)* (2.054)* (2.367)* | (2.444)*  (1.063) (0.211)
Utilities 1.080 1.057 1.188 1.083 1.047 1.233 1.062 1.017 0.988
(1.570) (0.605) (1.238) (1.279) (0.388) (1.170) (0.782) (0.118) (-.054)
Trade 1.256 1.373 1.361 1.251 1.441 1.685 1.268 1.266 0.874
(4.964)*  (3.917)*  (2.445)" | (3.654)* (3.431)* (3.437)* | (3.508)"  (1.940) (-.590)
Fin, RE, Ins 1.245 1.387 1.621 1.223 1.344 1.656 1.308 1.494 1.567
(4.243)*  (3.699)*  (3.823)* | (3.089)* (2.618)* (3.198)* | (3.629)* (3.394)* (2.583)*
Oil and Coal 1.140 1.315 1.515 1.132 1.330 1.632 1.152 1.293 1.316
(2.641)*  (3.186)* (3.262)* | (2.062)* (2.703)* (3.185)* | (1.648) (1.758) (1.227)
Services 1.230 1.286 1.326 1.259 1.445 1.745 1.201 1.097 0.845
(4.089)*  (2.694)* (2.002)* | (3.986)* (3.711)* (3.941)* | (2.078)*  (0.522) (-.556)
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As in the case of market indexes and size-sorted portfolios, we may obtain estimates
of the lag 1 autocorrelations in returns on these size-sorted portfolios using variance ratios
corresponding to ¢ = 2. For example, the weekly returns from the Services sector has a
lag 1 autocorrelation p(1) of approximately 33% in the overall time-period 1962-2001. The
Basic Industries sector, the Durables sector, the Trade sector, the Finance, Real Estate, and
Insurance sector along with the Services sector have weekly lag 1 autocorrelations above

30% for the overall period 1962-2001.
RESULTS FOR SUB-PERIODS

The evidence in the results for the sub-periods shows the same pattern that we observed
in the previous sections. There is a large drop off in the values of the test statistics for the
sub-period 1986-2001 among all sectors, and the most strongest evidence against RWH-LM
occurs in the first sub-period 1962-1985.

As we noted earlier the Utilities sector is the only one that shows a change in the evidence
against the RWH-LM. For the sub-period 1986-2001 the Utilities sector shows no evidence
against RWH-LM even though it shows substantial evidence against RWH-LM both in the
overall period 1962-2001 and in the sub-period 1962-1985. A reasonable explanation for
this phenomenon could be the deregulation that occurred in the Utilities sector in the early
1990’s.

Rather remarkably for the Oil and Coal sector, the lag 1 autocorrelations of weekly
return data for the second sub-period 1986-2001 are higher than those for the fist sub-
period 1962-1985. An explanation for this requires further investigation and we plan to

address this in a future study.
MONTHLY RETURN DATA

For monthly return data, the Basic Industries sector, the Trade sector, the Finance,
Real Estate, and Insurance sector, the Oil and Coal sector, and the Services sector exhibit
significant evidence against RWH-LM during the overall period 1962-2001. However, the

Finance, Real Estate and Insurance sector is the only sector that has significant z*(g) values
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over all periods confirming significant evidence against RWH-LM.

Interestingly, the value of lag 1 autocorrelations for the Finance, Real Estate and Insur-
ance sector during the second sub-period is higher than those for the first sub-period. This
is similar to the jump in the value of lag 1 autocorrelations from the first sub-period to the

second sub-period that we observed for the Oil and Coal sector using weekly data.

Sectors formed with Value-weighting of Stocks

We begin with a summary of the most interesting observations from Table 1.5.

e The results for sectors formed with value-weighting of stocks tell a significantly dif-
ferent story from the results obtained using sectors formed with equal-weighting of

stocks within each sector.

e For weekly return data only 5 out of the 10 sectors show significant evidence against

RWH-LM in the overall period 1962-2001.

e Also, alarmingly, none of the sectors show significant evidence against RWH-LM for
the sub-period 1986-2001, while almost all of the sectors show significant evidence
against RWH-LM for the sub-period 1962-1985.

e For monthly return data, none of the sectors are significant in any of the time periods,

a clear indication of lack of evidence against RWH-LM.

The difference in the results found for sectors formed with equal-weighting of stocks
within each sector and sectors formed with value-weighting of stocks within each sector is
surprising given that typically the sector-sorted portfolios are well diversified within each

sector with respect to size.

1.5 Test of RWH-LM for Other Market Indexes

Here we examine the RWH-LM using data from the NASDAQ indexes and the S&P 500
index. The CRSP database contains the daily and monthly returns of the CRSP NASDAQ
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Table 1.5: VR and Z-scores: Return Data by Sectors (Value-Weighted)

The table reports the values of the variance ratio statistic and corresponding z-scores for weekly and monthly returns
of the sector-based portfolios constructed using value-weighting of stocks from the NYSE, AMEX, and NASDAQ
exchanges for the sample period 1962-2001, the sub-period 1962-1985, and the sub-period 1986-2001. The observed
variance ratios VR(q) are reported in the main row, with the corresponding heteroskedasticity-robust test statistics
z*(q) reported just below in parenthesis. Under RWH-LM the variance ratios should equal 1 and the test statistic
is asymptotically standard normal. Variance ratios significantly different from 1 have corresponding test statistics
marked with an asterisk. The parameter ¢ corresponds to the return period used to form the variance ratios; for
example when ¢ = 2 the variance ratio is the ratio of variance of two-period returns to one-period returns.

Periods 1962-2001 1962-1985 1986-2001
g values 2 4 8 2 4 8 2 4 8
Weekly Return Data 474 282 192
Basic Industries 1.109 1.251 1.424 1.133 1.339 1.58 1.085 1.161 1.265
(2.869)* (3.662)* (4.239)* | (3.703)* (4.858)" (5.259)* | (1.222) (1.322) (1.545)
Construction 1.135 1.288 1.357 1.164 1.391 1.569 1.101 1.165 1.113
(3.530)*  (4.382)* (3.783)* | (4.760)* (5.873)* (5.386)* | (1.357) (1.352) (0.682)
Durables 1.042 1.101 1.173 1.091 1.185 1.298 1.004 1.038 1.08
(1.124)  (1.541)  (1.806) | (2.656)* (2.862)* (2.962)* | (0.061)  (0.348)  (0.521)
NonDurables 1.015 1.024 0.993 1.054 1.073 1.044 0.962 0.958 0.921
(0.416)  (0.389) (-.080) | (1.432)  (1.044)  (0.406) | (-0.560) (-0.360) (-0.510)
Transportation 1.042 1.071 1.128 1.074 1.161 1.214 1.018 1.005 1.067
(1.367)  (1.223)  (1.433) | (2.571)* (2.820)* (2.347)* | (0.378)  (0.052)  (0.480)
Utilities 1.105 1.196 1.218 1.202 1.396 1.449 0.992 0.963 0.948
(3.333)*  (3.463)* (2.586)* | (5.268)* (5.620)* (4.140)* | (-0.150) (-0.410) (-0.400)
Trade 1.064 1.133 1.249 1.133 1.28 1.457 0.996 0.99 1.05
(1.697)  (2.013)* (2.642)* | (4.036)* (4.233)™ (4.334)™ | (-0.060) (-0.090)  (0.316)
Fin, RE, Ins 1.084 1.146 1.2 1.137 1.271 1.369 1.011 0.977 0.971
(2.778)*  (2.664)* (2.427)* | (4.280)*  (4.413)* (3.777)* | (0.193) (-0.230) (-0.210)
Qil and Coal 1.068 1.104 1.169 1.097 1.169 1.264 1.034 1.029 1.054
(2.018)* (1.738) (1.918) (3.008)*  (2.690)* (2.629)* | (0.538) (0.265) (0.350)
Services 1.12 1.253 1.376 1.171 1.391 1.592 1.067 1.113 1.161
(3.153)* (3.813)* (3.911)* | (4.847)* (5.839)* (5.646)* | (0.967) (0.961)  (0.980)
Monthly Return Data 474 282 192
Basic Industries 1.188 1.212 1.268 1.233 1.386 1.644 1.128 0.969 0.768
(3.625)*  (2.297)* (1.860) (3.165)*  (3.006)*  (3.299)* | (1.825) (-.235) (-1.10)
Construction 1.025 0.984 0.92 1.111 1.12 1.161 0.91 0.809 0.627
(0.472)  (-.161) (--491) | (1.636)  (0.907)  (0.769) | (-1.04)  (-1.21)  (-1.44)
Durables 1.094 1.106 1.114 1.126 1.17 1.258 1.07 1.047 1.015
(1.692) (0.996) (0.693) (2.017)* (1.440) (1.365) (0.785) (0.277) (0.056)
NonDurables 0.989 0.932 0.972 0.964 0.9 1.059 1.025 0.947 0.752
(-.172)  (-.610) (-.173) | (-.457)  (-.693)  (0.278) | (0.246)  (-.304)  (-.994)
Transportation 1.051 1.094 1.216 1.052 1.043 1.132 1.055 1.134 1.294
(0.927)  (0.907)  (1.307) | (0.834)  (0.361)  (0.689) | (0.654) (0.846)  (1.174)
Utilities 1.02 0.934 1.025 1.047 0.95 1.071 0.973 0.871 0.901
(0.409)  (-.707)  (0.161) | (0.757)  (-.415)  (0.359) | (-.342)  (-.884)  (-.424)
Trade 1.164 1.179 1.091 1.177 1.269 1.356 1.151 1.045 0.696
(2.894)* (1.736) (0.575) (2.608)*  (2.095)* (1.752) (1.557) (0.265) (-1.23)
Fin, RE, Ins 1.114 1.11 1.188 1.171 1.201 1.385 1.03 0.957 0.882
(2.109)*  (1.121)  (1.222) | (2.370)*  (1.510)  (1.835) | (0.372)  (-.297)  (-.542)
QOil and Coal 1.089 1.115 1.203 1.109 1.173 1.411 1.058 1.036 0.936
(1.451)  (1.051)  (1.247) | (1.440)  (1.248)  (1.939) | (0.566)  (0.206)  (-.252)
Services 1.128 1.178 1.198 1.188 1.336 1.563 1.055 0.983 0.772
(2.426)*  (1.832)  (1.292) | (2.965)* (2.865)* (2.993)* | (0.622) (-.101)  (-.892)
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Table 1.6: VR and Z-scores: CRSP NASDAQ equal-weighted index

The table reports the values of the variance ratio statistic and corresponding z-scores for weekly returns of
the CRSP NASDAQ equal-weighted index for the sample period 1962-2001, the sub-period 1962-1985, and the
sub-period 1986-2001. The observed variance ratios VR(q) are reported in the main row, with the corresponding
heteroskedasticity-robust test statistics 2*(¢) reported just below in parenthesis. Under RWH-LM the variance ratios
should equal 1 and the test statistic is asymptotically standard normal. Variance ratios significantly different from 1
have corresponding test statistics marked with an asterisk. The parameter g corresponds to the return period used
to form the variance ratios; for example when ¢ = 2 the variance ratio is the ratio of variance of two-period returns
to one-period returns.

Periods 1962-2001 1962-1985 1986-2001
Overall Time Period The Lo-MacKinlay period The post Lo-MacKinlay period
q values 2 4 8 2 4 8 2 4 8
Observations 1511 678 833
Weekly 1.374 1.834 2.281 1.469 2.168 2.864 1.324 1.663 1.979
Data (6.749)* (8.711)* (9.505)* | ( 8.826)* (11.925)* (12.863)* | ( 4.072)* ( 4.872)* ( 5.158)*
Observations 348 156 192
Monthly 1.228 1.251 1.167 1.256 1.419 1.608 1.215 1.146 0.907
Data (3.747)* (2.133)* (0.920) | (3.271)* (2.752)* (2.498)* | ( 2.465)* (0.868) (-0.361)

equal-weighted index and the CRSP NASDAQ value-weighted index from 1973-2001. To
construct weekly CRSP NASDAQ data, we use the same procedure that we outlined when
investigating weekly data of the CRSP NYSE-AMEX market indexes.

The reason for considering additional market indexes like the NASDAQ indexes, is
primarily due to the results of Lo, Mamaysky and Wang (2000). Specifically, the authors
find that daily stock returns conditioned on specific technical indicators provide incremental
information when compared to the unconditional daily stock returns and more importantly,
the incremental information is significantly higher for NASDAQ stocks than NYSE-AMEX

stocks.

Other Market Indexes

Tables 1.6, 1.7, and 1.8 display the results for the CRSP NASDAQ equal-weighted market
index, the CRSP NASDAQ value-weighted market index and the S&P 500 index for both
weekly and monthly data. The most interesting observations that one can draw from these

tables are perhaps the following.

e The RWH-LM is strongly rejected for the CRSP NASDAQ equal-weighted index at
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all time periods and at all lags for weekly data and the lag 1 autocorrelation p(1) of
weekly returns of the CRSP NASDAQ equal-weighted index is approximately 37% for

the overall time-period 1962-2001.

An important observation that is in order here is that the values of the variance
ratios and the test statistics for the CRSP NASDAQ equal-weighted index leads us
to conclusions similar to those of Lo, Mamaysky, and Wang (2000), namely that the
returns to the NASDAQ exchange indexes exhibit higher autocorrelations than returns

from the NYSE-AMEX exchange indexes.

Given what we have seen in the previous sections, not surprisingly, the results are
weaker for monthly data. The evidence against RWH-LM is only moderate as the

rejections fail to occur at all lags.

However, the CRSP NASDAQ value-weighted index shows no evidence against RWH-
LM for both weekly and monthly data for the overall time-period 1962-2001. Never-
theless, there is some evidence against RWH-LM in the first sub-period 1962-1985 in

weekly data but this does not persist in the second sub-period 1986-2001.

We hasten to add that the pattern in the results here is similar to what we have
seen in the previous sections. The evidence against RWH-LM is stronger in the first

sub-period 1962-1985 than the second sub-period 1986-2001.

The S&P 500 index shows no evidence against RWH-LM for both weekly and monthly
data and in any of the time-periods. Even during the 1962-1985 sub-period the lag 1

autocorrelation in weekly returns is only 4%.

1.6 Concluding Remarks

The central aim of this introductory chapter was to revisit the analysis of Lo and MacKinlay

(1988) and additionally test the Lo-MacKinlay model with the help of data from sector-

sorted portfolios and several other market indexes.
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Table 1.7: VR and Z-scores: CRSP NASDAQ value-weighted index
The table reports the values of the variance ratio statistic and corresponding z-scores for weekly returns of the CRSP
NASDAQ value-weighted index for the sample period 1962-2001, the sub-period 1962-1985, and the sub-period 1986-
2001. The observed variance ratios VR(q) are reported in the main row, with the corresponding heteroskedasticity-
robust test statistics z*(g) reported just below in parenthesis. Under RWH-LM the variance ratios should equal 1 and
the test statistic is asymptotically standard normal. Variance ratios significantly different from 1 have corresponding
test statistics marked with an asterisk. The parameter g corresponds to the return period used to form the variance
ratios; for example when ¢ = 2 the variance ratio is the ratio of variance of two-period returns to one-period returns.

Periods 1962-2001 1962-1985 1986-2001
Overall Time Period The Lo-MacKinlay period The post Lo-MacKinlay period
q values 2 4 8 2 4 8 2 4 8
Observations 1511 678 833
Weekly 1.080 1.212 1.369 1.212 1.537 1.829 1.036 1.105 1.223
Data (1.579) (2.415)* (2.883)* | (4.714)* (6.220)* (6.164)* | (0.541) (0.924) ( 1.346)
Observations 348 156 192
Monthly 1.130 1.149 1.172 1.180 1.259 1.453 1.112 1.106 1.081
Data (1.830) (1.118) (0.816) | (2.161)* (1.644) (1.798) | (1.156) ( 0.583) (10.282)

We began by making explicit the several versions of the random walk hypothesis that
have been considered earlier in the financial literature, and in particular we noted the
importance of allowing some form of heterogeneity in the noise process. This brought us to
the Lo-MacKinlay model (or RWH-LM), and set the stage for us to develop the variance
ratio test that served as our basic tool throughout the chapter.

With the tools in hand we turned our attention to analyzing the RWH-LM. As our first
task we analyzed the RWH-LM by re-examining the results of Lo and MacKinlay (1988) for
the period 1962-2001 with the help of weekly and monthly return data obtained from the
CRSP NYSE-AMEX equal-weighted index, the CRSP NYSE-AMEX value-weighted index,
and the 10 size-sorted portfolios. We then carried out our second task, namely to analyze
the RWH-LM using data from sector-sorted portfolios and other market indexes. In short,

five noteworthy observations emerged from our results.

e For the overall period 1962-2001, the RWH-LM is overwhelmingly rejected by weekly
data from the CRSP NYSE-AMEX equal-weighted index and the value of the lag 1

autocorrelation is approximately 26%.

e For weekly return data of size-sorted portfolios, Decile 1 exhibits the strongest evi-
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Table 1.8: VR and Z-scores: S&P 500 index
The table reports the values of the variance ratio statistic and corresponding z-scores for weekly returns of the
S&P 500 index for the sample period 1962-2001, and sub-periods 1962-1985, the sub-period 1962-1985, and the
sub-period 1986-2001. The observed variance ratios VR(q) are reported in the main row, with the corresponding
heteroskedasticity-robust test statistics 2*(¢) reported just below in parenthesis. Under RWH-LM the variance ratios
should equal 1 and the test statistic is asymptotically standard normal. Variance ratios significantly different from 1
have corresponding test statistics marked with an asterisk. The parameter g corresponds to the return period used
to form the variance ratios; for example when ¢ = 2 the variance ratio is the ratio of variance of two-period returns
to one-period returns.

Periods 1962-2001 1962-1985 1986-2001
Overall Time Period The Lo-MacKinlay period | The post Lo-MacKinlay period
q values 2 4 8 2 4 8 2 4 8
Observations 2059 1226 833
Weekly 1.008 1.01 1.006 1.045 1.08 1.103 0.969 0.936 0.904
Data (0.238) (0.158) (0.063) | (1.243) (1.183) (0.977) | (-0.520) (-0.630) (-0.672)
Observations 474 282 192
Monthly 1.01 0.97 1.004 1.023 1.005 1.151 0.993 0.903 0.787
Data (0.175) (-0.288) ( 0.028) | ( 0.328) ( 0.038) ( 0.729) | (-0.072) (-0.605) (-0.908)

dence against RWH-LM and the evidence against RWH-LM becomes weaker as we

proceed from the lower deciles to the higher deciles.

e All sector-sorted portfolios formed with equal-weighting of stocks except the Utilities
sector show strong evidence against the RWH-LM using weekly data and in particular
the lag 1 autocorrelations for weekly returns of the Services sector was 32% for the

overall period 1962-2001.

e However, the results for weekly return data of sectors formed with value-weighting
of stocks are strikingly different with only 5 out of the 10 sectors showing significant

evidence against the RWH-LM.

e Among the several other market indexes that were examined, weekly returns from the
CRSP NASDAQ equal-weighted index showed strong evidence against the RWH-LM

with a value of 37% for the lag 1 autocorrelation.

A common theme that emerges from the results is that the behavior of the market as a

whole has moved towards the RWH-LM after 1985. This follows from the fact that for all
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the assets examined here, the evidence against RWH-LM has either dropped considerably
or completely vanished in the second sub-period 1986-2001. We hasten to add that recently,
Lo and MacKinlay (1999, pp. 16) observe this fall off in the evidence against the RWH-LM
by using data from 1962-1996. Lo and MacKinlay argue that the move towards RWH-LM
could be due to the fact that several investment firms have constructed trading strategies
that capture the patterns in the autocorrelation observed in Lo and MacKinlay (1988).

Furthermore, the analysis of RWH-LM using sector-sorted portfolios has brought to light
another interesting phenomenon which arises due to the differing results between sector-
sorted portfolios formed with equal-weighting of stocks within each sector and sector-sorted
portfolios formed with value-weighting of stocks within each sector. The presence of the
phenomenon is surprising given that typically the sector-sorted portfolios are well diversified
within each sector with respect to size and moreover, size-sorted portfolios formed both
with value-weighting of stocks within each decile and equal-weighting of stocks within each
decile, exhibit little difference in terms of the evidence against RWH-LM. An explanation
for the differing behavior of sector-sorted with different weighting schemes requires further
investigation and we suspect the presence of some kind of interaction effect between size-
sorted portfolios and sector-sorted portfolios.

Another interesting characteristic in the results which is consistent with the results of
Lo and MacKinlay (1988), is that in general weekly data show stronger evidence against
RWH-LM than monthly data and the degree of autocorrelation varies among assets. This
evidence of varying predictability (loosely speaking) across time horizon and assets is similar
to that observed in Lo and MacKinlay (1999, pp. 284).

Before we conclude the chapter we would like to draw the attention of the reader to two
issues that we have not addressed here. The first issue concerns the possible explanations
associated with the deviation from the RWH-LM. An excellent study that examines several
explanations is the one by Boudoukh, Richardson, Matthew and Whitelaw (1994). The
second issue concerns the reasons for using the variance ratio test over existing unit root

tests. A comprehensive investigation of the performance of the variance ratio test versus
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other commonly used unit root tests can be found in Lo and MacKinlay (1989).
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Chapter 2

Risk Adjusted Returns and Profitability of the

Filter Rule

The main goal of this chapter is to provide a risk adjusted evaluation of a classical rule
— the so-called filter rule. The statistically significant rejections of the RWH-LM that we
observed in Chapter 1 suggest the possibility of economically meaningful trading rules, and
the filter rule is probably the trading rule with the richest academic tradition.

This investigation of the filter rule is unlike previous studies, as we assess the profitability
of the filter rule with the help of three metrics: performance measures before adjusting for
risk, risk adjusted performance measures, and market timing tests. In all three cases we
take the buy-and-hold strategy as the benchmark strategy. The data for this exercise is
similar to the data used in Chapter 1. Specifically, we use weekly and monthly data for the
period July 1962 to December 2001 from the CRSP NYSE-AMEX value-weighted index,
the CRSP NYSE-AMEX equal-weighted, the S&P 500 index, the CRSP NASDAQ value-
weighted index, and the CRSP NASDAQ equal-weighted index.

This chapter is organized in five sections, the first of which frames the filter rule and
reviews earlier empirical tests. The second section then explains the technical implementa-
tion of the filter rule strategy and offers a brief discussion on the choice of a particular filter
rule. We review the performance measures that are used to assess the profitability of the

filter rule in the third section, and in the fourth we present a comparison of the filter rule
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and the buy-and-hold strategy in the context of several market indexes. The final section
summarizes the major findings of our risk adjusted analysis of the empirical performance

of the filter rule.

2.1 Filter Rules — Definition and Earlier Work

Filter rules were first proposed by Alexander (1961), which is one of the earliest academic
works to focus on the possibility that stock prices may exhibit trends which can be exploited
by statistical rules. In Alexander’s words, “Suppose we tentatively assume the existence of
trends in stock market prices but believe them to be masked by the jiggling of the market
we might filter out all movements smaller than a specified size and examine the remaining
movements.”

One way to define such a filter is the following. Let P;, t =1,2,..., denote a sequence
of prices' of a financial asset and let 0 < A < 1 be a fixed number. The time points at which
the A-filter rule generates the buy and sell signals are identified by the following recipe. The

time of the first buy signal B; is given by

P, — minj<;<; P;

By =min{t > 1: > A},

min; <;<¢ P
and the time of the first sell signal S, following the first buy signal is given by

maxp, <i<t 5 — P

S1 = min{t > By : > A}

maxpg,; <i<t b

One can define the time points of buy and sell signals that follow in a similar fashion. The

time of the v'" buy signal B, is given by

P; — min P
By = min{t > S,_1 : t Sy_1<i<t £

. > A}
ming, ,<i<t b ’

In common with most empirical studies, our evaluations will be based on closing prices whether daily,
weekly or monthly.
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Figure 2.1: Plot of 5% Filter Rule applied to Closing Prices of S&P 500 Index
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and the time of the v'" sell signal S, is given by

P _ P,
S’u = mln{t Z B’u . ma.vagzgt 7 t

> A}

maxp, <i<t b

Figure 2.1 illustrates the signals generated by the A = 0.05-filter rule applied to the weekly
closing prices of the S&P 500 index from 1998 to 2001.

The above definition reflects what Corrado and Lee (1992) expressed by the verbal
recipe: buy the asset when the asset’s price rises by 100 * A percent above its most recent
local low, where the most recent local low is defined as the minimum asset price since the
last sell signal. Similarly, sell the asset when the asset’s price falls by 100 * A percent below
its most recent local high, where the most recent local high is the maximum asset price

since the last buy signal.

34



Earlier Experience with Filter Rules

The earliest study of filter rules was by Alexander in 1961 and they have subsequently been
studied by Alexander (1964), Fama and Blume (1966), Sweeney (1988), and Corrado and
Lee (1992).

ALEXANDER

In his 1961 article Alexander examined filter rules with various values of A in the range
0.05 < A < 0.5 and for the underlying price series he used data on the Dow Jones industrial
average from 1897-1929 and the S&P industrial average from 1929-1959. Alexander observed
that for both the averages, that the filter rules corresponding to small values of A performed
better than filters with large A values; moreover, he observed that filters with small values of
A resulted in higher profits than a simple buy-and-hold strategy. Based on these observations
Alexander concluded that “stock market prices do have trends, and once a move has begun
in the price series it tends to persist.”

Alexander’s 1964 article essentially replicated the analysis of the 1961 article, except that
he made some adjustments that were needed to respond to criticisms of his earlier analysis.
As a result of these adjustments, the performance of filter rules were severely dampened,
and the filter rules only marginally outperformed the simple buy-and-hold strategy before
taking commissions into account.

Almost all empirical studies assume that transactions, buying or selling the asset under
investigation, are executed at closing prices, but in Alexander (1961) it was inappropriately

assumed that all assets could be purchased at a price Pr, for which one has the equality

Pr —minjci<r P;

- =\
mini<;<7 F; ’
or sold at a price Pr where Pr satisfies the equality
maxy<i<r B — Pr_ A

maxi <<t P}
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If one assumes constant monitoring of a continuous real time price process, this trading
assumption may be reasonable but to be more in keeping with traditional analysis the 1964

paper used the closing prices.
FAMA AND BLUME

The filter rule was next taken up in Fama and Blume (1966) which studied the perfor-
mance of filter rules for data which extended the series considered by Alexander. Specifically,
it reports on the analysis of the filter rule with A ranging from 0.005 to 0.5, for the daily
closing prices of the thirty individual Dow stocks for January 1956 to September 1962.

Fama and Blume make four basic observations:

e Filter rules are easily triggered at ex-dividend dates, and, an adjustment of the price

series for dividends on ex-dividend days leads to improved performance of filter rules.

e Before commissions, for almost all securities the annualized return (adjusted for divi-
dends) the annualized return from a buy-and-hold strategy is greater than the annu-

alized return? (adjusted for dividends) which one obtains from the filter strategy.

e The best performing filter rule on each of the 30 stocks was the A = 0.005-filter rule
and even for this filter rule, the short positions produced disastrous returns for all the

assets.

e Filter rules with small values of A generated large number of transactions, and this fact
explains why the filter rule produced poor returns after one adjusts for transaction
costs; for example, the A = 0.005-filter rule generated an average of 84 transactions

per stock per year.

SWEENEY

The analysis of Fama and Blume (1966) was not followed up for almost twenty years,

but then Sweeney (1988) considered the performance of the A = 0.005-filter rule for the

*For each asset the annualized return for the filter strategy is computed by averaging the annualized
return over all values of .
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fourteen stocks that had the best performance in Fama and Blume (1966). Sweeney used
daily closing prices from 1970 to 1982, and since short positions performed poorly in the
study of Fama and Blume, Sweeney considered only long positions. That is, whenever the
A = 0.005-filter rule issued a sell signal, the asset currently being held was sold, and a risk-
free asset was purchased which was then held until the next buy signal. Sweeney’s main
finding is that for all the stocks under consideration, the A = 0.005-filter rule yields better
returns than the buy-and-hold strategy on a risk adjusted basis. Moreover, Sweeney found
that one has excess returns even after one accounts for one-way transaction costs of 1/20

of 1 percent for each one-way trade.
CORRADO AND LEE

The most recent investigation of the filter rule to judge its usefulness as a trading
strategy is that of Corrado and Lee (1992) which examined the relationship between returns
to the filter rule and the autocorrelation in daily stock returns. The authors applied the
A = 0.005-filter rule to the 30 Dow stocks that were initially examined in Fama and Blume
(1966), and they also analyzed additional stocks from the S&P 100 index. Using daily
data for a set of 120 stocks from January 1963 to December 1989, the authors find that a
1% increase in the daily stock return autocorrelation ceteris paribus leads to an estimated
3.84% increase in daily filter rule returns on the average. Corrado and Lee note that, the
difference between the cross-sectionally averaged annualized return on days invested in the
stock and the cross-sectionally averaged annualized return on days not invested in the stock

is statistically significant.

2.2 Filter Rule Implementation

The analysis of a trading strategy such as the filter rule ultimately depends on a number
of specific decisions which do not necessarily address the basic idea of the strategy, but
which are nevertheless essential when the time comes to do the implementation. Here in

our implementation of the filter rule we assume the following:
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e For each asset, the first position taken is a long position in the risk free asset.

e The risk free asset is held until the filter rule issues a buy signal, then the risk free

asset is sold and a long position is taken in the risky asset.

e The long position in the risky asset is held until the filter rule issues a sell signal, after

which the risky asset is sold and a long position is taken in the risk free asset. 3
e Any open position is closed at the end of the sample period.

e Further, we assume that all transactions are executed at closing prices which also form

the inputs to the filter rule.

The buy-and-hold strategy is straightforward to implement; we simply start with a long

position in the risky asset, and we hold it until the end of the sample period.
CHOICE OF FILTER RULE AND DATA SNOOPING

The choice of a filter rule presents a potential data-snooping problem, and, in fact, such
a problem persists any time one uses information from data to guide subsequent research.

Here, there are two cases that are particularly relevant.

1. Research that is influenced by the successes and failures of previous research may be
subject to the data snooping correction (Lo and MacKinlay (1999, pp. 213). This
category covers several issues, some of which are, the use of data corresponding to
a particular period, the choice of portfolios, and the choice of parameter values for
a trading strategy. The studies of Sweeney (1988) and Corrado and Lee (1992) are
subject to this criticism, since they use the best performing filter rule from Fama and

French (1966), namely the A = 0.005-filter rule.

2. The use of a set of observations to fine tune a particular methodology, for example,
use the data to obtain the optimum choice of A for the filter rule, and subsequently

report the performance of the optimized methodology on the same data.

3We purposefully avoid short positions given their poor performance in Fama and Blume (1966).
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Figure 2.2: Dividend Timing Convention
-Dt Dt—l—l
Py l P, l P

t t+1

In general, it is virtually impossible to avoid any data-snooping bias. Here, in order to
limit the data snooping bias we consider an arbitrary value for A, A = 0.05, as the basis for
our empirical investigation and consciously avoid the A = 0.005 filter which has worked well
in the past. Furthermore, we note that the A = 0.05 is the only rule we investigate, and
more importantly we remind the reader that our goal here is to examine the risk adjusted

performance of a filter rule strategy and not to determine the optimum filter rule.

2.3 Performance Measures: A Brief Review

Any analysis of a trading strategy must be based on one or more performance measures,

and it is certainly best for such measures
1. be made completely explicit,
2. be appropriate to both the trading strategy and the benchmark,
3. account, to the extent possible, for risk, and
4. account, to the extent possible for transaction costs.

Here, we review some tools that are commonly used to asses the performance of trading
rules. As before, we let P;, t =1,2,...,T , denote a sequence of closing prices of a financial
asset. Here, we assume that the asset’s dividend payment announced between ¢ — 1 and ¢
denoted Dy are paid at time ¢, so, P; denotes the ez-dividend price at date ¢ and is as shown
in Figure 2.2 (adapted from Campbell, Lo and MacKinlay (1997, pp. 12)). The return on
the asset for the period [t — 1,¢] may be defined as

P +D— P

R
! Py
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To distinguish between a risky asset’s return and the return on the risk-free asset we denote
the return on the risk-free asset for the period [t — 1,4] as R/ .
In order to review the performance measures we need several other notations and we

state them for a general trading strategy rather than the filter rule.

o Let T denote the total number of observations for the asset.
e For weekly return data let K = 52, and for monthly return data let K = 12.

e We consider here only those strategies that divide the sample period into periods when
we are invested in the risky asset (long periods) and periods when we are invested in
the risk-free asset. To capture this division we define two indicator variables Ij,(-) and
Ious(+), where I;y (t) = 1 when we are long the risky asset at time ¢ and zero otherwise.
Analogously, I,,(t) = 1 when we are long the risk-free asset and zero otherwise, so,

implicitly we have Iin(t) * Iou(t) =0 for all .4

e Denote the number of periods that we are long the risky asset by Tj,, so in symbols
Tin = ZtT:1 Iin(t). The number of periods when we are invested in the risk-free asset

is then denoted by Ty and we obviously have Toy = T — Tip.

e Let Npyy and Nge denote the number of buy signals and sell signals that the trading
strategy generates, so one has Ny, = Zthz Iy (t — 1)Iin(t). Note that, the filter

rule definition is such that the first buy signal cannot occur at ¢ = 1. Analogously,

Nsell = Z;F:Q Iin(t - l)Iout (t)

e Finally, we let N denote the total number of one-way transactions, so N = Nyyy+ Neen-

We proceed to consider some simple return measures which helps us assess the perfor-

mance of a trading strategy.

“In long hand, if Tin(t — 1) = 0 and Iin(t) = 1 we did not own the asset during the time period ¢ — 1 but
we bought it at the end of the period ¢ — 1 and held it at least to the end of the period ¢.
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Performance Measures Not Adjusted for Risk

Terminal value of a $1 investment For such an in-out strategy Lo and MacKinlay

(1997) note that the terminal value of a $1 investment is given by

T

Ve = [T [0+ R)Ea(®) + (1 + R Lu(®)] |

where the index ¢t denotes weekly or monthly time periods.

Annualized returns The annualized return R for a trading strategy is given by the

formula

R = (VT -1) . (2.1)

Note that, the terminal value has a running index ¢ which denotes weekly or monthly
time periods. Moreover, for weekly data the K = 52 and for monthly return data

K =12.

Annualized return standard deviation The annualized return standard deviation S

for a trading strategy is defined by

T 1/2

% > (R —Ry)?

t=1

S=VEK , (2.2)

where R; = %Zle R;. Here again, index t denotes weekly or monthly time periods.
This formula with the parameter K in front does look peculiar. To clarify, suppose T'
represents the total number of trading weeks per year, the formula (2.2) without v K
represents the standard deviation of the weekly returns. Along with v/K, the formula
gives the standard deviation of K-weekly returns assuming they are independent. Of
course, this assumption of independence is a rather strong one, but is often made

when computing standard deviations.

Maximum drawdown The maximum drawdown DD measures the worst case loss and
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is given by
(Vh“‘@)+

DD = max ,
1<u<v<T LL

where V,, is the value of a $1 investment at time w.

One-way break even transaction cost The return statistics reviewed above do not ac-
count for transaction costs, and such costs can play a substantial role in the prof-
itability of a strategy. For a trading strategy, Lo and MacKinlay (1997) define the
one-way break even transaction cost measured in percent, with the buy-and-hold as

the benchmark strategy as

C =

1/N
Vg
1-— ( VTES * 100
where N is total number of one-way transactions. This is a reasonable way to un-
derstand the impact of transaction costs on the active strategy since C' captures the

percentage cost of buying or selling the risky asset such that the total return on a

trading strategy equals the total return on a benchmark strategy.

Risk Adjusted Performance Measures

As noted earlier, most of the research literature on filter rules ignores the volatility in the
returns series; historically the focus has almost exclusively been on the comparison between
the performance of the filter rule and the buy-and-hold strategy. On the other hand, risk
adjusted performance measures help us capture the return earned per unit risk for any

strategy. We briefly review some of these measures below.
SHARPE RATIO

The annualized Sharpe Ratio SR for a trading strategy is defined by

R— RS
S 9

SR =

where R and S represent the annualized return and annualized standard deviation of the

42



trading strategy and are defined by equations (2.1) and (2.2) respectively. The Sharpe Ratio
is probably the most widely used risk adjusted performance measure. It tries to capture
“risk” by comparing a trading strategy’s excess return relative to the total variability of the
trading strategy, but despite its popularity the Sharpe ratio has egregious shortcomings.
The annualized standard deviation S is subject to criticism and the Sharpe ratio lacks a
rigorous economic interpretation. These points and others suggest the need for additional

risk adjusted measures.
SORTINO RATIO

The standard deviation takes into account both positive and negative deviations from
the mean, and as a consequence the Sharpe ratio penalizes large positive returns as much
as it penalizes large negative returns. To address this limitation of the Sharpe ratio, one

can consider instead the Sortino ratio which is given by

R—R™
SoR=——"
0. - 5

where R™ is a pre-specified reference rate of return and where S~ is a statistic designed to
capture the downside risk. Formally S~ is defined by

T 1/2
§T=VE+ | |7——= Y (R ~R (R, < R ,

Tdown -1

where the index t denotes weekly or monthly time periods and Tyown = Zthl I(R; < Rf).
Furthermore, B/ = LT | R] and the indicator variable I(R; < R’) takes the value one
when R; < R’ and is zero otherwise. The pre-specified reference return R is typically
chosen to accommodate an investor’s risk preference. Here we set R™ = R/, where R/
denotes the annualized return on the risk-free asset.

Here again, the presence of v/K in the formula is used to convert the standard deviation
of single period (either weekly or monthly) returns to the standard deviation of K-period

returns. As defined earlier, for weekly data K = 52 and for monthly data K = 12.
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M? AND DIFF-M? MEASURES

Bodie, Kane, and Marcus (2002) argue that even though the Sharpe ratio may be a
useful measure of performance, but in addition to the limitations addressed by the Sortino
ratio; the Sharpe ratio also lacks an economic interpretation of the difference in Sharpe ratios
between two competing strategies. For example, what does it mean if the difference between
the Sharpe ratios of two competing strategies is 0.50?7 The M? measure is designed to
provide a measure of risk adjusted performance that does have a meaningful interpretation.

The M? measure, also known as Risk Adjusted Performance or RAP measure, was
proposed by Modigliani and Modigliani (1997). Formally, if we assume the buy-and-hold
strategy as the benchmark strategy, the RAP measure for a trading strategy is be defined
as

bh gbh

S
2 _ t
M? = T RS 4 (1 -

)RS .

In essence, the RAP measure is calculated by re-scaling the “risk” (standard deviation)
of the active strategy to match the risk of the passive strategy. One could think of this
procedure as forming a new portfolio that is a mixture of the risky asset and the risk-free
asset, such that the volatility in the new portfolio (here M?) is the same as the volatility
in the benchmark portfolio (here the buy-and-hold strategy).

A simple example that illustrates the process of constructing the new portfolio is the
following. Suppose the standard deviation in returns as a result of following a trading strat-
egy is four-thirds the standard deviation of the benchmark strategy. The newly constructed
portfolio is formed such that three-fourths of one’s wealth is invested in the risky asset and
one-fourth in the risk-free asset. If the returns R and R' are assumed to be independent
the new portfolio would then have the same standard deviation as the benchmark portfolio.
Naturally the independence hypothesis is highly suspect, but one still has at least some
hope that this is satisfied.

Given the M? measure it is straightforward to define the Diff M? measure which is
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defined as
Diff M2 = M? — RPM .

The usefulness of this measure is due to its interpretability as a differential return between

the active and passive strategy.

Market Timing Tests

The purest version of a market timing strategy is one that shifts back and forth between a
broad market index investment (such as an S&P index fund) and a risk-free asset. Ideally,
when the strategy signals a buy, we expect positive returns from holding the risky asset, and
when the strategy issues a sell signal we expect negative returns from the risky asset. Market
timing tests hope to test if the excess returns that result from following a passive strategy
are significantly different when the active strategy signals positive or negative returns.
Here we briefly describe two market timing tests, the Cumby-Modest test and the

Pesaran-Timmermann test of the Kuipers score.
CuMBY-MODEST TEST

The Cumby-Modest test considers the regression equation,
Ri—Rl =a+BIu{t)+e¢ , t=1,2,...,T, (2.3)

and one interprets a significantly positive value for 8 as an indication of timing ability,
while a significantly negative intercept « is interpreted as an indication of over-all superior
returns to the active strategy.

Here, in the model (2.3) one posits that the ¢; are normally distributed, exhibit constant
variance and independence across time. As before there are few reasons to believe in these

assumptions but one hopes that they approximately hold.
KUIPERS SCORE AND PESARAN-TIMMERMANN TEST

To calculate the Kuipers score and perform the Pesaran-Timmermann test, the observed
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returns of the asset under investigation are tabulated into a contingency table as follows:

Observed Returns

Active Strategy - In/Out R; >0 R, <0

I (t) =1 a b 71
Iin(t) =1 c d T9
C1 C2 T

The cell entries a,b,c,d represent the number of periods for various scenarios. Cell b
captures the number of periods where the trading strategy indicated negative returns to
the asset (Ioyt = 1) and the asset’s return were indeed negative, while cell ¢ represents the
number of periods in which the trading strategy suggested positive returns to the asset and
the returns observed were also positive. The row and column totals are given by 71,72, c1,
and ¢ respectively.

The Kuipers score defined by

Ks=2_2.
C2 C1

measures the difference between the proportion of “bad” events (a fall in the return) that
were correctly forecast and the proportion of “good events” (a rise in the return) that were
incorrectly forecast. By construction, the Kuipers score takes values between —1 and 1 and

has two obvious features:

e A strategy that always correctly predicts the good and bad outcomes, scores a 1, and

a strategy that always incorrectly predicts the outcomes scores a —1.

e A completely random strategy, say one based on the results of a coin tossing experi-

ment, will typically result in a Kuipers score with an expected value of zero.

TxKS
1
c1c2
icance of the Kuipers score. For obvious reasons, they call this the Pesaran-Timmermann

Granger and Pesaran (2000) propose using the test statistic , to judge the signif-

test and they suggest the use of z-tables to judge its significance.
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2.4 Filter Rule Performance for Market Indexes

In this section, we compare the performance of the A\ = 0.05-filter rule to the buy-and-
hold strategy using return data from 1962 to 2001 for the CRSP NYSE-AMEX value-
weighted index, the CRSP NYSE-AMEX equal-weighted index, the S&P 500 index, the
CRSP NASDAQ value-weighted index, and the CRSP NASDAQ equal-weighted index.
Before describing our results, there are a few details on the data collection and series

construction process that deserve attention.’

DATA

The CRSP database contains the index values and the return data for the all the CRSP
market indexes and the S&P 500 index for both monthly and daily time periods. Also, the
CRSP database contains index and return values, adjusted for dividends, for all the indexes
except the S&P 500 index. The use of dividend information is crucial given the findings of
Fama and Blume (1966) who observe that the performance of the benchmark buy-and-hold
strategy, is severely under estimated if the returns fail to include dividends.

The monthly index and return data adjusted for dividends for the period July 1962-
December 2001 are directly obtained from the CRSP database. On the other hand, the
weekly return series must be constructed, and here we will we follow the same procedure
that was outlined in Chapter 1, except for one important difference; here we use dividend
adjusted values. For data on the risk-free asset, we use monthly return data on 90-day
Treasury bills from the CRSP database. To compute weekly returns for the risk-free asset,
we take the monthly return values, scale it to one-week returns and use the same value for

all weeks within the given month.
PRESENTATION OF RESULTS

Tables 2.1 to 2.5 display the results of applying the A = 0.05-filter rule and the buy-

and-hold strategy to several market indexes. The tables display results for both weekly and

5The data collection process is carried out using SAS programs while the performance measures are
computed using Perl programs. All the computation are done in an Unix environment and further details
are available from the author.
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monthly data, and each table consists of two panels. The first panel lists the performance
measures not adjusted for risk, and the second panel displays the risk adjusted performance

measures and the results of the market timing tests.

CRSP NYSE-AMEX value-weighted index

Table 2.1 reports the results of the application of A = 0.05-filter rule and the buy-and-hold
strategy on the CRSP NYSE-AMEX value-weighted index for both weekly and monthly
time periods. We begin with a few basic observations, followed by a more detailed look at

the results.

e For both weekly and monthly data from 1962-2001, the A = 0.05-filter rule does not
outperform the buy-and-hold strategy on the basis of those performance measures

which are not adjusted for risk.

e After accounting for risk, the A = 0.05-filter rule performs slightly better than the

buy-and-hold strategy for both weekly and monthly data from 1962-2001.

e On the other hand if one uses the maximum drawdown as the risk measure, then the
A = 0.05-filter rule has only half the risk of the buy-and-hold strategy. This finding

may be of practical significance.

PERFORMANCE BEFORE ADJUSTING FOR RISK

For weekly data from 1962-2001, the annualized return from the A = 0.05-filter rule
is 10.56%, which is lower than 11.47%, the annualized return of a buy-and-hold strategy.
Moreover, the terminal value of a $1 invested on the first trading day in July, 1962 is $53
for the A = 0.05-filter rule, while it is $73 for the buy-and-hold strategy. This difference
reflects the fact that the filter rule failed to completely capture all the upward movement in
the asset. Since the filter rule under performed the buy-and-hold strategy one finds that the

one-way transaction cost which is computed on the basis of the terminal values is negative;
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this simply reflects the fact that for the filter rule to “catch up” to the buy-and-hold strategy

, one would need to be paid to trade.
PERFORMANCE AFTER ADJUSTING FOR RISK

The annualized standard deviation and the maximum drawdown for the A = 0.05-filter
rule are 10.68% and 22.16% respectively, while the corresponding values for the buy-and-
hold strategy are 14.38% and 45.71%. The lower values to the risk measures for the filter
rule when compared to the buy-and-hold strategy underscores the importance of using risk
adjusted performance measures to compare the performance of active and passive strategies.

The annualized Sharpe ratios for the A = 0.05-filter rule is 0.29 and this is roughly com-
parable to the value of 0.28 one finds for the buy-and-hold strategy. The small differential
RAP measure 0.13% also suggests no difference in performance between the A = 0.05-filter
rule and the buy-and-hold strategy after matching the risk that results from the two strate-
gies. One might expect the Sortino Ratios to provide a more favorable view of the filter rule,

but the observed values are similar to the Sharpe ratio and provides no new information.
MARKET TIMING TESTS

Since the A = 0.05-filter rule under performed the buy-and-hold strategy, it is hardly
surprising that the market timing test suggests that the filter rule shows no evidence of
timing ability. The Cumby-Modest regressions result in a zero estimate for the slope and a
zero estimate for the intercept which indicate that there is no evidence of timing ability and
there is no evidence of superior returns to the A = 0.05-filter rule over the buy-and-hold
strategy.

The Kuipers score, which is a measure of forecast accuracy is also close to zero, also
confirming the lack of timing ability for the A = 0.05-filter rule. The Pesaran-Timmermann
test, confirms the lack of statistical evidence in the ability of the A = 0.05-filter rule to

correctly forecast good events and bad events.

RESULTS FOR SUB-PERIODS
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Not surprisingly, the A = 0.05-filter rule fails to consistently outperform the buy-and-
hold strategy in the sub-periods. But, there are some interesting phenomenon that are

observed.

e The sub-period 1972-1981 is the only period where the A = 0.05-filter rule significantly
outperforms the buy-and-hold strategy. For this sub-period the one-way break even

transaction cost is 0.55% and the annualized differential RAP is 2.03%.

e The performance of the A = 0.05-filter rule significantly deteriorates over the last two
sub-periods 1982-1991 and 1992-2001 with the worst performance occurring in the
last sub-period. A look at the annualized differential RAP calculated after adjusting
for risk tells the complete story. As we go from sub-period 1972-1981 to sub-period
1992-2001 the annualized differential RAP drops from 2.03% to -2.72%.

MONTHLY RETURN DATA

From analysis of monthly data in Table 2.1 the A = 0.05-filter rule fails to beat the buy-
and-hold strategy — both before and after one adjusts for risk. However, we note that the
pattern of deteriorating performance from the first sub-period to the last sub-period holds

even for monthly data, with the worst performance coming the last sub-period 1992-2001.

CRSP NYSE-AMEX equal-weighted index

Table 2.2 reports the results of the application of A = 0.05-filter rule and the buy-and-hold
strategy on the CRSP NYSE-AMEX equal-weighted index for both weekly and monthly

time periods. There are four significant observations that emerge from the analysis.

e For weekly data from the overall period 1962-2001, the A = 0.05-filter rule handily
outperforms the buy-and-hold strategy on the basis of performance measures not

adjusted for risk.

e Accounting for risk, turns out to magnify the outperformance of the A = 0.05-filter

rule over the buy-and-hold strategy for weekly data from 1962-2001. Notably, even
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the market timing tests show evidence of timing ability for the A = 0.05-filter rule.

e For weekly data, for all sub-periods except the last sub-period 1992-2001, the A = 0.05-
filter rule significantly outperforms the buy-and-hold strategy on a risk unadjusted
and risk adjusted basis. However, the performance of the A = 0.05-filter rule drops

off in the last two sub-periods compared to the first two sub-periods.

e For monthly data, the performance of the A = 0.05-filter rule performs as well as the
buy-and-hold strategy in the overall period 1962-2001 before adjusting for risk, but
outperforms the buy-and-hold strategy on the basis of risk adjusted measures except

for the last sub-period 1992-2001.

PERFORMANCE BEFORE ADJUSTING FOR RISK

As noted above, when one uses the A = 0.05-filter rule for weekly data, it handily beats
the buy-and-hold strategy based on both simple return measures and risk adjusted measures.
This contrasts sharply with the results for the CRSP NYSE-AMEX value-weighted index.
We will start by examining the results for the overall period 1962-2001.

The annualized return for the A = 0.05-filter rule is 22.25%, which is much higher
than 18.77%, the annualized return for the buy-and-hold strategy. Notably, the annualized
returns to both the strategies are higher than what we observed for the CRSP NYSE-AMEX
value-weighted index. The terminal value of a $1 invested on the first trading day in July,
1962 is $2389 for the A = 0.05-filter rule which is 2.4 times $905 the terminal value for the
buy-and-hold strategy. Since the filter rule beat the buy-and-hold strategy, the one-way
break even transaction cost is positive and equal to 0.96%, which serves to indicate that a
transaction cost of about 1% per transaction for the A = 0.05-filter rule leads to the same

wealth as the buy-and-hold strategy.
PERFORMANCE AFTER ADJUSTING FOR RISK

The A = 0.05-filter rule is significantly less risky than the buy-and-hold strategy. The

annualized standard deviation and the maximum drawdown for the A = 0.05-filter rule
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are 11.18% and 18.16% respectively, while the corresponding values for the buy-and-hold
strategy are 15.11% and 49.69%.

The high returns and relatively low risk for the A = 0.05-filter rule lead the strategy
to a superior performance over the buy-and-hold strategy on a risk adjusted basis. The
annualized Sharpe ratios for the A = 0.05-filter rule is 1.33, higher than the value of 0.75
which corresponds to the buy-and-hold strategy. Thus, the A = 0.05-filter rule yields higher
return per unit risk. The differential RAP measure is 8.72%, which also suggests superior
performance by the A = 0.05-filter rule over the buy-and-hold strategy after matching the
risk that result from the two strategies. Here again, the Sortino Ratios give the same
information as the Sharpe ratios, but as one would expect are considerable higher for both

the strategies.
MARKET TIMING TESTS

The market timing tests of the A = 0.05-filter rule here show significant evidence of
timing ability. The Cumby-Modest regressions result in a statistically significant estimate
of the slope, the value of the t-test statistic is 4.09. Unlike what we observed for the
CRSP NYSE-AMEX value-weighted index there is significant evidence in the ability of the
A = 0.05-filter rule to time the CRSP NYSE-AMEX equal-weighted index.

Furthermore, the Kuipers score, which is a measure of forecast accuracy, is 0.09, indicat-
ing some amount of forecast accuracy for the A = 0.05-filter rule. The Pesaran-Timmermann
test of the Kuipers score, confirms the presence of significant statistical evidence in the abil-
ity of the A = 0.05-filter rule to correctly forecast good events and bad events with a z-score

of 4.77.
RESULTS FOR SUB-PERIODS

In general, the results for the sub-periods follow a pattern that is similar to what we
observed for the CRSP NYSE-AMEX value-weighted index. The first two sub-periods,
1962-1971 and 1972-1981, provide greater evidence to the superiority of the A = 0.05-filter

rule over the buy-and-hold strategy, while the performance of A = 0.05-filter rule in the
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sub-periods 1982-1991 and 1992-2001 is weaker compared to the first two sub-periods.
The most interesting observation however is that in the last sub-period 1992-2001 the
A = 0.05-filter rule fails to beat the buy-and-hold strategy both before and after adjusting
for risk. In fact, the annualized differential RAP is -0.54%, an indication that after matching
the risks of the two strategies the buy-and-hold strategy earns a slightly higher annualized

return.
MONTHLY RETURN DATA

For the monthly data, from Table 2.2, the A\ = 0.05-filter rule performs as well as
the buy-and-hold strategy before adjusting for risk. The annualized returns for the two
strategies are 13.65 and 13.51% respectively. The one-way break even cost is close to zero
indicating similar performance among the two strategies. However, when one accounts for
the risk, the A = 0.05-filter rule significantly outperforms the buy-and-hold strategy, the
annualized differential RAP is 8.72%.

Additionally, we find here that the first two sub-periods 1962-1971 and 1972-1981 show
significant evidence in favor of the A = 0.05-filter rule over buy-and-hold while the last two
sub-periods 1982-1991 and 1992-2001 show evidence against the A = 0.05-filter rule. Again,
the worst performance occurs in the last sub-period 1992-2001.

The market timing tests for the monthly data show no evidence of timing ability by the
A = 0.05-filter rule. The only period when the A = 0.05-filter rule shows significant timing
ability is 1962-1971. Furthermore, for the period 1992-2001 the A = 0.05-filter rule shows
poor timing ability. The Pesaran-Timmermann test of the Kuipers score has a z-score of
-1.38, along with a Kuipers score of -0.11.

Before we move on to examine the next index, we address what appears to be an anomaly
in the results above. The annualized return to the CRSP NYSE-AMEX equal-weighted
index for a buy-and-hold strategy is 18.77% for weekly data, but rather surprisingly the
annualized returns for the same strategy computed with the help of monthly returns is
13.51%. This interesting empirical phenomenon which occurs in equal-weighted indexes is

examined in detail in the appendix.
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S&P 500 index

Table 2.3 reports the results of the application of A = 0.05-filter rule and the buy-and-hold
strategy on the S&P 500 index for both weekly and monthly time periods.

Essentially, the results here are similar to what we observed when the A = 0.05-filter rule
was applied to the CRSP NYSE-AMEX value-weighted index. This is not surprising given
the fact that the S&P index consists mainly of large capitalization stocks. Nevertheless,

there are some insights to be drawn from the results which we point out below.

e Based on return measures not adjusted for risk, the A = 0.05-filter rule fails to out-

perform the buy-and-hold strategy for the overall period 1962-2001.

e Even on a risk adjusted basis, the A = 0.05-filter rule fails to beat the buy-and-
hold strategy for 1962-2001. Furthermore, the market timing tests indicate no timing

ability for the A = 0.05-filter rule in both the overall period and the sub-periods.

e Allen and Karjalainen (1999) find that on a risk unadjusted basis, after accounting
for a transaction cost of 0.25%, a genetic algorithm based trading rules fails to beat a
buy-and-hold strategy applied to daily return data of the S&P 500 index from 1928-
1995. However, we find that for two sub-periods 1962-1971 and 1972-1981, even for
return measures not adjusted for risk the A = 0.05-filter rule outperforms the buy-
and-hold strategy for weekly data. For example, the one-way break even transaction

cost, for weekly data, in the two periods are 0.32% and 0.68% respectively.

e For monthly data, the A = 0.05-filter rule significantly outperforms the buy-and-hold
strategy for the sub-period 1972-1981. The one-way break even transaction cost is

3.19%, a rather large number.

e From the results for the sub-periods, we see that the A\ = 0.05-filter rule outperforms
the buy-and-hold strategy in the first two sub-periods, but fails to beat the buy-and-
hold strategy in the last two sub-periods 1982-1991 and 1992-2001. Note again that

the worst performance comes in the last sub-period 1992-2001.
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CRSP NASDAQ value-weighted index

Table 2.4 reports the results of the application of A = 0.05-filter rule and the buy-and-hold
strategy on the CRSP NASDAQ value-weighted index for both weekly and monthly time
periods.® The results observed here are in stark contrast to the results observed for the

CRSP NYSE-AMEX value-weighted index, and we list four key observations.

e The results of applying the A = 0.05-filter rule are impressive. Before adjusting for
risk the active strategy outperforms the buy-and-hold strategy on the basis of weekly
data for the period 1973-2001.

e The use of risk adjusted measures only serves to magnify the performance of the
A = 0.05-filter rule over the buy-and-hold strategy. Also, there is moderate evidence

of market timing ability in the overall period.
e The superior performance of the A = 0.05-filter rule holds in all sub-periods as well.

e For monthly data, the A = 0.05-filter rule continues to beat the buy-and-hold strategy

in both the overall period and all sub-periods except the last sub-period 1992-2001.

PERFORMANCE MEASURES BEFORE ADJUSTING FOR RISK

For the period 1973-2001 the annualized return for the A = 0.05-filter rule is 18.98%,
which is much higher than 11.51%, the annualized return to a buy-and-hold strategy. Nat-
urally, the terminal value of a $1 invested on the first trading day in Jan, 1973 for the
A = 0.05-filter rule is $155 and significantly higher than $24, the corresponding value for
the buy-and-hold strategy. Given the superior performance of the filter rule, the one-way
transaction cost computed on the basis of the terminal values is positive and equal to
0.80%, which indicates that we could afford a per transaction cost of 0.80% and still equal

the performance of the buy-and-hold strategy.

PERFORMANCE MEASURES AFTER ADJUSTING FOR RISK

5As we pointed out in Chapter 1, the overall time period under investigation here is from 1973-2001.
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From the risk measures, the A = 0.05-filter rule appears to be less risky than the buy-
and-hold strategy. The annualized standard deviation and the maximum drawdown for the
A = 0.05-filter rule are 14.23% and 32.74% respectively, while the corresponding values for
the buy-and-hold strategy are 20.45% and 70.40%. Notably, under both the strategies, the
CRSP NASDAQ value-weighted index has higher risk than both the CRSP NYSE-AMEX
value-weighted index and the CRSP NYSE-AMEX equal-weighted index.

On risk adjusted basis, the A = 0.05-filter rule significantly outperforms the buy-and-
hold strategy. The annualized Sharpe ratios are higher for the A = 0.05-filter rule taking
a value of 0.76, compared to a value of 0.16 for the buy-and-hold strategy. In addition,
the annualized differential RAP measure is 12.18%, suggesting superior performance by the
A = 0.05-filter rule over the buy-and-hold strategy after matching the risk that result from

the two strategies.
MARKET TIMING TESTS

The market timing tests of the A = 0.05-filter rule show significant evidence of timing
ability at least in the overall period. The Cumby-Modest regressions yield a positive and
significant estimate of the slope (tg = 3.33). Also, the Kuipers score is positive, taking a
value of 0.08 and the Pesaran-Timmermann test of the Kuipers score, confirms the signifi-
cant statistical evidence in the ability of the A = 0.05-filter rule to correctly forecast good

events and bad events by taking a z-score of 3.50.
RESULTS SUB-PERIODS

The results for the sub-periods in essence are similar to what we observed for the CRSP
NYSE-AMEX value-weighted index and the CRSP NYSE-AMEX equal-weighted index.
The first sub-period 1973-1981 provides the greatest evidence to the superiority of the
A = 0.05-filter rule over the buy-and-hold strategy, while the performance of A = 0.05-filter
rule in the sub-periods 1982-1991 and 1992-2001 is weaker compared to the first sub-period.

Also as before, the worst performance occurs in the last sub-period 1992-2001.
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The most interesting observation though is that among the four indexes examined so
far, the CRSP NASDAQ value-weighted index is the only one where the A = 0.05-filter rule
outperforms the buy-and-hold strategy using return measures not adjusted for risk in all the
sub-periods including 1992-2001. In fact, the one-way break-even cost during the 1992-2001
period is 0.96%, and the terminal value of $1 investment beginning the first trading day in

January, 1992 is $6 compared to a buy-and-hold strategy that yields $3.
MONTHLY RETURN DATA

The A = 0.05-filter rule outperforms the buy-and-hold strategy in the overall period
and all sub-periods except the 1992-2001 period both before and after adjusting for risk.
The one-way break even transaction cost is 0.64% for the overall period and the annualized

differential RAP is 3.07%.

CRSP NASDAQ equal-weighted index

Table 2.5 reports the results of the application of A = 0.05-filter rule and the buy-and-
hold strategy on the CRSP NASDAQ equal-weighted index for both weekly and monthly
time periods. Most of the results observed here coincide with our observations for the
CRSP NASDAQ value-weighted index and hence we highlight only the most interesting

observations.

e The values of all the performance measures for the CRSP NASDAQ equal-weighted
index are larger in magnitude than what we observed for the CRSP NASDAQ value-

weighted index.

e For weekly data, the A = 0.05-filter rule outperforms the buy-and-hold strategy for

the overall period and all the sub-periods both before and after adjusting for risk.

e For weekly data, the market timing tests show evidence of significant timing ability

for the A = 0.05-filter rule in the overall period and all the sub-periods.

e The one-way transaction cost for the overall period using weekly data is 2.71%. In
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fact, this is the best performance by the A = 0.05-filter rule in the overall period for

all the indexes examined here.

e The empirical phenomenon that we observed when working with the CRSP NYSE-
AMEX equal-weighted index is present here as well, and in fact more severe. The
annualized return calculated using weekly data for the period 1973-2001 is 27.18%,

while the annualized return calculated using monthly data is 14.33%.

e Overall, similar to the other indexes examined so far, the first sub-period 1973-1981
provides greater evidence to superiority of the A = 0.05-filter rule over the buy-and-

hold strategy than the other two sub-periods 1982-1991 and 1992-2001.

2.5 Concluding Remarks

The central aim of this chapter was to examine the risk adjusted returns and the profitability
of the filter rule. We began with the definition of the filter rule along with a review of the
earlier work on the filter rule. This set the stage for us to specify the assumptions behind the
implementation of the filter rule as a trading strategy. We then made explicit the choice of
the parameter for the filter rule, and in the process understood the source of data-snooping
biases in empirical studies and ways to limit them.

Before turning our attention to the results of applying the filter rule, we also reviewed
the various performance measures that we use to assess the filter rule and the buy-and-hold
strategy (the benchmark strategy). Three types of performance measures were presented,
measures that do not account for risk, risk adjusted measures, and, market timing tests.

The performance of the A = 0.05-filter rule for the period 1962-2001 and four sub-periods
1962-1971, 1972-1981, 1982-1991, 1992-2001, was compared to the performance of the buy-
and-hold strategy with the help of weekly and monthly return data obtained from the
CRSP NYSE-AMEX equal-weighted index, the CRSP NYSE-AMEX value-weighted index,
the S&P 500 index, the CRSP NASDAQ equal-weighted index, and the CRSP NASDAQ

value-weighted index. In short, eight noteworthy observations emerged from our results.
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For weekly data from 1962-2001 obtained from the CRSP NYSE-AMEX equal-
weighted index, the CRSP NASDAQ value-weighted index, and the CRSP NASDAQ
equal-weighted index, the A = 0.05-filter rule outperforms the buy-and-hold strategy

even on the basis of performance measures not adjusted for risk.

After accounting for risk, the A = 0.05-filter rule performs at least as well as the
buy-and-hold strategy for weekly data from 1962-2001 for all the indexes except the
S&P 500 index. In fact if one uses the maximum drawdown as the risk measure, then
the A = 0.05-filter rule has significantly lower risk than the buy-and-hold strategy for

all the indexes.

Only for weekly data only from the NASDAQ indexes, the A = 0.05-filter rule sig-
nificantly outperforms the buy-and-hold strategy in the sub-period 1992-2001 before

adjusting for risk.

The market timing tests show evidence of timing ability for the A = 0.05-filter rule for
weekly data from the CRSP NASDAQ value-weighted index and the equal-weighted

indexes.

Notably for the S&P 500 index, we find that for two sub-periods 1962-1971 and
1972-1981, even for return measures not adjusted for risk the A = 0.05-filter rule

outperforms the buy-and-hold strategy for weekly data.

An interesting empirical phenomenon manifests itself in the annualized returns of the
equal-weighted indexes. The annualized return for an equal-weighted index calculated
using weekly data is at least 5% higher than the annualized return calculated using

monthly data from the same index under a buy-and-hold strategy.

Overall, similar to our observations in Chapter 1, the first set of sub-periods 1962-
1971, and 1972-1981, provide greater evidence to superiority of the A = 0.05-filter
rule over the buy-and-hold strategy, irrespective of the performance measure, than

the other two sub-periods 1982-1991 and 1992-2001.
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e For all indexes considered here, the worst performance of the A = 0.05-filter rule

consistently occurred in the last sub-period 1992-2001.

A common theme that emerges from the results is the decline in performance of the
trading strategy from the 1962-1985 period to the 1986-2001 period. This coincides with
our observation in Chapter 1, wherein for all assets examined there was a considerable
drop-off in the evidence against RWH-LM between 1962-1985 and 1986-2001. Interestingly,
the existence of the decline in profits and decline in evidence against RWH-LM confirms
the observations of Corrado and Lee (1992), who found a significant relationship between
autocorrelation in returns and filter rule returns. We will discuss this association in greater
detail in Chapter 3 after discussing the results to decile and sector portfolios

Similar to observations in Chapter 1 one wonders if there is a size story here since the
equal-weighted indexes are more profitable under the A = 0.05-filter rule than the value-
weighted indexes. This issue requires further examination and we examine this issue in
detail in the following chapter with the help of decile portfolios. Also, continuing with our
theme of gleaning information from the various industry groups, we focus on sector based
portfolios as well.

In summary, given the overall skepticism towards the usefulness of trading strategies,
there is one startling piece of information, and that is the performance of the A = 0.05-filter
rule on the CRSP NASDAQ value-weighted index. To clarify, this is startling since this
index is relatively well-behaved and is not clouded by any size effects. The terminal value
of a $1 investment as a result of following the filter rule as opposed to using the buy-and-
hold strategy yields approximately an additional $131 at a lower risk. For people who are
concerned with transaction costs, the one-way break even transaction cost here is 1.70%,
which is considerably large. Also, the performance of the A = 0.05-filter rule is consistent

across all time periods.
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Chapter 3

Risk Adjusted Returns and Profitability of the

Filter Rule for Decile and Sector Data

In this chapter we continue our evaluation of the A = 0.05-filter rule with the help of data
from size-sorted portfolios and sector-based portfolios from July 1962 to December 2001.
Given the superior performance of the filter rule on equal-weighted indexes in Chapter 2 the
next sensible step is to understand the performance of the filter rule on size-sorted portfolios.
To clarify, the use of size-sorted portfolios help us discern if the superior performance of the
filter rule is restricted only to small stocks or more widespread.

Given our path of analysis of the RWH-LM, the next step is more familiar and involves
evaluating the performance of the filter rule on sector-based portfolios. To our knowledge
there has been no investigation of filter rules on sector-based portfolios, however, Chelley-
Steeley and Steeley (2000) applied filter rules to decile data.

Our continuing investigation of the filter rule begins with a brief review of Chelley-
Steeley and Steeley (2000). Following this, in sections one and two, we carefully detail
the portfolio construction process and the results of applying the filter rule to size-sorted
and sector-based portfolios. In section three, we discuss the apparent association between
returns to the filter rule and the autocorrelation in the assets. Finally, in section four we

conclude.
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Review of Chelley-Steeley and Steeley

Chelley-Steeley and Steeley (2000) apply filter rules with values of A ranging from 0.001 to
0.05 to five size-sorted portfolios, where the five size-sorted portfolios are constructed based
on monthly return data from January, 1976 to December, 1991 of 250 companies that trade
in the United Kingdom. Although the authors primarily focus on how interrelationships
among securities within a portfolio affect the profitability of the filter rule, in the process
they find that for a well diversified portfolio of small (as measured by size) firms, filter
rules with small values of A outperform a buy-and-hold strategy even after accounting for

transaction costs.

3.1 Results of Filter rule on Decile Data

Using stock return data adjusted for dividends on individual securities, we construct a 10-
asset group of size-sorted portfolios. To construct these size-sorted portfolios all NYSE
stocks are sorted by size(shares outstanding times price per share) at the end of each month
(or week for weekly data) to determine the NYSE decile breakpoints. All NYSE, AMEX,
and NASDAQ stocks on the basis of their size are then allocated to the 10 size portfolios
formed using the NYSE breakpoints. Decile 1 represents the portfolio of the smallest of firms
while Decile 10 represents the portfolio of the largest of firms. The index values adjusted for
dividends for each decile portfolio are constructed by value-weighting the individual assets
that fall within each decile and are continuously updated every week or month.

Tables 3.1 through 3.3 reports the results of the application of A = 0.05-filter rule and
the buy-and-hold strategy on the size-sorted portfolios for both weekly and monthly time
periods. Here, as in Chapter 1 we look at three periods the overall period 1962-2001, and
two sub-periods 1962-1985 and 1986-2001. From the tables, the following four observations

seem noteworthy.

e For weekly data, the A = 0.05-filter rule significantly outperforms the buy-and-hold

strategy for all decile portfolios except Decile 10, the portfolio of the largest firms
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before adjusting for risk.

e Accounting for risk only serves to magnify the superior performance of the A = 0.05-
filter rule. Furthermore, the market timing tests show evidence of timing ability for

the filter rule for all deciles except the largest two decile portfolios.

e For monthly data, before adjusting for risk, the A = 0.05-filter rule outperforms the
buy-and-hold strategy for Deciles 1-5 but, on a risk adjusted basis, the filter rule

outperforms the buy-and-hold strategy for all decile portfolios except Decile 9.

e Results for the sub-periods essentially confirm the superior performance of the A =
0.05-filter rule except for the now familiar decline in performance in the latter sub-

period 1986-2001.

PERFORMANCE BEFORE ADJUSTING FOR RISK

From Table 3.1 we see that for weekly data from 1962-2001 the A = 0.05-filter rule
significantly outperforms the buy-and-hold strategy for almost all decile portfolios before
adjusting for risk. The annualized returns for the A = 0.05-filter rule are 24.71% and 10.06%
for Decile 1 and Decile 10 respectively; and are 14.28% and 10.90% respectively for the buy-
and-hold strategy. Decile 10 is the only portfolio where the annualized return to the filter
rule is smaller than that of the buy-and-hold strategy.

Given these values for the annualized returns, we naturally expect the terminal values
of a $1 investment for the filter rules to be higher for the filter rule for almost all decile
portfolios. The difference in the terminal values to the two strategies, the filter rule and the
buy-and-hold strategy is largest for Decile 1, a value of $6043, and progressively declines
as we move to Decile 10, a value of -$§16. Not surprisingly, the one-way break even costs
also monotonically decline as we move from Decile 1 to Decile 10. The one-way break even
cost is a whopping 3.09% for Decile 1 and falls to -0.22% for Decile 10. Consistent with
our results for the CRSP value-weighted index and the S&P 500 index which are driven by

large capitalization stocks, we see here that for Decile 10 which consists of large firms, we
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need to get paid for each transaction to break even with the buy-and-hold strategy.
PERFORMANCE AFTER ADJUSTING FOR RISK

Here, similar to results obtained in Chapter 2, we see that the A\ = 0.05-filter rule is less
risky than the buy-and-hold strategy for all the size-sorted portfolios for weekly data from
1962-2001. For Decile 1, the annualized standard deviation and the maximum drawdown
for the A = 0.05-filter rule are 11.31% and 24.90% respectively, while the corresponding
values for the buy-and-hold strategy are 16.11% and 62.75%. For Decile 10, the annualized
standard deviation and the maximum drawdown for the A = 0.05-filter rule are 11.23%
and 26.55% respectively, while the corresponding values for the buy-and-hold strategy are
14.57% and 44.14%.

Given the high returns and low risk associated with the A = 0.05-filter rule, not surpris-
ingly, on a risk adjusted basis the A = 0.05-filter rule significantly outperforms the buy-and-
hold strategy for all size-sorted portfolios except Decile 10. The annualized Sharpe ratio
under the A = 0.05-filter rule for Decile 1 and Decile 10 are 1.53 and 0.24 respectively, while
the corresponding values under the buy-and-hold strategy are 0.43 and 0.24. Furthermore,
the annualized differential RAP measure is positive for Deciles 1-9, with a value of 17.78%
for Decile 1 and a value of -0.04% for Decile 10. Similar to our observations in Chapter 2,

the Sortino Ratio provides the same information as the Sharpe ratio.
MARKET TIMING TESTS

The market timing tests of the A = 0.05-filter rule show significant evidence of timing
ability for all size-sorted portfolios except Decile 9 and Decile 10. The Cumby-Modest
regressions result in a positive and statistically significant estimate for the slope for Deciles
1-7. For Decile 1, the estimate of the slope is 0.01, with a corresponding statistically
significant t-value of 7.11. Furthermore, the Kuipers score, which is a measure of forecast
accuracy ranges from 0.19 to 0.07 for Decile 1 to Decile 8. The Pesaran-Timmermann test
of the Kuipers score confirms the presence of significant statistical evidence in the ability of

the A = 0.05-filter rule to correctly forecast good events and bad events with a significant
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z-score for Deciles 1-8.
MOoONTHLY RETURN DATA

The results for monthly data for the period 1962-2001 are also shown in Table 3.1.
The A = 0.05-filter rule outperforms the buy-and-hold strategy before adjusting for risk
for Deciles 1-5. For two decile portfolios Decile 1 and Decile 4, the one-way break even
transaction costs are much larger than zero, for Decile 1 the value is 1.14% and for Decile
4 the value is 0.45%. However, for larger deciles the one-way break even costs go negative,
for example the one-way break even transaction cost for Decile 9 is -0.64%.

The risk measures continue to indicate a lower risk for the A = 0.05-filter rule compared
to the buy-and-hold strategy. As we move from Decile 1 to Decile 10, the difference between
the values of the annualized standard deviation for both the strategies declines, but, the
values of the maximum drawdown for the A = 0.05-filter rule continue to be one half of
the corresponding value for the buy-and-hold strategy. For example, even for Decile 10 the
maximum drawdown for the A = 0.05-filter rule is 26.55%, while the maximum drawdown
under a buy-and-hold strategy is 44.14%.

On a risk adjusted basis, the A = 0.05-filter rule does moderately outperform the buy-
and-hold strategy. The Sharpe ratios for all deciles are higher for the A = 0.05-filter rule,
except for Decile 9. Also, the annualized differential RAP measures are all positive (except
for Decile 9), ranging from a high of 6.14% for Decile 1 to a value of 0.90% for Decile 10.
The only decile portfolios where the market timing tests show evidence of timing ability are

Decile 1, Decile 3, and Decile 5.
RESULTS FOR THE SUB-PERIODS

The results for the sub-periods 1962-1985 and 1986-2001, are in essence similar to what
we observed in Chapter 2. The first sub-period 1962-1985 provides greater evidence to the
superiority of the A = 0.05-filter rule over the buy-and-hold strategy, while the performance
of A = 0.05-filter rule in the sub-period 1986-2001 is weaker compared to the first sub-period.

Furthermore, these results are consistent with our conclusions from Chapter 1, namely that
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the first sub-period exhibits greater evidence against RWH-LM than the second sub-period.

We now list five key observations that emerge from the analysis of weekly data.’!

3.2

For the first sub-period 1962-1985, the A = 0.05-filter rule beats the buy-and-hold

strategy for all decile portfolios both before and after adjusting for risk.

The one-way break even transaction cost for Decile 1 is 3.15% and progressively de-

clines to 0.14% for Decile 10.

The annualized differential RAP measure is positive for all decile portfolios, and the
market timing tests suggest the presence of timing ability for the A = 0.05-filter rule
for Deciles 1-9.

For the second sub-period 1986-2001, the A = 0.05-filter rule beats the buy-and-hold
strategy for Deciles 1-7 before adjusting for risk. Notably, for Deciles 1-7, the one-way

transaction costs are lower than what was observed in 1962-1985 sub-period.

On a risk adjusted basis, the A = 0.05-filter rule beats the buy-and-hold strategy for
all deciles except Decile 10. Furthermore, the A = 0.05-filter rule appears to have

significant ability to time the market for Deciles 1-4.

Results of Filter rule on Sector Data

Using the Standard Industrial Classification (or SIC) codes we form 10 sector-based port-

folios where the 10 sectors are, Basic Industries, Construction (includes Mining), Durables,

NonDurables, Transportation (includes Communication), Utilities, Trade, Finance (includ-

ing Real Estate and Insurance), Oil and Coal, and Services. As with decile portfolios, we use

weekly and monthly return data (adjusted for dividends) to construct index values for each

sector. Note that, within each sector we construct value-weighted portfolios and similar

to decile portfolios, the sector-based portfolios are continuously changing and are updated

every month (or week for weekly data).

We do not report the results for monthly data since the results in both the sub-periods are similar to
the results we observed in the overall period.
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Tables 3.4 through 3.6 reports the results of the application of A = 0.05-filter rule and
the buy-and-hold strategy on the sector-based portfolios for both weekly and monthly time
periods. Table 3.4 contains the results for the period 1962-2001 while Tables 3.5 and 3.6,
contain the results for the sub-periods 1962-1985 and 1986-2001 respectively. We focus
primarily on the results to weekly data from 1962-2001 and begin with four noteworthy

observations.

e Before adjusting for risk, the A = 0.05-filter rule does at least as well as the buy-and-
hold strategy for data from the following sector-based portfolios, Basic Industries,
Construction, Durables, Utilities, Trade, Finance, Oil and Coal, and Services. The
best performance of the A = 0.05-filter rule occurs in the Basic Industries sector (a
one-way break even transaction cost of 1.88%), while the worst performance occurs

in the NonDurables sector (a one-way break even transaction cost of -0.21%).

o After adjusting for risk, the A = 0.05-filter rule beats the buy-and-hold strategy for all
sectors. The lowest annualized differential RAP is 0.67% which is association with the
NonDurables sector. Furthermore, the A = 0.05-filter rule shows evidence of market
timing as well for the Basic Industries, Utilities, Finance, Oil and Coal, and Services

sectors.

e The performance of the A = 0.05-filter rule for monthly data is much weaker. The
filter rule outperforms the buy-and-hold strategy for only the Basic Industries sector
and the Oil and Coal sector before adjusting for risk. After adjusting for risk, the

filter rule outperforms the buy-and-hold strategy for five out of the ten sectors.

e The results to the filter rule in the sub-periods are similar to what we observed for the
decile portfolios. In the first sub-period 1962-1985, the A = 0.05-filter rule beats the
buy-and-hold strategy, before adjusting for risk in all sectors, whereas in the second
sub-period 1986-2001, the filter rule beats the buy-and-hold strategy, before adjusting

for risk only in four out of the ten sectors.
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PERFORMANCE BEFORE ADJUSTING FOR RISK

As we noted above, from Table 3.4 we see that the A = 0.05-filter rule significantly
outperforms the buy-and-hold strategy for the period 1962-2001 before adjusting for risk
for data from the Basic Industries, Construction, Durables, Utilities, Trade, Finance, Oil
and Coal, and Services portfolios. To understand the superior performance we use the
one-way break even transaction cost which captures the per transaction cost at which the
wealth earned from following the filter rule equals the wealth earned from following the buy-
and-hold strategy. The best performance of the filter rule is for the Basic Industries sector
which has a one-way break even transaction cost of 1.88%, while the NonDurables sector is
the worst performing under the filter rule and has a one-way break even transaction cost
of 0.21%. In total there are three sectors that have one-way break even transaction costs
close to (or larger than) one percent, they are the Basic Industries sector, Construction and

Mining sector, and the Services sector.
PERFORMANCE AFTER ADJUSTING FOR RISK

As we have seen repeatedly, the A = 0.05-filter rule has lower risk than the buy-and-hold
strategy for all sector-based portfolios. In fact, the maximum drawdowns in each sector for
the filter rule is approximately half of those for the buy-and-hold strategy. For example,
the maximum drawdown in the Services sector under a buy-and-hold strategy is 74.61%,
while the maximum drawdown under the A = 0.05-filter rule is only 38.99%.

Given the values of the risk measures and annualized returns, on a risk adjusted basis
the A = 0.05-filter rule significantly outperforms the buy-and-hold strategy for almost all
sector-based portfolios. The annualized Sharpe ratios even for the sectors that had better
performance to the buy-and-hold strategy before adjusting for risk are lower than the corre-
sponding values for the A = 0.05-filter rule. After adjusting for risk, the performance of the
filter rule is almost the same in the Basic Industries sector and the Services sector where
the annualized Sharpe ratios are 0.69 and 0.66 respectively. Furthermore, the annualized

differential RAP measure is positive for all sectors, with a value of 12.31% for the Basic
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Industries sector and a value of 8.93% for the Services sector.
MARKET TIMING TESTS

The market timing tests of the A = 0.05-filter rule here, show significant evidence
(statistically significant values from both the Cumby-Modest regression and the Kuipers
score) of timing ability for the Basic Industries sector, the Oil and Coal sector, and the
Services sector. For example, for the Oil and Coal sector, the Cumby-Modest regressions
result in a statistically significant t-value of 2.24 for the slope, and the Kuipers score is 0.09

with a statistically significant z-score of 3.29.
MoNTHLY RETURN DATA

The results for the monthly data for the period 1962-2001 indicate a much weaker
performance before adjusting for risk by the A = 0.05-filter rule compared to the buy-and-
hold strategy. The Basic Industries sector and the Oil and Coal sector are the only industry
groups where the A = 0.05-filter rule performs better than the buy-and-hold strategy with
one-way break even transaction cost of 1.10% and 0.07% respectively.

However, on a risk adjusted basis, the A = 0.05-filter rule moderately outperforms the
buy-and-hold strategy for five out of the ten sectors. Interestingly, the Construction sector
is the one where the performance of the filter rule has swung from good on the basis of

weekly data to the worst on the basis of monthly data.
RESULTS FOR THE SUB-PERIODS

The results for the sub-periods 1962-1985 and 1962-2001, are in essence similar to what
we observed for Decile data and Chapter 2. The first sub-period 1962-1985 provides greater
evidence to the superiority of the A = 0.05-filter rule over the buy-and-hold strategy, while
the performance of A = 0.05-filter rule in the sub-period 1986-2001 is significantly weaker
compared to the first sub-period.

The most interesting observation though is that, before adjusting for risk the A = 0.05-
filter rule outperforms the buy-and-hold strategy in all sectors in the first sub-period 1962-

1985, but only four out of the ten sectors in the second sub-period 1986-2001.
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Figure 3.1: Scatterplot of Annualized Filter rule returns — Buy-and-hold returns
Versus Lag 1 autocorrelation
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Annualized Filter rule returns - Buy-and-hold returns (%)
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Lag 1 autocorrelation

Regression of Excess Returns on Weekly Lag 1 Autocorrelation

Residuals:
Min 1Q Median 3Q Max

-4.134 -1.54 0.2038 0.8617 8.811

Coefficients:

Value Std. Error t value Pr(>|t])
(Intercept) 9.1921 0.9183 10.0097 0.0000
Lag 1 autocorrelation 24.8014 5.4317 4.5661 0.0001

Residual standard error: 2.814 on 23 degrees of freedom
Multiple R-Squared: 0.4755

F-statistic: 20.85 on 1 and 23 degrees of freedom, the p-value is 0.0001373

Excess returns = Annualized Filter rule - Annualized Buy-and-hold returns
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3.3 Relationship between filter rule profits and RWH

The values of the simple return measures and the risk adjusted measures for the sub-periods
tell a story that is similar to the one we saw in Chapter 1. Specifically, in Chapter 1 we saw
that the evidence against RWH-LM was strong in the period 1962-1985 and weak during
1986-2001 and the results from Chapter 2 and 3 exhibit a similar pattern. To be precise,
the results from applying the A = 0.05-filter rule indicate stronger performance (say as
measured by one-way break even transaction costs) over the buy-and-hold strategy, in the
first sub-period 1962-1985 than the second sub-period 1986-2001. 2

This apparent association that we have observed between the autocorrelation in the
return series and the A = 0.05-filter rule returns coincides with the observations of Corrado
and Lee (1992) that we highlighted earlier. Although Corrado and Lee observed the associ-
ation for daily returns using individual stocks, the phenomenon appears to exist for weekly
return data of market indexes, decile portfolios, and sector-based portfolios as well.

In order to quantify this relationship, we regress the excess returns (defined as the dif-
ference between annualized returns to the A = 0.05-filter rule and the annualized returns
to the buy-and-hold strategy) on the lag one autocorrelation of weekly returns. The scat-
terplot and residual plots along with the regression output are given above (Figures 3.1
through 3.3). From the scatterplot one sees the presence of a strong linear relationship
between excess returns and weekly lag one autocorrelation. This is confirmed by the signif-
icant F-statistic (= 20.85 , p-value = 0) and the moderately high value of the coefficient of
determination (R? = 0.48).

The most interesting finding though is that from the regression equation we can infer
that a 10% increase in the weekly lag one return autocorrelation leads to an estimated
2.48% increase, on average, in excess returns.

As a sidenote, we check to see if the assumptions for the regression model are satisfied by

examining the residuals. The normal quantile plot and the plot of the fitted values against

2Note that, in Chapter 2 we assume that the sub-period 1962-1985 is well captured by the two sub-
periods 1962-1971 and 1972-1981, and similarly the sub-period 1986-2001 is well captured by 1982-1991 and
1992-2001.
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Figure 3.2: Histogram and Normal Quantile Plot of Residuals
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the residuals indicate that the residuals are fairly well-behaved. Not surprisingly, given the
type of portfolios considered here (high correlation between them), the plot of residuals by

portfolios type does indicate possible violation of the independence of residuals assumption.

3.4 Concluding Remarks

The central aim of this chapter was to continue our examination of the profitability of the
filter rule on size-sorted and sector-based portfolios. In short, six noteworthy observations

emerged from our results.

e For weekly data, the A = 0.05-filter rule significantly outperforms the buy-and-hold
strategy for all decile portfolios except Decile 10 the portfolio of the largest firms
before adjusting for risk and accounting for risk only serves to magnify the superior

performance of the A = 0.05-filter rule.

e For monthly data, before adjusting for risk, the A = 0.05-filter rule outperforms the

buy-and-hold strategy for Deciles 1-5 but, on a risk adjusted basis, the filter rule
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Residuals
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Figure 3.3: Plot of Residuals versus Fitted values
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outperforms the buy-and-hold strategy for all decile portfolios except Decile 9.

Results for the sub-periods essentially confirm the superior performance of the A =
0.05-filter rule except for the now familiar decline in performance in the latter sub-

period 1986-2001.

Before adjusting for risk, the A = 0.05-filter rule does at least as well as the buy-and-
hold strategy for data from Basic Industries, Construction, Durables, Utilities, Trade,
Finance, Oil and Coal, and Services. After adjusting for risk, the A = 0.05-filter rule

beats the buy-and-hold strategy for all sectors.

The performance of the A = 0.05-filter rule for monthly data is much weaker. The
filter rule outperforms the buy-and-hold strategy for only the Basic Industries sector
and the Oil and Coal sector before adjusting for risk. After adjusting for risk, the

filter rule outperforms the buy-and-hold strategy for five out of the ten sectors.

The results to the filter rule in the sub-periods are similar to what we observed for the
decile portfolios. In the first sub-period 1962-1985, the A = 0.05-filter rule beats the
buy-and-hold strategy, before adjusting for risk, in all sectors, whereas in the second
sub-period 1986-2001, the filter rule beats the buy-and-hold strategy, before adjusting

for risk, only in four out of the ten sectors.

As in the results to the filter rule applied to returns from market indexes, there is a

decline in performance of the filter rule from the 1962-1985 period to the 1986-2001 period

for size-sorted and sector-based portfolios as well. Since we now we have the filter rule

returns to all the assets as well as the weekly lag one autocorrelations we ran a regression of

excess returns (difference between annualized returns to the filter rule and the annualized

returns to the buy-and-hold strategy) on the lag one autocorrelation. From the regression

model we see that for a 10% increase in lag one autocorrelation there is a 2.39% increase in

the excess returns. Interestingly, this piece of evidence coincides with the observations of

Corrado and Lee (1992), which finds a significant relationship between autocorrelation in

returns and filter rule returns in individual stocks.
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In summary, the results to the decile portfolios and the sector-based portfolios strategy
provide valuable information for sector rotation and size-based rotation strategies. In addi-
tion to the success of the filter rule, the relationship between the annualized returns to the
filter rule and the lag one autocorrelations does add a new dimension to the usefulness of

the filter rule as a trading strategy.
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Chapter 4

Risk Adjusted Returns and Profitability of the

MACD and MA Strategies

This chapter continues the investigation of momentum strategies; in particular it engages
the analysis of the moving average convergence divergence indicator and the analysis of a
moving average strategy. As before, we use data on market indexes, size-sorted portfolios,
and sector based portfolios for the time period July 1962 to December 2001.

Given the experience with the filter rule in the preceding chapter, there is no need to
recall the performance measures and the data construction process; here we will use exactly
the same framework. Nevertheless, before we take up the analysis of the two strategies,

there are some issues that deserve attention. Specifically, we need to address three topics:
1. the formal definition of the two strategies,
2. a review of earlier work on similar momentum based rules, and

3. the choice of parameter values for the two strategies.

4.1 The Two Strategies — MACD and MA

Two popular short-term strategies that have substantial professional following are the Mov-
ing Average strategy (or the MA) and the Moving Average Convergence Divergence strategy

(or the MACD). We now formally define the two strategies. Let P, t = 1,2,..., denote
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a sequence of prices of a financial asset and let MA™(-) denote the n-period simple moving

average, and let EMA"(-) denote the n-period exponential moving average. Recall that

1. the n-period moving average of a process {X; : ¢t > 1} at time ¢ is given by

n
c X
MA"(X,) = w, and (4.1)

2. the n-period exponential moving average of a process {X; : ¢ > 1} at time ¢ is defined

recursively by the formula

) $EMA™(X,1) | (4.2)

2
EMA™(X;) =
(X)) =3 -t

where the recursion is begun by setting EMA"(X;) = X.

Moving Average Strategy

The n-period Moving Average (or MA™) strategy generates buy and sell signals by a simple

recipe. The time B; of the first buy signal is given by
By =min{t >1: P, > MA"(P,)},

where the operator MA™ defined in equation (4.1) is now applied to the price process {P;}.

The time S; of the first sell signal following the first buy signal is then given by
Sl = mln{t Z Bl : Pt S MA”(Pt)} .

All of the subsequent buy and sell signals are then defined analogously by recursion. That

is, for v > 2 the time B, of the v*! buy signal is given by

B, = min{t > S,_1 : P, > MA"(P,)},
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Figure 4.1: Plot of MA“® strategy applied to Closing Prices of S&P 500 Index
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and the time S, of the v*® sell signal is given by

Sy =min{t > B, : P, < MA"(P,)}.

Figure 4.1 illustrates the buy and sell signals which are generated by the MA0 strategy
when it is applied to the weekly closing prices of the S&P 500 index for the time period
1998 to 2001.

MACD

The Moving Average Convergence Divergence (or MACD) indicator was invented by Ger-
ald Appel in 1979 (Murphy (1999, pp. 200)), and it is representative of the large class of
oscillator strategies. To specify a particular instance of the MACD strategy we need three
parameters n1, ne, and ng with ny < no. The MACD strategy uses three kinds of expo-
nential moving averages: a short or fast average, captured by mn1, a long or slow average,

captured by ny (note n1 < ng), and the average of the difference between the short and
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long averages which is smoothed over n3 periods.! The MACD(n1,no,n3) strategy is like
the MA strategy and generates buy and sell signals at various time points by a recursive

recipe. For the MACD(n1,n9,n3) the time By of the first buy signal is given by the formula

B; = min{t > 1: EMA™ (P,) — EMA™(P,) > EMA"(EMA™ (P,) —- EMA™(P,))},

where EMA™ is as defined in equation (4.2) for i = 1,2,3 and one should note that EMA™?
is applied to the process EMA™ (P,) — EMA™(P;). Analogously, the time S; of the first

sell signal is given by

Sy = min{t > B; : EMA™ (P,) — EMA™ (P,) < EMA™ (EMA™ (P;) — EMA™ (P,))}.

Subsequent buy and sell signals are then generated by the natural recursions. To be

explicit we have

B, = min{t > S,_; : EMA™ (P,) — EMA™(P,) > EMA"(EMA™ (P,) — EMA™(P,))},

and we have

S, = min{t > B, : EMA™ (P,) — EMA™(P,) < EMA™ (EMA™ (P,) — EMA™ (P,))}

for the time B, of the v'® buy signal and the time S, of the v'! sell signal.

Even though the formula for the MACD strategy looks complicated, it just uses a linear
combination of past prices to determine the buy and sell signals. Figure 4.2 illustrates the
signals generated by the MACD(12,26,9) strategy when it is applied to the weekly closing
prices of the S&P 500 index from 1998 to 2001.

!The difference of a pair of moving averages produces what is generally referred to as an oscillator. An
oscillator is so named because the resulting curve swings back and forth across the zero line.
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Figure 4.2: Plot of MACD(12,26,9) strategy applied to Closing Prices of S&P
500 Index
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4.2 Relevant Literature

Apparently the MACD strategy has not been addressed by any academic study, but the
simpler MA strategy has been examined in several scholarly investigations. In particular,
the MA strategy has been considered by Brock, Lakonishok, LeBaron (1992) and in a section

of Siegel (2002, pp. 283-297).

Brock, Lakonishok, and LeBaron

Brock, Lakonishok, LeBaron (1992) tested the moving average strategy on daily return
data on the Dow Jones Industrial Average from 1897-1986. However, this moving average
strategy is more general than what we defined earlier as it is based on the difference between
two moving averages (in our definition the second average is a one period average). Another
contrast from our approach is the use of a band around the difference between the short
and long moving averages to eliminate “whiplash” signals. This use of the band modifies

the strategy, which now generates buy and sell signals only when the difference between the
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long and short averages fall outside the bands. The authors apart from looking at a variety
of periods for the short and long averages also use a variety of band sizes including bands

of size zero. Three key points emerge from the results.

1. The average daily return (averaged over all periods considered for the MA strategy)
following buy signals is 0.42% which is much higher than -0.25%, the average daily

return following sell signals.

2. The standard deviation of returns following buy signals is less than the standard

deviation of returns following sell signals.

3. The use of bands around the moving averages appears to increase the difference be-
tween returns following buy signals and returns following sell signals for both the MA

strategies.

Siegel

In Stocks for the Long Run Siegel notes that one of the most popular methods for market
timing uses the relationship between a moving average of the price process and the current
price. In his analysis, Siegel applies the MA?% strategy on daily data from the Dow Jones
Industrial Average for 1886-2001, and the NASDAQ Composite Index from 1972-2001.
Similar to the approach taken by Brock, Lakonishok, and LeBaron (1992), the MA?200
strategy is modified to generate signals when the current price falls outside a 1% band. Six

interesting findings emerge from the analysis.

1. For data on the Dow Jones Industrial Average, the annualized returns for the MA200
strategy are higher than the annualized returns from a buy-and-hold strategy before

accounting for transaction costs.

2. However, after accounting for one-way transaction costs of 1/2%, the annualized re-
turns from a buy-and-hold strategy are higher than the annualized returns from the

MAZ200 strategy.

92



3. On the other hand, the risk associated with the MA2%0 strategy (as measured by the
standard deviation of returns) is lower than the risk associated with the buy-and-hold

strategy.

4. In the sub-period 1990-2001, the buy-and-hold strategy yields higher annualized re-

A%00 strategy both before and after accounting for

turns and lower risk than the M
one-way transaction costs. Note that this result coincides with our observation in

Chapter 2 of the poor performance of the filter rule in this sub-period.

5. For data on the NASDAQ Composite Index, the annualized returns for the MA?200
strategy are higher than the annualized returns from a buy-and-hold strategy even
after accounting for transaction costs. Also, the risk associated with the MA2% strat-
egy (again captured by the standard deviation in returns) is always lower than the

risk associated with the buy-and-hold strategy. This again coincides with our general

observations on the CRSP NASDAQ Value-weighted index for the filter rule.

6. Based on his analysis of the MA strategy, Siegel gives a cautious approval to the use
of the MA strategy as a speculative tool, although he notes that it is important that

transaction costs are kept to a minimum.

4.3 Choice of parameters for MACD and MA strategies

The analysis of the MACD and MA strategies depends on the specific decisions for their
implementation, and here we follow the same methodology used in the analysis for the filter
rule. The next task on hand is to decide on the particular choice of parameters for the two
strategies. This process as we noted in the analysis of filter rules in Chapter 2 presents a
potential data-snooping problem.

First, for the MA strategy, Siegel observed that the MA2%0 strategy works well on daily
data and since we work with weekly and monthly data, we use a 40-period (200-day / 5
trading days in a week) moving average for weekly data, the MA“? strategy, and for monthly

data we use the MA1? strategy, assuming that there are roughly 20 trading days in a month.
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For the MACD strategy we make a rather unintuitive choice, we use the MACD(12,26,9)
strategy on both weekly and monthly data. To clarify as to why this is unintuitive, prac-
titioners in Wall Street typically use a MACD(12,26,9) strategy on daily data and rather
than converting the parameters to weekly or monthly scale we directly borrow the daily
parameter values and proceed to implement them.

The choice of parameters for the MA strategy does present a potential data-snooping
problem since we adapt the MA2% strategy which appears to work well on daily data. On the
other hand, we use the MACD(12,26,9) strategy for weekly and monthly data knowing fully
well that the parameters could have been optimized (loosely speaking) by the practitioners

for daily data.

4.4 Results for Market Indexes

Tables 4.1 and 4.2 display the results of applying the MACD strategy, the MA strat-
egy, and the buy-and-hold strategy to the CRSP NYSE-AMEX value-weighted index, the
CRSP NYSE-AMEX equal-weighted index, the S&P 500 index, the CRSP NASDAQ value-
weighted index, and the CRSP NASDAQ equal-weighted index. The tables here are orga-

nized in the same manner as in Chapter 2 and 3.

MACD strategy

We begin with a few basic observations, followed by a more detailed look at the results.

e For both weekly and monthly data, the MACD(12,26,9) strategy outperforms the
buy-and-hold strategy before adjusting the risk for the CRSP NASDAQ indexes.

e For weekly data from the CRSP NYSE-AMEX equal-weighted index, the MACD

strategy outperforms the buy-and-hold strategy before adjusting for risk.

e For monthly data from the S&P 500 index, the MACD strategy outperforms the

buy-and-hold strategy before adjusting for risk.
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e On a risk adjusted basis, the MACD strategy outperforms the buy-and-hold strategy
for all indexes except the S&P 500 index. Furthermore, the market timing tests
indicate the presence of timing ability in the MACD strategy for the CRSP NYSE-
AMEX equal-weighted index and the CRSP NASDAQ indexes.

PERFORMANCE BEFORE ADJUSTING FOR RISK

As we just noted, the MACD strategy yields higher annualized returns than the buy-and-
hold strategy for the CRSP NYSE-AMEX equal-weighted index and the CRSP NASDAQ
indexes. The best performance of the MACD strategy occurs for the CRSP NASDAQ
value-weighted index where the one-way break even transaction cost is 0.72%. However,

we note that in comparison the filter rule netted a one-way break even transaction cost of

1.7%.
PERFORMANCE AFTER ADJUSTING FOR RISK

Similar to what we observed for the filter rule the risk measures do result in lower values
for the MACD strategy when compared to the buy-and-hold strategy for all the market
indexes. For example, the annualized standard deviation and the maximum drawdown for
the CRSP NYSE-AMEX value-weighted index under the MACD strategy are 8.98% and
15.48%, while the corresponding values under the buy-and-hold strategy are 14.38% and
45.71% respectively.

On a risk adjusted basis the performance of the MACD strategy is superior to the buy-
and-hold strategy for all market indexes except the S&P 500 index. The highest value for
the annualized differential RAP measure is 12.67% which occurs for the CRSP NASDAQ
equal-weighted index. The annualized differential RAP measure is -0.92% for the S&P 500
index indicating the poor performance of the MACD strategy even after matching the risk

to the buy-and-hold strategy.

MARKET TIMING TESTS
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From the market timing test results we see that the MACD strategy shows significant
market timing for both the CRSP NASDAQ indexes and the CRSP NYSE-AMEX equal-
weighted index. For example, for the CRSP NYSE-AMEX equal-weighted index, the t-ratio
associated with the slope of the Cumby-Modest regressions is 3.53, while the Kuipers score

is 0.10 and the value of the Pesaran-Timmermann z-test is 4.58.
MONTHLY DATA

Looking at the results for monthly data, we see that MACD strategy continues to yield
higher annualized returns than the buy-and-hold strategy for all the two CRSP NASDAQ
indexes, but surprisingly also for the S&P 500 index. The one-way break even transaction
cost for the S&P 500 index is 0.40%, while the highest value of the transaction cost occurs
for the CRSP NASDAQ equal-weighted index, a value of 0.92%.

On a risk adjusted basis, except the CRSP NYSE-AMEX equal-weighted index, the
MACD strategy outperforms the buy-and-hold strategy. Furthermore, the market timing

tests indicate the presence of timing ability for the two NASDAQ indexes.

MA strategy

Overall, the results of application of the MA strategy to the market indexes follows the
same pattern as the results of the application of the MACD strategy. However, there are

some interesting differences and insights to drawn, and we list five of them below.

1. For weekly data from the S&P 500 index the MA*0 strategy outperforms the buy-
and-hold strategy with a one-way break even transaction cost of 0.48%. This result

is very different from that of the MACD strategy and the filter rule.

2. For the other indexes, the MA strategy does better (as measured by one-way break

even transaction costs) than the MACD strategy but not better than the filter rule.

3. On a risk adjusted basis, the MA strategy outperforms the buy-and-hold strategy for
all the indexes. Furthermore, the MA strategy has the ability to time the market as

evidenced by significant values for the market timing tests for all the indexes.
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4.5 Results for Deciles

Tables 4.3 and 4.4 display the results of applying the MACD strategy, the MA strategy,
and the buy-and-hold strategy to the 10 size-sorted portfolios. The results are essentially
similar to what we observed for the filter rule, and so we just point out five interesting

observations that emerge from weekly data.

e Similar to the filter rule, the MACD strategy outperforms the buy-and-hold strategy
for all decile portfolios except Decile 10, but the MA strategy performs at least as

well as the buy-and-hold strategy for all decile portfolios.

e The one-way break even transaction costs monotonically reduce as we move from
Decile 1 to Decile 10, and are similar for the MA strategy and the MACD strategy.
However, the performance of the filter rule is superior to both these strategies except

for Decile 10.

e For all decile portfolios except Decile 10, on a risk adjusted basis, the MACD strategy
outperforms the MA strategy, and both these active strategies outperform the buy-
and-hold strategy. However, the filter rule is still the best performing strategy among
the three strategies after accounting for risk, for all size-sorted portfolios except Decile

10.

e For Decile 10, the MA strategy is the only strategy that outperforms the buy-and-hold

strategy after adjusting for risk.

e The evidence on the ability of the MACD and MA strategy to time the market (based
on the significance of the Kuipers score) is similar to the evidence that we observed for
the filter rule, namely that there is evidence of timing behavior for all decile portfolios

except Decile 9 and Decile 10.

99



"LT$ ST T00Z ToqUIada( 03 96T AN WOIJ JUSTUISOAUT [§ © JO ONJRA [RUINLIS) 9Y) PUR Y TT ) SI 19SSB 991) HSLI 971 JO UINJOI PIZI[RNUUR JTJ,

621 90°0 17°0- 00°0 10°0 6L°0 €L0 8¢°0- ggeT 8€°0 0v°0 01 ?[19Q
A L0°0 L€°0- 000 10°0 080 09°0 ¥8°0- 8V°CT ge 0 0v°0 6 91190
AN S0°0 LT°0 00°0 10°0 LL70 2.0 9¥°0 16761 080 L0 8 9[100Q
¥6°0 ¥0°0 ¥1°0 00°0 10°0 LL0 LL°0 9€°0- 69°9T Lv0 8%°0 L 21192
L1T°C 60°0 €0°0- 00°0 100 69°0 09°0 61°1 S QT Lv0 0v°0 9 9[eQ
061 60°0 £v°0- 000 10°0 €9°0 140 L9°0- ftales ¥r0 8%°0 g o[weQ
T S0'0 ge'0- 00'0 10°0 gero €9°0 18°0- JS A2 8€°0 [4 4] ¥ o
[ L0°0 8¢°0- 00'0 10°0 67°0 6S°0 ¥6°0- ¥8'€l ve'o 6€°0 € 9[eQ
gzl 90°0 000 00°0 10°0 19°0 €g'0 811 9z°¢1 170 g0 g o119
¥6'1 60'0 9%'0 00'0 10°0 69°0 0g'0 §LeT §g°9T A0 (4301} 1 9[1eQ
e1eq Alyauop
2L 0" 10°0- ¥e1- 00°0 00°0 z10 ¥€'0 125" 298 80°0 jZal) 0T o119
491 ¥0°0 ST'T 00°0 00°0 0470 170 (4384 0L%T Lv0 6270 6 o[190Q
e L0°0 08'T 00°0 00°0 €670 0g°0 ST¥ 02°LT 29°0 9€°0 8 9[100Q
«61°C S0'0 €8'1 00'0 00°0 £6°0 er'o 60°¢ Ly°LT €9°0 1€°0 L o1
A 01'0 £99°C 00'0 00°0 9z'1 67°0 19°L 9.°0% 28°0 g0 9 o109
Al 80°0 #L6°C 00°0 00°0 6€1 €g'0 0g°8 02722 16°0 6€°0 g oo
+£2°€ L0°0 £0S°C 00'0 00°0 [44h¢ [4<30] 80°L 19702 18°0 LE°0 ¥ o[
+80°F 60°0 £L9°€ 000 00°0 1¢°1 810 gz 01 44 L6°0 g0 € o119
«E6'F 11°0 LIP'E 00'0 00°0 9p°1 [4 2] 92°0T ¥9°22 ¥6°0 1€°0 Z oo
V29 ¥1'0 LLT'S 10'0 00°0 81°¢C 19'0 6L°€T 90°82 82'1 €v°0 1 2119
e1eq AP
21009 21009 7 g © oY ADVIN  PIOH-PUe-Ang [epuamdyid oMY ADVIN oY ADVIN  PIOH-pue-Ang
szodiny] jo  szadiny suoissaa8oy }SopoN-Aquny o13ey OUI3}I0g  O1jRY OULI}I0S (%) avy (%) avy oiyey odaeyg oiyey odieys
380% T.d pazijenuuy pazijenuuy pazirenuuy pazijenuuy pazijenuuy pazijenuuy
89°1- 9.t L1 8¢°12 96"V ¥ L0°L6 6€°TLT 98¥1 18°L1 1€°¢1 v6°€1 0T o119
ge'e- L6C 81 8¢'¥2 9z°9¥ 96°6¢ 00°6¢€T 80°ZT €591 ¥6°0T veer 6 o[
ja%4 o1e L1 16°9% 06°S¥ 86°121 LE°18¢ 9Tl 8G°LL 96721 S0°S1 8 91109
€92 80¢€ 81 9992 67°8¥ 16°€V1 9L°v5e 98"V T 02°6T Vrer 90°9T L o1
ve1- o1g LT 99°42 67°0S 8Z'€T1 SC° 161 1821 L9°8T gL el 92°¥1 9 o109
98¢~ L0€ 91 [4alitd S0°0% 0€°0T1 1L°8¢€¢ v et 92761 L9°2T €6°9T g o[weQ
418" 80¢ LT L0°0¢ eres 9V°26 8.°49¢ eI VL 86761 L1TT ve st ¥ o1eQ
¥6°2- 11¢ 61 1962 09°09 2e9L 90°0€¢ 8TV 29702 €911 6LVT € a[veQ
ge'T- 10 61 er'ie 96°€9 10°211T 60°081T 1971 g8°02 gLzl 80°'%T 2 oo
€¢°0- 062 qr vIve vgL9 o8 LV £re9l ov°gr (444 1¢°€T 08°€T 1 2[10Q
e1eq Alyuop
18°0- ge0T g6 (414 2847 444 96°6S L0°6 LEVT qT'8 06°0T 0T 2[00
00°0 6v01 LL (4921 L8°LY 12°¥8 v g8 Lv'6 29 g1 g8 Il 68711 6 o119
010 §g0T L 1802 8¢ V¥ oV 6¥1 967421 6.6 pLQT [ v0'eT 8 9[100Q
620 ¢L0T €L ¥9°9¢ 96°TS S ver 617101 ¥8'6 20°9T 8¢°€T LE7TT L 2110
850 9901 el el t4 09°€S 61°80€ €g7zel ¥6°6 €291 8¢°QT PIeT 9 9[eQ
19'0 1601 0 22'92 L6°€S 6€°6LE 667091 1L°6 Ge9T 61°9T 0L°€T g o[weQ
Lv0 €01 22 (484 LE76S L8°20¢ PQIST 60°0T 8€°9T €9°¢T €g9°eT ¥ a1eQ
601 8201 g9 81°0€ 60°€9 11°€9¢ 61°6€1 0€°0T 09°9T qeT LT 02°€T € 9[weQ
AN 0L0T 89 9€°6¢ 67799 16°€8¥ 02" 10T 80°0T 9191 16791 LE7TT ¢ o1
09°1T L¥01 ¥9 ¥€'62 §2°29 90" T¥ST 097961 2101 11791 8€°02 82 VT 1 9[19Q
e1eq AR
(%) 3s00 «UTy sfeudis  dNY ADVIN PIOH-Pue-Ang 9Ny ADVIN  PIOH-Pue-Ang 9o[nyg ADVIN PIOH-Pue-Ang o[ny ADVIN  PIOH-pue-Ang
uoAd-jyeoIq spoired jo  Ang jo (%) umopmeap (%) umopmeip (§) onfea (g) onyea (%) as (%) as (%) uangax (%) uangox
%dgwwﬁo HQQESZ Hwn—ﬂ:‘uz ESEmun.NE EBE:%@E ﬁwﬁmﬂnhwrﬁ ﬁ.mﬁmakwrﬁ —UONZ&—JGQ&« MVWN:.NUEE< ﬁu@N:.Na:u:< @0NZ.N355<

1002-T96T wody eleq 3|193( 404 AS1€41G p|OH-pue-Ang snsisp 3Ny QIVIN €% 21qeL

100



"LT$ ST T00Z ToqUIada( 03 96T AN WOIJ JUSTUISOAUT [§ © JO ONJRA [RUINLIS) 9Y) PUR Y TT ) SI 19SSB 991) HSLI 971 JO UINJOI PIZI[RNUUR JTJ,

[ g0°0 ee'1 10°0 00°0 ¥6°0 €L°0 ST'1T 60°GT Lv0 0v°0 01 ?[19Q
85°0 %00 0¥°0- 00°0 10°0 A 09°0 911~ PAN4S €¢°0 0v°0 6 21100
1€°1 g0°0 60°0 00°0 10°0 9.0 2.0 ] 0g°¢T 080 L0 8 9[1eQ
el 90°0 ¥20- 00°0 10°0 LL0 LL°0 1T°0- 96°CT 8%°0 8%°0 Lopeg
6e°T 90°0 62°0- 00°0 10°0 6270 09°0 zro 8¢V 17°0 0v°0 9 9119
eLT L0°0 €1°0- 00°0 10°0 0470 140 91°0 80°9T 8770 8%°0 g o[weQ
2] 10°0 8¢°0- 00'0 10'0 19°0 €9°0 20'0 92°¢T £v°0 [4 4] ¥ o[
LP1°T 60'0 €2'0 00'0 10'0 L9°0 6S°0 8¢'1 8T1°9T 910 6€°0 € 2119
6€°1 90°0 ov'0 00°0 10°0 g9°0 €g'0 41 08¢l £v°0 9e°0 z A1
+£97C 110 67’1 10'0 00'0 g6°0 0g'0 S1'9 S6°6T 6570 z€0 1 9[1eQg
e1eq Alyauop
ge'1 €00 9¢'0 00°0 00°0 ¥r0 ¥€'0 €01 €611 1€°0 vZ 0 01 d1190Qq
¥o'T €0°0 €90 00°0 00°0 9¢°0 17°0 89'T Leer 0v°0 62°0 6 2112
£T8T 90°0 Lv°0 00°0 00°0 0470 0g°0 q1'e 61°GT 080 9€°0 8 9[1eQ
LSP°T g0'0 96'0 00'0 00'0 2.0 er'o oe'e 89°GT 4:30] 1€°0 L o1
£L6°C 90'0 12'0 00'0 00'0 VL0 67°0 28’ 96°ST €570 g€°0 9 A1
+38°C 90°0 86'0 00°0 00°0 88°0 €g'0 z0'¥ gL Ll €9°0 6€°0 g a1
£99°€ L0'0 80'T 00'0 00'0 ¥6°0 [4<30] LLY 62°8T L9°0 LE°0 ¥ o[
+€9°€ L0°0 61°1 000 00°0 ¥6°0 810 12°§ 1781 990 qe°0 € 211
247 60'0 L£9°T 00'0 00'0 oT't1 [4 2] 9e°L VL6T 9L°0 1€°0 z o[wea
+10°9 €1'0 LSP'E 00'0 00'0 L9°1 19'0 980T £1°62 0Tt €r°0 1 919
e1eq AP
21009 21008 7 g © o[y VIN PIOH-PUe-Ang [elualoyid  o[nY VI °InY VIN PIOH-pUe-Ang
szodiny jo  szadiny] suoissaa8oy }sopoN-Aquny o1jey OUuI}I0g  OljRY OUI}I0S (%) avy (%) dvy oiyey odaeyg oiyey adieys
380} I.d pazijenuuy pazijenuuy pazienuuy  pozifenuuy pazijenuuy pazijenuuy
90°0 19¢ 8¢ 8¢°12 96°¥¥ 06°9L1 6€ LT gergl 18741 €0v1 v6°€e1 01 21199Qq
91'1- 8ge €€ 89'V¢ 92°97v 6579 00°6€T Vrer €991 ST'IT veer 6 o[
88°0- L9€ 0e 16°9% 06°S¥ 60°8V1 LE°18¢ 6S°€L 8S°LL zeel S0°S1 8 2119
10°1- 19¢ 43 99'9% 67°8Y 2e°681 9L°vge 8¥°GT 0261 LTV 90°9T Lo
z0'1- oge 0e 99°42 67°0S 0.°€01 SC° 161 90°% 1T L9°8T 0g'er 9z°¥1 9 A1
€0°1- oge e¢ laalitg S0°0¢ TTT1LT 1L°8¢€¢ [4HA 92761 ¥6°€T €6°9T g o[weQ
00°1- 6v€ 24 [INT [ 00°6€1 8L°L9¢ LE°ST 86761 STET veST ¥ opeg
gg°0- gee 43 1L°6¢ 09709 82191 90°0€T vesr 29°0% 9L7€T 6771 € 211
0€°0- zee g€ €e'ee 96°€9 81°GV1 60°081T Ly°QT g8°02 el 80°'%T ¢ o[
ge'T 91g 8% ov'0¢ veL9 3T 6ve £V €9T L9°ST [4 344 2091 08°€T1 1 21199
e1eq Alyuop
00'0 [4438 99 qT'1% 2847 v0°'6¢ 96°6% eI 1T LEVT ¢80T 06°0T 0T A9
¥0'0 10ST 29 61°42 L8LY L8°68 24l L9°TT 2g T vo'el 68°TT 6 2119
10°0 VOST ¥9 V1°8¢C g 90°0€1 967421 6V 1T PLQT 60°€T v0'eT 8 9[100Q
9g°0 gesT €g 8L°6% 96718 81°8V1 61°101 PLIL 2091 op-er LeTT Lopeg
Tro 9181 09 €€°2T 09°€¢ v9° €91 €9°2ET 69°T1 €2°91 LeeT vIer 9 9119
1€°0 €081 €g 6L°€T L6°€¢ 16°2¢¢ 667091 8V 1T Ge9T VOV 0L°€T g o[weQ
67°0 €671 i 68°€¢T L2768 1299 PSIST 0g°TT 8¢°91 v0°ST gger ¥ oreg
Lr0 247! 19 0¢°6% 60°€9 9¢°1¥e 61°6€1 LETT 09°9T L8V 02°€T € 9[weQ
€6°0 9ev1 69 €8°LT 67799 9e°v0¢ 0Z°T0T L9701 91°91 vegT LeTT g 211eQ
¥8'1 66€1 44 0L°2¢ §2°29 8879001 097961 2901 1T°9T 60761 82V 1 21199
e1eq AR
(%) 3s00 «UTy sfeudis 9Ny VI PIOH-Pue-Ang 2y VI PIOH-Pue-Ang 20y VI PIOH-Pue-Ang 9y VI PIOH-Pue-Ang
uoAd-jeIq  spowod jo  Ang jo (%) umopmeip (%) umopmeip  (§) onyea (§) onrea (%) as (%) as (%) uwanjoz (%) uwinjoz
%@B\@ﬁo H@D—E-uz H&QESZ ESEmun.NE E:.Emun.mz ﬁwﬁmﬂnhwrﬁ M.N:mahwrﬁ —UONZ@—JGQ&« @wN:.Nﬁﬁﬁ< @WN:.NSEE< @0NZ.N§EE<

1002-C96T woJy e1eq 3[193( 4o} A391e41G p|OoH-pue-Ang snsisp 3Ny VN F'F o1qelL

101



4.6 Results for Sectors

Tables 4.5 and 4.6 report the results of the application of the MACD strategy, MA strategy,
and the buy-and-hold strategy on the sector-based portfolios for both weekly and monthly
time periods. Here again, the performance of both the MACD and MA strategy are similar
to each other and also to the filter rule. We warn the reader that we use the word similar
rather loosely, since there are differences in the values of their performance measures but
the general pattern of behavior appears to be the same for all the three strategies. We now

look at three key points that emerge from the above tables for weekly data.

e Overall, the results to both the MACD and MA strategies for weekly data are similar
before adjusting for risk. The subtle differences arise from the fact that the MA
strategy fails to beat the buy-and-hold strategy only for the NonDurables sector,
while the MACD strategy fails to beat the buy-and-hold for the NonDurables sector,

Transportation sector, and the Utilities sector.

e In terms of one-way break even transaction costs, the MA strategy is the best perform-
ing strategy for the Basic Industries sector, the Transportation sector, the Finance,

Real Estate and Insurance sector, and the Oil and Coal sector, and the Services sector.

e In terms of one-way break even transaction costs, the MACD strategy is the best

performing strategy for the Construction sector, Durables sector, and the Trade sector.

e On a risk adjusted basis, the filter rule beats both the MACD and the MA strategy for
the Basic Industries sector, NonDurables sector, the Utilities sector, and the Services

sector.

4.7 Concluding Remarks

The central aim of this chapter was to examine the risk adjusted returns and the profitability

of two momentum based strategies the MACD and MA strategies. We began with the

102



“L1$ St T00g 10quIadd( 01 g96T A[N[ UIOI] JUSWIISIAUI [§ € JO SN[RA [BUIULID) OY) PUR O[]’ SI J9SSE 901f NSLI 9} JO WINJOI POZI[ENUUE BT T,

66°0 ¥0°0 S0 00°0 10°0 19°0 Qg0 vL4'0 0¢°91 6€°0 9€°0 S9OIATO S
14! 90°0 80°T 10°0 000 0.0 9’0 02'¢ q9°¢T 9€°0 L2°0 1eod pue 1O
L1 80°0 11°0 00°0 10°0 8L°0 08°0 ¥0°0- 61°G1 1970 cs0 sul ‘HY ‘utd
qq'T L0°0 S¥°0- 000 10°0 6€°0 87°0 26°0- 8L°TT 20 ze0 dpeir,
cL'0 €0°0 ce0 00°'0 000 870 9€°0 640 18°01 8¢°0 €20 SO
9€°0- 10°0- €30 00°0 10°0 <60 66°0 vil- 68°G1 ¥e'0 09°0 uorjyejrodsuesy,
) N4 010 ¥v0- 000 10°0 LTT 81T ¥8'1- €091 9¢°0 V0 SI[qeINUON
70 c00 69°0- 000 10°0 8%0 [4:40] 1L°0- ve o1 81°0 [4alY] so[qeinQq
6271 S0°0- L0°0- 000 000 80°0 ST'0 6T°1- V6L S0°0 110 UOoINIYSUOD
+89°C (4N 89°1 10°0 000 0v°0 S0°0 66V qgel 92°0 ¥0°0 sarysnpuy diseqg
e1eq Ajyiuop
+C€'T S0°0 €e'1 000 000 180 9€°'0 10°2 ¥0°0¢ 190 920 8901ATDG
«0€'C g0°0 «81°¢C 00°'0 00°0 6S°0 1¢°0 667 [4aa" 6€°0 ¥1'0 1eod pue 1O
+8L4°€ 80°0 +86°1 00°0 00°0 88°0 9€°0 L0°¢ Sv 9t 8S¢°0 9¢°0 sul ‘HY ‘utd
ve'l €0°0 [ 4! 000 00°0 69°0 6€°0 ve'e veer 9’0 L2°0 opeiy,
8V'1 €0°0 8€°0 000 000 ce0 8%0 990 10°0T [4alY] L1°0 SO
880 ¢00 90°1 00°0 000 870 1€°0 19T Lget g0 (44! uorjejrodsueiy,
€9°0 100 ¥9°0- 000 000 870 L9°0 00°T- 9T°Cl €e°0 0v°0 SI[qeINUON
6.0 ¢00 66°0 00°0 000 99°0 92°0 6LV 99°QT 0 81°0 se[qeinQq
6S8°1T ¥0°0 L1 00°0 00°0 ¥e0 80°0 0L°g eVl ge0 90°0 uonodnIysuoy
+68°C 90°0 +8C7C 00°0 000 S9°0 ¥0°0 8L°L TL g1 i) €0°0 SdLIySnpur dIseg
e1eq ApPRapA
21003 21003 7 g © °[nY ADVIN  PIOH-Pue-Ang [eueidgid MY ADVIN  OI"H ADVIN  PIOH-pue-4Ang
szadiny] Jo  siddinyy suorsse18oy 3SopoN-AquIny orpey oullrog  orjyey ounprog (%) AV (%) avy oryey adreyg oryey adreyg
1893 L.d pozienuuy pozijenuuy pozijenuuy pozijenuuy pozienuuy pozijenuuy
L1 T 90¢ L1 Sq've vevl €€°9LT v.0ce 89'81 90°9¢ [ LL QT 8901AIDG
cvo €0¢ L1 06°ce ¥6°09 Ve Lot 66 vV T L6°61 L6°vC L8°ET 9V°el 1'0D pue 10
9°c 66¢ L1 90°9¢ 8€°€9 8L°0TT 89°L9¢ (4N 8€°9T 69°CT ve et sul ‘HY ‘utg
Lee- 0Lt 61 ceee €8°L9 TS Ly 8 IIT 91°¢el 04°8T 62701 1472t dpeL],
9270~ 88¢C 61 09°8T jtaad v0°6€ LTEV 19°01T 6E°V1 VL6 c0°0T SORIIN
12°€- 16¢ 91 8¢'81 ¥6°01 €C°6L1 LE V6V 99°€1 90°L1 L0°¥v1 vo L1 uorjejrodsuesy,
18°¢c- 98¢ ST 0L°8C 01°6€ LL™8LT 8L°€499 68°€C LL7GT ge"gl 88°LT so[qeanquoN
6€"1- 66¢ (44 £9°'9¢ 1€°09 LLcE €09 08°€1 1C°61 9¢°6 96°01 sojqeing
6071~ 8¥¢ B4 00°ce 99°99 LT°81 crie ce91 63700 €9°L v1i'6 uorodnIysuoy
66°C 69¢ 61 69°'6¢C 49°08 6799 L9°LT T1°61 €6°1¢C qL°01 99 somysnpuy otseg
e1eq Alyuop
i) (418} €8 69°9¢ 19°72 LV 1LT ge7LTT €9°¢1 v0°ce 18761 €0°¢l 8901AI95
4970 601 L4 ¥¥'8¢ 6¢°89 €711 STLY 19°€T 00°0¢ cLel €¢°01 180D pu® IO
6€°0 9.01 9. €L LT 9€'vs 8L°6CT 9T 1L 6.6 89°GT 80°€T 8¢'T1 sul ‘HY ‘urg
v1'o 9801 9L 68°CE 61°89 €V'9TT €0°96 EL'TT QLLT LLTT [axat opeir,
<00~ 8701 98 a8 vl co'vy 1¢°¢e [P Va8 et L1°6 i SO
€0°0- <01 €8 8G°G¢ L0769 8L°0S ¥6°99 <86 [4a" veot 0401 uorjyejrodsuesy,
4970~ 0g0T 18 0€°'ST £€6°6€ 89°CS qLreet 17°6 0g'vT €9°0T LT'ET so[qesnquoN
Svo Svot 122 v Le 16°09 (4R NS g0°LS €811 SP81 29l 9401 sorqeing
48°0 STTT 9L vL1'9¢ €v'69 09°'v6 ve'qe c9'€el SP6l 8T°¢T €9'8 uoronIIsuo)
€e'1 6601 0L 9E'8Y 9L°64 L0911 65°0¢ €01 7981 9L°¢c1 V6°L sorysnpuy olsey
e1eq AR
(%) 3800 «Uly sfeusis ANy ADVIN PIOH-Pue-Ang 9Ny ADVIN  PIOH-Pue-Ang 9Ny ADVIN PIOH-Pue-Ang o[y ADVIN  PIOH-Pue-Ang
uono-yearq spowad Jo  Ang jo (%) umopmeip (%) umopmeip (g§) onyea (g) enyea (%) as (%) as (%) uangox (%) uangox
Aem-auQ JoquInN IoqUINN  WNWIXBN WNWIXRN [eulwaog, [eulwIog, pozienuuy pozijenuuy pozienuuy pozienuuy

100Z2-296T woiy ereq (ps1ySiom-an|en)i01dsg 4oy A331e41G ploH-pue-Ang snsisp 3Ny QOVIN :S'F S19eL

103



“L1$ St T00g 10quIadd( 01 g96T A[N[ UIOI] JUSWIISIAUI [§ € JO SN[RA [BUIULID) OY) PUR O[]’ SI J9SSE 901f NSLI 9} JO WINJOI POZI[ENUUE BT T,

¢6°0 ¥0°0 Svo 00°0 10°0 6L°0 g8 0 ve'e 1061 670 9€°0 S9OIATOS
06'T 80°0 68°0 10°0 000 940 970 60°€ qg'9t1 6€°0 420 1eo) pue 1O
+8€°C 60°0 00°0 0070 10°0 £€8°0 08°0 890 ¢8el g0 cs0 sul ‘HY ‘utd
(47288 9070 000 00°0 10°0 0¢°0 8¥°0 L2°0 86°CT €€°0 ce0 opelr,
¥o'L 400 ov°'0 00°0 00°0 870 9€°0 48°0 68°01 62°0 €20 SOLYLLYN)
8¢°0 10°0 90°0 00°0 10°0 96°0 66°0 ¥9°0- 0¢°91 4970 09°0 uorjyejrodsuesy,
€9°T L4070 290 10°0 10°0 er't 81T 4 ve9t L€°0 ev'o so[qeInquoN
8570 c0°0 60°0 00°0 10°0 veo c€0 L€°0 €e1T ¥e'0 [4alY] se[qeinQq
90°0- 000 S0'0 00°0 000 [480) ST°0 €9°0- 09'8 80°0 110 UuoIONIJSUOD)
+€8°C €10 8G°'T 10°0 00°0 160 S0°0 8¢9 €6°€T €e0 ¥0°0 sornysnpuy diseg
e1eq Ajyiuop
«6C'V 60°0 L1 00'0 00°0 ¥8'0 9€°0 0z'L €¢°0C 890 9¢'0 S9OIATO S
+90°7 80°0 181 00°'0 00°0 00 1270 o'y eeVI g€'0 ¥1'0 1eod pue 1O
+84°€ L0°0 1971 00°0 00°0 QL0 9€°0 607 PAZEY cs0 9¢°0 sul ‘HY ‘utd
Qg1 €0°0 16°0 00°'0 000 g0 6€°0 76°'1 AN 8€'0 L2°0 opeiy,
91°€ 90°0 ¥0'1T 00°0 000 [4:NY) jtald] i ¥4 09°TT ge0 L1°0 SN
or'tT €0°0 S6°'T 00°0 00°0 850 1€°0 0Le 17°eT 0v°0 (44! uorjejrodsueiy,
+L0°C ¥0°0 €0°0 00°0 000 0S°0 1870 19°0- A 9¢°0 0¥°0 so[qeInquUoON
00°T c0°0 0¥°0 00°0 000 ¥vo 9270 1€°% L0°€T 1€°0 81°0 se[qeinQq
L0°0- 00°0 a0 00°0 000 L1°0 80°0 0z'1 €L'6 [4NY) 90°0 uodNIISU0
918 11°0 +L6°€ 100 00°0 S6°0 ¥0°0 1€°1T ST6T ¥9°0 €0°0 soprysnpuy oiseqg
e1eq ApPRapA
21008 21008 g7 g © oIy VIN PIOH-Pue-Ang [erjudroyiq oINH VIN oIy VIN PIOH-Pue-Ang
szadiny] Jo  siddinyy suorsse18oy 3SopoN-AquIny orpey oullrog  orjyey ounprog (%) AV (%) avy oryey adreyg oryey adreyg
1893 L.d pozienuuy pozijenuuy pozijenuuy pozienuuy pozienuuy pozijenuuy
taly] (449 0¢ er'ee ve'vl 18'TLE 24 1€°61 90°9¢ 02°91 LL QT 8901AIDG
€9°0 (449 1€ 9¢°9¢ ¥6°09 Lvvic 66 V71 16°61 L6°¥%¢ 69°VI Vel 1e0D pue 1O
1L°0- 89¢ 0¢ Se'1e 8¢°€S 9T VLT 89°L9C L0°€T1 8€°9T 66°€T ve st sul ‘HY ‘ulg
¥S°0- 6c¢ L€ €6'v¢ €84S 9L°VL [4° e VI 0L°8T L8711 L8t opeiL
10°0- (429 1€ €0°'8T takdg L8°Ty L1°EY ¥e 1t 6E° V1 86°6 c0°0T SORIIIN
L0°1- L9¢ 1€ ccve 76°01 L1°vS¢C LE V6V 8SV1 90°L1 80°G1 vo L1 uorjejrodsuesy,
1T 1- v9¢ 1€ cL'ce 01°'6¢ vLLee 8L'€99 6€°'V¢C LL°GT €8°¢T 88°LT so[qeanquoN
6€°0- 1ee €€ L0°ce 1€°09 LE°9V €09 it 1¢°61 e oL 96°01 sojqeing
8€°0- S6¢C id 00°ce 99°99 01°%¢ crie S0°L1 63700 L1°8 v1i'6 uorodnIysuoy
01°¢ 06¢ g€ vvee 49°08 Ve 8L L9°LT 60°ST €6°1¢C 0L°TT 99 soLIsnpuy oiseyg
e1eq Alyuop
$6°0 6071 09 18°9¢ 19°vL 17 10% SeLT1 6€°ST ¥0°et 9¢°91 €0'€eT SIOIAIDG
8570 8¢l ¥9 c10g 6¢°'8S 9%°66 STLY 0T'v1 00°0¢ ceet €¢0T [®0D pue [10
€9°0 T0ST 14 6€°'0¢ 9e'vs 61°TVT 9T'TL ST 89°GT TeeT 8¢'T1 sul ‘HY ‘urg
<00 eIVt |22 £€9°'9¢ 61°'89 ¥8'10T €0°96 9T'€el QLLT 6€°CT 0g'et opely,
g0 oLyl 64 8L'61 co'vy 1eve [P 62°6 et 2901 i SOLYLLIN)
820 6€EV1 0L 60°1¢ L0°6¢ 80°€8 ¥6°99 6111 [4a" G811 0401 uorjyejrodsueiy,
6€°0- LVST 9L 1€°.4C £6°'6¢ L9°€L QLEeT €e'TT 0e'vT 8V'IT LT'ET so[qeinquoN
L1°0 ceEVL L 04°9¢ 1609 89°CL g0°LS vret SP81 EVIL 9401 sojqeing
¥10 08cT 9L 0¢'o0¢ E£V'69 6L°T¢ ve'ee Elaat Sv6T €16 £€9'8 uoronI3suo)
9L°¢ €9¢1 tid 0061 94764 69°69¢ 65°0¢C 9¢°¢1 7981 61°G1 V6°L sotxjsnpuy olsey
e1eq AR
(%) 3s00 «Ul, s[eusis o[y VIN PIOH-Pue-Ang o[y YIN PIOH-Pue-Ang [y YN PIOH-Pue-Ang o[y YIN PIOH-pue-Ang
uono-yearq spowad Jo Ang jo (%) umopmeip (%) umopmeip (g§) onyea (g) anyea (%) as (%) as (%) uangox (%) uinjox
Aem-suQ IDquInN IquINN  WNWIXBN WNWIXRN [eulwa9g, [RULWLIDT, pozijenuuy  paziBnuuy pozienuuy pozienuuy

1002-296T woiy ereq (ps1ySiom-an|en)io1dsg 4oy A331e41G pjoH-pue-Ang snsisp 3Ny YA :9°F S[qelL

104



definition of the two strategies and followed it up with a review of the earlier work on
the MA strategy. We then proceeded to state our concerns regarding the choice of the
parameters of the two strategies and the implications for data-snooping. Specifically, we
realized that the MA strategy presented the strongest case for data-snooping since the
parameter was converted from the MA strategy that works well for daily data.

The performance of the MA and MACD strategy for the period 1962-2001, was compared
to the performance of the buy-and-hold strategy and the A = 0.05-filter rule with the
help of weekly and monthly return data obtained from the CRSP NYSE-AMEX equal-
weighted index, the CRSP NYSE-AMEX value-weighted index, the S&P 500 index, the
CRSP NASDAQ equal-weighted index, the CRSP NASDAQ value-weighted index, the ten
size-sorted portfolios and the sector-based portfolios. In short, six noteworthy observations

emerged from our results.

e For weekly data from the S&P 500 index the MA*? strategy outperforms the buy-
and-hold strategy with a one-way break even transaction cost of 0.48%. This result is
very different from that of the MACD strategy and the filter rule, both of which fail

to beat the buy-and-hold strategy.

e For all the other market indexes, the MA strategy does better (as measured by one-
way break even transaction costs) than the MACD strategy but not better than the

filter rule.

e For all market indexes except the S&P 500 index, on a risk adjusted basis, the MACD
strategy performs better than the MA strategy but does not perform better than the

filter rule.

e For both the MA and MACD strategies, the one-way break even transaction costs
are very similar and monotonically reduce as we move from Decile 1 to Decile 10.
However, the performance of the filter rule is superior to both these strategies except

for Decile 10.
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Table 4.7: Best Performing Strategies for weekly Sector Data from 1962-2001

Sector One-way break even | Annualized
transaction cost differential RAP
Basic Industries | MA*Y A = 0.05-filter rule
Construction MACD(12,26,9) MACD(12,26,9)
Durables MACD(12,26,9) MACD(12,26,9)
NonDurables A = 0.05-filter rule | A = 0.05-filter rule
Transportation | MA%0 MA*0
Utilities A = 0.05-filter rule | A = 0.05-filter rule
Trade MACD(12,26,9) MACD(12,26,9)
Fin, RE, Ins MA40 MACD(12,26,9)
Oil and Coal MA*0 MACD(12,26,9)
Services MA#0 A = 0.05-filter rule

e For all decile portfolios except Decile 10, on a risk adjusted basis, the MACD strategy
outperforms the MA strategy, and both these active strategies outperform the buy-
and-hold strategy. However, the filter rule is still the best performing strategy among
the three strategies after accounting for risk, for all size-sorted portfolios except Decile

10.

e The most interesting observation that emerges here is that for different sectors different
strategies seem to be performing better which is unlike our results to the market
indexes and decile portfolios where the filter rule seemed to dominate. The following

table summarizes the best performing strategies for each of the sectors.

The above results do raise a lot of interesting issues. For example, given that the MA
strategy is the only one that is using an optimized value as its parameter, how much of
an impact does this fact have on the results? In fact the MA strategy performs better
than the other strategies when we use the one-way break even transaction cost as the
performance measure and since the transaction costs take into account the number of trades,
the importance of choosing appropriate values for the parameter to reduce whipsaws might
have a significant impact.

Another interesting feature of the results is the ability of the MA strategy to beat the
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buy-and-hold strategy and the other two active strategies when applied to weekly data
from the S&P 500 index and the CRSP NYSE-AMEX value-weighted index. This superior
performance also holds for data from Decile 10 which is a value-weighted index of large
firms. However, for the CRSP NASDAQ value-weighted index, the filter rule is still far
superior to the MA strategy.

Maybe the most intriguing fact that emerges from the results is the ability of the MACD
strategy to beat both the filter rule and the MA strategy after accounting for risk when
applied to data on the sector-based portfolios. The MACD strategy outperforms all the
other strategies in five out of the ten portfolios, which is surprising given the poor choice
we have made for its parameters.

In summary, the results for the MA and MACD strategies coupled with the results to
the filter rules do confirm the existence of momentum based strategies that outperform the
buy-and-hold strategies for the indexes examined here. Furthermore, we have shown that

the outperformance holds even after accounting for transaction costs.
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Appendix A

The impact of index weighting schemes on

annualized returns

The motivation for this note comes from the following observation': The annualized return
of the CRSP NYSE-AMEX equal-weighted index computed based on weekly data is sig-
nificantly different from the annualized returns to the same index computed on the basis
of monthly data. The table below captures the amount of discrepancy and for purposes
of reference we also include annualized returns to the CRSP NYSE-AMEX value-weighted

index.

Table A.1: Annualized returns for the some common CRSP Indexes

Exchange Annualized Returns (in %)
Equal-weighted | Weekly Data | Monthly Data
1962-2001 | NYSE-AMEX 18.77 13.51
1973-2001 NASDAQ 27.18 14.33

Value-weighted | Weekly Data | Monthly Data
1962-2001 | NYSE-AMEX 11.47 11.47
1973-2001 NASDAQ 11.51 11.57

This fact has been documented in the academic literature by several authors, the most

recent of which is Canina, Michaely, Thaler, and Womack (1998). The authors compute

'We thank Larry Bernstein, Amber Mountain Capital Management for helpful comments and engaging
discussions.
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the monthly returns® for data from the CRSP equal-weighted index for 1964-1993 in the
following two ways.

Before we define the two methods we alert the reader to some notation.
e T denotes the number of time periods in a month.

e N is the total number of assets.

e R;; denotes the return to asset ¢ at time t.

e Let w; denote the weight associated with asset . For equal-weighted indexes, w; = 1
for all assets and for value-weighted indexes they represent the market size (price *

number of shares outstanding).

Method 1: The monthly return for an index computed by compounding the daily returns,

denoted R? is given by

T N . .
R: =T] (1 + 721'—]3,1"’1%”) ~1.

Method 2: On the other hand, the monthly returns for an index as calculated by CRSP,
RS is defined as
S i (T + R} 1)
RS = :

m N
Zi:l Wy

Based on the above two methods the authors find that the monthly return RY, exceeds
the monthly return RS, by 0.43% on the average (the average difference is computed by
averaging over all months from 1964-1993). This works out to 6% on an annual basis, and
corresponds to our observations in Table A.1 for the NYSE-AMEX data. However, we note

that this discrepancy is worse for the NASDAQ data and is in the order of 13%.

2The reader might be a little puzzled by the use of monthly returns when our focus is on annualized
returns. We wish to point that once the presence of bias in monthly returns is understood, the argument
easily follows for annualized returns.
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