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PROBABILISTIC AND WORST CASE ANALYSES OF
CLASSICAL PROBLEMS OF COMBINATORIAL
OPTIMIZATION IN EUCLIDEAN SPACE*"

J. MICHAEL STEELE

The classical problems reviewed are the traveling salesman problem, minimal spanning
tree, minimal matching, greedy matching, minimal triangulation, and others. Each optimiza-
tion problem is considered for finite sets of points in R< and the feature of principal interest
is the value of the associated objective function. Special attention is given to the asymptotic
behavior of this value under probabilistic assumptions, but both probabilistic and worst case
analyses are surveyed.

1. Introduction. The origin and foundation of the results reviewed here is the
1959 paper by Beardwood, Halton, and Hammersley, “The Shortest Path through
Many Points.” The importance of that work was made evident in 1976 with the
appearance of R. Karp’s paper, “The Probabilistic Analysis of Some Combinatorial
Search Algorithms.” Using the Beardwood-Halton-Hammersley theorem, Karp
showed that, in a probabilistic sense, the computationally difficult traveling salesman
problem could be solved efficiently. Karp’s work illuminated the power inherent in
understanding the asymptotic behavior of combinatorial problems under probabilistic
models, and, as a consequence, several research initiatives were set in motion. In
particular, motivation presented itself for the investigation of the following questions:

(a) Which aspects of Karp’s algorithmic paradigm call for further refinement of the
associated probability theory?

(b) Which problems of combinatorial optimization have an asymptotic theory like
that revealed by Beardwood, Halton, and Hammersley for the traveling salesman
problem (TSP)?

(¢c) Are there features which are more refined than those revealed by the
Beardwood, Halton, and Hammersley (BHH) theorem?

(d) Can the proof of the basic BHH theorem be usefully simplified?

The main goal of this review is to survey the work which addresses these questions
while keeping a close eye on the techniques which seem likely to lead to further
progress. In the course of the review, some new proofs and new results are given, but
they are pursued only as far as they serve to illustrate unifying methods.

This review evolves as follows. §2 introduces and motivates the Beardwood, Halton,
and Hammersley theorem, then §3 gives a proof of the most basic form of the BHH
theorem and a review of alternative approaches. The fourth section surveys the
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refinements which can be made in the basic BHH theorem, and the fifth section
reviews a generalization of the BHH with enough power to bring the Steiner tree
problem, the TSP, and their rectilinear versions under the same umbrella.

The next four sections focus on problems which have some of the structure of the
TSP functional but which fail to be covered by the general results of §5. The
problems treated are the minimum spanning tree problem with power weighted
edges, the directed traveling salesman problem, the K-median problem, the problem
of minimal triangulations, and the remarkable two sample matching theorems of
Ajtai, Komlds, and Tusnady.

$10 takes a turn in perspective and analyzes a nonoptimal process, the greedy
matching algorithm. The tools of subadditivity still apply, but in the absence of
optimality, subadditivity requires more digging. The whole subject of probabilistic
analysis is then put on hold in §11, and the TSP, MST, and matching problems are
examined for their worst case performanced. One intriguing aspect of those results is
their formal similarity to the probabilistic theorems, despite the absence of any
probability model or probabilistic reasoning.

§12 stretches the review’s title to embrace the fact that many interesting problems
in combinatorial optimization are not Euclidean. There has been some extraordinary
recent work on linear programs with random cost, and this work casts new light on
minimal spanning trees and the assignment problem which is too good to miss.

Of the new results embedded in this review, it may be useful to note that the proof
of the Beardwood, Halton, Hammersley theorem given in §3 seems to be substantially
more direct and more elementary than earlier proofs. Also, there is a technical
sounding result that has a good story behind it: the sum T, of the dth power of the
edges in any minimal spanning tree of {x;, x,,...,x,} < [0, 1] is bounded uniformly
in n. This bound generalizes and simplifies the result which was obtained for d = 2
by Gilbert and Pollak (1968), and it provides a base from which one might expect
progress on a probabilistic conjecture of R. Bland discussed in §6. The rest of the
story comes from the use of smooth spacefilling curves and of their potential
applications in other problems.

2. The BHH theorem. The results considered here always concern finite subsets
V = {x,, x,,...,x,} of points in R%. These points are viewed as vertices of a graph,
any pair of distinct elements of ¥ will be called an edge, and if ¢ = {x;, x;} then
le| = |x; — x;| will denote the usual Euclidean length of the line from x; to x;. For the
most part, we will be concerned with special classes of graphs such as the class of all
tours which can be described (too succinctly) as the set of connected graphs such that
each vertex has degree two. The BHH theorem explains the probabilistic behavior of

the functional

L(x,,Xq,...,%,) = min } lel

eeT

where the minimum is over all tours 7 with vertex set V. In its most general form one
can state the Beardwood, Halton, Hammersley theorem as follows:

TueoREM . If X, are ii.d. random variables with compact support, then with
probability one

(2.1) nlif;L(X“ Xy, X,)/n4 /4 = Cdedf(x)(d—l)/ddx



COMBINATORIAL OPTIMIZATION IN EUCLIDEAN SPACE 751

where ¢, > 0 is a constant not depending on the distribution of the X, and where f is the

density of the absolutely continuous part of the distribution of the X.

We should collect some observations which illustrate the meaning of Theorem 1.
First, because the X, have compact support, the right-hand side of (2.1) is always
finite. Also, in the case that f is the indicator of a bounded set A4, the integral in (2.1)
reduces to m(A4)" %, where m(A) is the Lebesgue measure of A. Finally, part of the
content of (2.1) is that if the X, have compact support which is singular, then
L(X,, X,,..., X)) is almost surely o(nt4=1/%),

There was a great deal of work on the TSP function L which preceded the BHH
theorem. For example, Verblunsky (1951) showed

(2.2) L(x,,%5,...,x,) < (2.81)"% +3.15

for any {x,, x,,..., x,} € [0,1]?, and Few (1955) showed
L(xy, xp,...,%,) <d{2(d — 1)}! 79/ pd=07d o g(pl-2/d)

for any {x,, x,,...,x,} <[0,1]% There were also earlier results by Ghosh (1949),
Mahalanobis (1940), Jessen (1942), and Marks (1948). The most precise recent result
is found in Karloff (1989). More will be said about these results when worst case
asymptotics are considered in §11.

In order to appreciate the real thrust of the BHH theorem-—that it is an exact
asymptotic result—one should not overlook how easy it is to guess that the appropri-
ate order growth rate of L, is n“~Y/9 For example, the n“~ /¢ Jower bound can
be guessed by imagining the X, to be periodically spaced on the rectangular lattice,
and, although such imaginings are purely heuristic, their heart is in the right place.
For an upper bound on L, of order n'“"Y/4 one can even proceed rigorously and
apply the following elementary lemma:

Lemma 1. There is a constant ¢ = c(d) > 0 such that for n points {x|, x,,...,x,} C
[0, 114, there is a pair of points x; and x; such that

(2.3) lx; —xl <en™ /4

No harm is done in omitting the easy proof of Lemma 1 since a substantial
generalization will be proved later. Still, the humble bound (2.3) serves us well in
many arguments involving sets of points in [0, 1], and many of the results surveyed
here depend on Lemma 1 in one way or another.

3. Looking for the essence of the BHH. What makes the BHH theorem possible?
From Lemma 1 and a naive lower bound based on the expected value of nearest
neighbor distances, one is easily lead to conclude that with probability one,

(3.1) 0 < @ = liminf L, /'~ 94 < limsup L,/n'* 14 = g < .

Here, one should note that Hewitt-Savage Zero-One Law can be used to guarantee
that « and B are indeed constants. The central insight of Beardwood, Halton,
Hammersley (1959) was that tools of subadditivity and self-similarity could be brought
to bear on L, with sufficient force to boost elementary bounds like (3.1) to the level
of a genuine limit theorem.

There are at least three ways to continue the development of those basic insights.
One can refine the original methods in order to give simpler or more intuitive proofs
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of the BHH theorem. One can examine the ways in which the BHH theorem can be
sharpened. Or, one can look to abstractions and generalizations of the BHH theorem
which might prove fruitful.

To make life easy and to make the method crystal clear, consider X; which are
i.i.d. uniform on [0, 1]2. This case is already nontrivial, and it is surely the most often
applied. Moreover, the tools for extending from this special case to the case of
general distribution with compact support are somewhat removed from the basic
geometry of the TSP.

Our first step will be to determine the asymptotics of the expectations o(n) =
EL(X,, X,,..., X,) and, in particular, to show

(3.2) (n) ~cvn .

We first divide the unit square [0,1]? into m?® subsquares of side m™', and we let
Z; = Ti.\1p(X,) denote the number of the X, 1 < k < n, which occupy the ith
subsquare ;.

Since Q, has side length m ™', we see by scaling that the expected length of the
shortest tour through k points in Q, is equal to m~'¢(k). Also, by sewing the m®
subcubes together by passing through them row by row, we can tie any set of subtours
of the m? subsquares of Q; into a grand tour with a total incremental cost bounded
by 3m. In terms of expectations this says

2

(33) s(n) < ¥ T mle(k)P(Z, = k) + 3m

i=1k=0

n—k

<m }'i gb(k)(Z)m_z"(l -m~3)"" + 3m.
k=0

Before taking limits in (3.3) we should verify that ¢ is decently smooth and does not
grow too rapidly. In particular, using Lemma 1 we find constants ¢, and ¢, such that

d(k) <ck'/? and @k + m) < d(k) + comk™!/2
If we now let n and m go to infinity in such a way that (a) m~?n converges to A and

(b) ¢(n)/n'/? tends to its limit superior, the preceding bounds and elementary
analysis give us that for each A > 0 we have

(3.4) limsup ¢(n)/n'/? < ATV2EG(W,) + 34717,

where W, is a Poisson random variable with mean A. We now choose a subsequence
n, such that

klim $(n,) /nY/* = liminf$(n) /n'/>.

The shooting is almost over. We just let A = n, in (3.4) and let & go to infinity.
Since the probability mass of W, is highly concentrated in the interval A £ A and
since ¢ is well behaved we obtain

lim n™2Ep(W,, ) + 3n;"/* = liminfé(n) /n'/2.

k —> o0
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In view of the main inequality (3.4), we have proved that the limit of ¢(n)/n'/? exists.
To give more details would spoil the fun, so we count the first step (3.2) as done.
The second step is to show that with probability one,

(3.5) lim (L, — EL,)/n"/? =0,

"~ ®

and we begin with some recent observations of Rhee and Talagrand (1987).

For each 1 <i < n, we let A; denote the sigma field generated by X, 1 <j <.
Also, we let T? denote the length of the shortest tour through the n points
(X, Xy ..., X1 Xis1s- s X,y 1). Two nice facts about the T* is that E(T7]A4,) =
E(T'|A;_)), and, of course, E(T'|4,_,) = E(L,|A;_,). Soifwelet A, = L, — T', we
see

(3.6) d; =E(L,1|A,«) -E(L,I!Ai_l)
= E(Ln - TilAi) - E(Ln - TiiAt-l) = E(Ai|Ai)'

Now, L, — EL, = X7_,d, and the d, are orthogonal random variables (in fact
martingale differences), so

n 2 n n
(3.7) Var L, =E(Zd,) = Y E(d?) < ¥ EA? = nEA?
i=1 i=1 i=1

where, in the last two steps, we first applied Jensen’s inequality and then used the
fact that L, is symmetric when viewed as a function of the X, 1 <i < n.

We have the simple bound A, < 2min, _;_,|X; — X}|, so by elementary calculus,
there is a ¢, such that EA < c,n~". Finally, going back to inequality (3.7) we obtain
the rather surprising result that Var L, is bounded by ¢, for all n, a fact which was
first obtained in Steele (1981b) by means of the Efron-Stein inequality.

From the uniform boundedness of Var L, and Chebyshev’s inequality, we have

P(IL, — EL,l > en'/?) < cgen,

and if we let n, be the greatest integer not exceeding k°/“, then the Borel-Cantelli
Lemma further tells us L, ~ EL, with probability one. Also, by applying Lemma 1
repeatedly, we can check that for n, < n < n,,, we have

< Ln < Lnk + C(nk+] - nk)n;1/2’

(3.8) L, <
and for our choice of n,, inequality (3.8) shows max, _,., L, —L,|— 0 as
k — . Moreover, if we first take expectations in (3.8), we have max,, ., ,,, |EL, —
EL, |— 0as k — =. Together with the almost sure asymptotic relation L, ~ EL, ,
these observations complete the proof of our second step.

This proof differs from earlier proofs of the Beardwood, Halton, Hammersley
theorem in several respects, but in particular there is no introduction of a Poisson
process to produce independence of the tours within the Q,. Even the simplified
proof of the BHH theorem given in Karp and Steele (1985) relied on the traditional
Poissonization which has been carried along since 1959.

The Poisson embedding technique has some conceptual advantages over a bare-
knuckles proof, and probably the main virtue of the present method is that it is
honestly easy enough to be given in a beginning graduate course.
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One particular benefit of avoiding Poisson embedding and the conditioning argu-
ment is that it circumvents the need for an explicit Tauberian theorem. In Hochbaum
and Steele (1982) and Karp and Steele (1985), a Tauberian theorem for Borel
averages was used to back out of the smoothing introduced by the Poissonization.
Such a path provides for some economy of thought, but the covert Tauberian step
used here is more elementary and direct. Nevertheless, one is forced to own up to the
fact that there was no explicit Tauberian step in the original BHH proof.

This consideration of Poissonization and Tauberian arguments for Borel averages
should not leave the impression that such techniques are automatically to be avoided.
As Bingham (1981) shows, there is a powerful armory of results which can be used for
backing out of Borel averages. Also, Hartmann (1987) provides Tauberian theorems
which are designed specifically for problems like the probabilistic analysis of the TSP.

The martingale argument introduced by Rhee and Talagrand and applied here in a
simplified form will probably become the standard approach to the variances and tail
behaviors of random variables like L,. The application of the inequality of Efron and
Stein (1981) by Steele (1981b) provided a simplification and strengthening of earlier
methods, but, with all of the machinery of martingales in play, the Efron-Stein
inequality is not likely to continue to be the tool of choice. Still, one should note that
the martingale method and the Efron-Stein method are closely related.

To give a brief idea of this relationship we first recall a variant of the Efron-Stein
inequality from Steele (1986b):

For any function Y = Y(X,, X,,..., X,) of n independent identically distributed
random variables X; one has

VarY < Y,E ¥ (Y = Y©)?

J=1

where Y is identical to Y except X, has been redrawn, ie. YU =
Y(X,, Xz,...,Xj_l,Xj, X415+, X,) where the 2n random variables X, )f,-, 1<
< n, are i.i.d. It should be evident that for L, = Y the combinatorial facts one needs
to use to provide bounds on Y — Y are closely related to those used to bound the
martingale differences d, of (3.6). As final evidence of the closeness of the two
approaches to Var L,, we should note that, in fact, Rhee and Talagrand (1986) have
shown that the Efron-Stein inequality can be proved by martingale methods. Other
proofs and generalizations of the Efron-Stein inequality are provided by Karlin and
Rinott (1982), Vitale (1984), and Steele (1986b).

Even at this early point, it may be useful to record a basic open problem. Since
VarL, is bounded for d = 2, it seems inevitable that one has a genuine limit,

(3.9) lim Var L, = a > 0.

n -0

So far, the best we know in this direction is the result due to Rhee (1988) that

(3.10) liminf Var L, > 0.

n—o

A less certain conjecture than (3.9), but one that is still very likely, is that a central
limit theorem holds:

(3.11) L, —EL, ~N(0, ).

As it happens, there is a close relationship between (3.9) and (3.11) through the
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central limit theorem for martingales, and if (3.9) can be established, (3.11) is liable to
fall to the same insights. All one needs to add flesh to this speculation is to consider
L, as a sum of martingale differences as in (3.6) and to think through the underpin-
nings of the martingale central limit theorem as organized by Rootzén (1983).

4. Refinements of the BHH. Weide (1978) observed that a number of subtleties
lie behind the probabilistic models which motivate methods like Karp’s partitioning
algorithm for the traveling salesman problem. For example, one can think of prob-
lems as being incrementing where {X |, X,,..., X,} grows to {X,, X5,..., X, X, .},
or, independent where a problem of size n given by § = {X}, X;,..., X,,} is replaced
by a problem of size n + 1 given by 8§’ = {X{, X},..., X/} where S’ is independent
of §. For models of the second type, one needs a notion of convergence which is
stronger than almost sure convergence. Fortunately, the classical notion of complete
convergence seems well suited to the task.

In Steele (1981b) it was proved that for independent random variables X; with the
uniform distribution on [0, 1]* one has for any ¢ > 0 that

(4.1) f} P(IL,/n'? — Bl > €) < .
n=1

In classical terms, (4.1) says that L,/n'/? converges completely to B.

The proof of (4.1) was achieved by combining the inequality of Efron and Stein
(1981) with a recursion argument pulled along by Holder’s inequality. For d = 2, it
was also proved that for all £ = O there is a constant ¢, such that

(4.2) E(L,~EL)*<c,

forall n » 1.

These moment inequalities imply strong bounds on the tail probabilities
P(L, — EL,| = t), but still sharper bounds were obtained by Kern (1986), who
combined moment generating functions with the Efron-Stein inequality. The most
general and powerful approach to the tail probability of L, is the martingale method
introduced in Rhee and Talagrand (1987). For the TSP with d = 2, Kern showed
there are constants 8 > 0 and y > 0 such that

(4.3) P(IL, = EL,| > t) < Bexp(—yt/n'/*),

while Rhee and Talagrand (1987) showed there is a constant y > 0 such that for
nz2,

(4.4) P(IL, - EL,|>t) < 2exp(—vyt*/logn) and
(4.5) P(IL, — EL,>1t) < 2exp(—yt).

By combining the last two inequalities with tools from the interpolation theory of
linear operators, Rhee and Talagrand (1989a) further showed there is a 8 > 0 such
that

(4.6) P(IL, — EL,| > t) < 2exp(—8t2/log(1 + 1)).

The inequalities (4.3), (4.4), (4.5), and (4.6) are all much stronger than one needs to
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establish the complete convergence (4.1), and they also provide basic improvement on
the information available from (4.2).

The final leg in this development was the proof of the full large deviation result of
Gaussian type; there is a K > 0 such that for all ¢ > 0 we have that

(4.7) P(IL, = EL,| > t) < K exp(—12/K).

This result was established in Rhee and Talagrand (1989b) where the martingale
methods were coupled with delicate combinatorial arguments. By considering the
interesting “‘dual” variable

Y, = max{k: L(X,, X, ..., X,) <s, for all k-subsets of X, Xy, X,),

Shamir (1989) has provided an alternative approach to the tail behavior of the TSP,
but so far the approach falls short of (4.7). The details are a bit too long to trace here,
but the key insight is that Azuma’s inequality applies more robustly to Y, thanto L,
because changing one of the X, always changes Y, by either 1 or 0.

S.  Generalization of the BHH. The first proof of a generalization of the BHH
theorem was given in Steele (1981a), but an important intermediate step was taken in
Papadimitriou (1978) where pains were taken to articulate the properties which were
central to the original proof of the BHH theorem.

How can one specify a general class of variables for which BHH type results will
apply? How might one prove a limit result using only abstract properties of the TSP
functional?

We will consider functions L which are defined for all the finite subsets of R, The
properties we require of L are reasonably few, and one can easily check that they
hold for the TSP. In particular, we make the following assumptions:

AL Llaxy, ax,,...,ax,) = al(x,, x,,...,x,) for all real a > 0.

A2 Lxy; + 2,05 + %, ..., %, +x) = L(x, x,,...,x,) for all x € R

Since L is a function on the finite subsets of R?, we also note that Lix, xy,...,x,)
is the same as L(x(,m, Xy -+ s Xpmy) fOr any permutation o: [1, 1] — [1,n]. The

function L is also assumed to be monotone, i.e.,

A3. L(x U A) > L(A) for any x &€ R? and finite subset A of R,

If ¢ denotes the empty set, we always suppose L($) = 0 and note that the
monotonicity of L entails positivity, i.e., L{4) > 0 for all finite sets 4 R

Some boundedness of L is required, and a simple (but excessive) choice is provided
by an assumption of finite variance,

Ad. Var(L(X|, X,,..., X)) < ©» whenever X;, 1 <i<n, are independent and
uniformly distributed in [0, 1]%. ‘

The preceding assumptions are almost trivial to verify for a large number of
problems, and one cannot prove very much using the bare assumptions Al-A4. What
is needed is a more serious restriction powerful enough to get to the essence of the
functionals like the shortest tour length. ‘

We take {Q;: 1 <i<m? to be a partition of the d-cube [0, 1}¢ into m9 similar
cubes with edges parallel to the axis and let tQ; denote the dilated set defined by {x:
x =1y, y € Q. The subadditivity hypothes{s, which is the key to our main result, can
be given as follows:

AS. There exists a C > 0, such that for all positive integers m and positive reals ¢,
one has

d

L({xy, x5, 20} N [O,t]d) < L L({x, x50, x,) N Q) + Comd—!.

{==]
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Functionals satisfying A1-AS5 are fortunate indeed, since they satisfy the following
generalization of the theorem of Beardwood, Halton and Hammersley.

THEOREM 2. Suppose L is a monotone, Euclidean functional on R? with finite
variance which satisfies the subadditivity hypothesis. If {X;: 1 < i < =} are independent
and uniformly distributed in [0, 119, then there is a constant B(L) such that

lim L(X,, X,,..., X,)/n“4~D/4 = g(L)

>0

with probability one.

The proof of this result is too involved to repeat here. In spirit it rests upon a
subsequence and subadditivity argument used earlier in different contexts by Kesten
(1973) and Richardson (1973), but of course it also draws on many of the insights of
the original proof given by Beardwood, Halton, and Hammersley (1959).

To extend Theorem 2 to random variables which are not uniformly distributed, one
must make additional assumptions. We will call L scale bounded provided

Ab. There is a constant B such that

L(x, Xy, x )/t V4 < B foralln>t,¢t>1, and
1 2 n

{x, X550, x,} C [0,:]%.

Also, we call L simply subadditive provided
A7. There is a constant B such that

L(A,UA,) <L(A) +L(A,) +1B

for any finite subsets A, and 4, of [0, ¢]%.

The last assumption we need is upper linearity. A Euclidean function L is called
upper-linear provided

A8. For any finite collection of cubes Q;, 1 < i < s with edges parallel to the axes
and for any infinite sequence x,, 1 <i < %, in R? one has

3 N

LL({xy, 20,20} N Q) < Li{xxp,. ) N U Q) + o(nt709),

i=1 i==]

The set of supplemental conditions is not as tidy as our first set, but eight is
enough, and the conditions just laid out suffice to provide a full-fledged generaliza-
tion of the Beardwood, Halton and Hammersley Theorem.

TueoreMm 3. Suppose L is a Euclidean functional which satisfies assumptions
A1-A8. There is a constant B(L) such that

lim L(X,, X,,..., X,) /nt4=0/d = B(L)fdf(x)(d’l)/ddx a.s.
R

> w

for any independent identically distributed random variables { X;} with bounded support in
R¢ and absolutely continuous part f(x) dx.

Among the functionals to which Theorem 3 can be applied directly are the TSP,
the Steiner tree problem, and their rectilinear versions. Notable functionals to which
Theorems 2 and 3 fail to apply include the minimal spanning tree (MST) and the
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minimal matching problem. Ironically, these problems fail to be covered by Theorem
2 just because they lack the simple monotonicity property A3. For these functionals
and several others, the simple failure of A3 causes more trouble than one might have
easily imagined.

A generalization of Theorem 3 which relaxes assumption A3 is also given in Steele
(1981a), but the minimal matching problem still falls out of its range, despite the
comments in Steele (1981a, pp. 372-373). The easiest way to establish the asymptotic
behavior for the minimal matching problem is by direct arguments, and, in fact, many
problems which fall just outside the class covered by Theorem 3 end up having
enough individual character to justify specialized analysis. A feeling for the range of
the techniques which have been built up to deal with such cases can be obtained by
examining the results of the next three sections on minimal spanning trees, the
directed TSP, the K-median problem, and minimal triangulations.

6. Minimum spanning trees and power edge weights. If we let M, denote the
length of the MST of a random sample,

(6.1) M, = min ) |el
T esT
where the minimum is over all spanning trees of {X, X,,..., X,}, one would

certainly expect a result for M, like the limit theorem obtained for L,. Such a result
does not come easily out of the general results summarized in Theorems 2 and 3,
even though the classic paper of Beardwood, Halton, Hammersley (1959) already
noted that the asymptotics of M,, should follow the same probability law as L ,.

Curiously, almost everything one knows about discrete optimization suggests that
M, should actually be easier to study than L,. After all, Papadimitriou (1977) showed
that the task of computing L, is NP-complete, while the computation of M, is easily
achieved by a variety of well-known, fast, greedy algorithms. Still, because M, lacks
the basic monotonicity on which Theorem 2 depends, the probability theory of M, is
much more troublesome than that of L,. Nevertheless, by relying on bare-handed
understanding of M, in cooperation with subadditive techniques, one can master the
asymptotics of M, and even more complicated functionals.

Since M, should be so simple, there is natural inclination to expect results which
are more extensive than those obtained for L,. One natural step is to consider the
more general functional

(62) M = min T w(lel

esT

where ¢ is a positive, monotone function.

Unlike the functionals considered previously, this functional fails to be homoge-
neous of order one, i.e. M{® fails to satisfy Al. Despite this and other differences,
the asymptotic theory of this M!® fulfills our natural expectations, and in Steele
(1988) the following result is established:

THueoRrREM 4.  Suppose X,, 1 < i < o, are independent random variables with distribu-
tion w with compact support in RY, d = 2. If the monotone function  satisfies
U(x) ~x* asx = 0, for some 0 < a < d, then with probability one

(63) lim 5~ = (s d) [0
R

oo
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Here, f denotes the density of the absolutely continuous part of u, and c(a, d) denotes a
strictly positive constant which depends only on the power o and the dimension d.

Part of the motivation for Theorem 4 and the more general study of power
weighted edges comes from a conjecture of R. Bland, who was led by numerical
experimentation to suspect that for X; i.i.d U[0, 1]%, one has with probability one that

(6.4) lim min Y le]‘ = ¢ < «.

noe eeT

Although this probabilistic conjecture emerged only recently, some earlier work was
already waiting to speak in its behalf. In particular, Gilbert and Pollak (1968) showed
by a delicate geometrical argument that in d = 2 the sum Lle|* is uniformly bounded
for any minimal spanning tree and any set {x, x,,..., x,} < [0, 1]%

By applying some results on spacefilling curves, it turns out to be easy to prove the
result of Gilbert and Pollak and even to extend it to arbitrary dimensions. The key
observation is that which says there is a function f from [0, 1] onto [0, 1]¢ which is
Lipschitzian of order 1/4, i.e.,

(6.5) | f(x) = f(n)| < clx —y1'¢

for a constant ¢ > 0. This bound holds in fact for several of the classical spacefilling
curves, see Milne (1980).
To apply this to the bounding of edge weights of a minimal spanning tree, we

suppose ¥V, = {x}, x5,...,x,} €[0,1]¢ and let T be a minimal spanning tree of V,.
Since f is surjective we can choose points {y,, y,, ..., y,} in [0, 1] such that fy) =x,.
Next, we order the y; to give y,, < Yoy < "' <Y, and define a new suboptimal

spanning tree T, on ¥, by choosing the n — 1 edges (f(y,), Fae), 1 <i<n.By
the optimality of T and the Lipschitz property of f, we find

n—1
(6.6) Y le]? < > lel = by ‘f()’(i)) _f()’(iﬂ))ld
eeT eeT, i=1
n—1

<ct ) [V, = Yusn] < c?.
i=1

By comparison with the complexity of the proof of Gilbert and Pollak (1968) in
d = 2, this proof of the uniform boundedness of ¥|el* is almost effortless. All of the
geometry of [0, 1]¢ has been compressed into the existence of the Lipschitz spacefill-
ing curve. In the case of d = 2, the technique used above was first discovered by S.
Kakutani. The broad usefulness of the spacefilling heuristic has been emphasized in
Bartholdi and Platzman (1988). For a review of the oral tradition behind the
spacefilling heuristic one should read the comments of Adler (1986). Also, for a
discussion of power weighted edges in problems other than the MST, but within the
range of Theorem 3, one should consult the recent thesis of Troyon (1988).

Although the main hope concerning the bound (6.6) is that it provides a sensible
step toward proving Bland’s conjecture, inequality (6.6) has applications in its own
right. For example, by applying Holder’s inequality to (6.6) one finds that the sum of
any k edges of an MST of {x, x,,..., x,} is bounded by ck®~1/4 where ¢ is the
Lipschitz constant of (6.5). The delicacy of this fact can be appreciated by asking if
the analogous fact holds for the TSP. The issue which makes the question subtle is
that an optimal tour with respect to edge weights |e| can be quite different from an
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optimal tour with edge weights le|. In contrast, an important fact used in (6.6) is that
if a tree T minimizes L, o rlel then T minimizes ¥, . ;¢ (Je) where ¢ is any monotone
increasing function, and in particular, 7 minimizes T, < ple|.

The geometry of Euclidean minimal spanning trees is considerably richer than that
of the TSP, and there are several quantities—like the number of leaves—which have
a much different character than the length related quantities which have been
discussed so far. Still, it turns out that subadditivity and Efron-Stein variance
bounding are again effective, and in Steele, Shepp, Eddy (1987) it is proved that with
probability one the number of leaves of an MST of an ii.d. sample with compact
support in R? (but otherwise general distribution) is asymptotic to cn with probability
one. While the value of ¢ is not known analytically, simulations suggest that ¢ ~ 0.22
for random variables with the uniform distribution on [0, 1]

7. The directed TSP. Karp (1977) posed the problem of formulating a proba-
bilistic model of the directed traveling salesman problem (DTSP) which supports an
asymptotically optimal probabilistic polynomial time algorithm. One such model given
in Steele (1986a) also serves to illustrate that the techniques of subadditive Euclidean
functionals are sufficiently robust to be able to deal with information which is
exogenous to the location of the points.

As usual, we suppose X, 1 < i < o, are independent random variables with the
uniform distribution in the unit square [0, 1]?, and we take V, = {X|, X, ..., X,} as
the vertex set for our directed graph G,. The edges of the complete graph on V, are
given directions just by flipping coins. Formally, we take independent Bernoulli
random variables Y;;, 1 < i </ < n, which are also independent of V), and for which
P(Y,; =1 =1/2=P(Y,; =0). The directed edge set E, is defined by taking
(X, X)eE, if Y,=1land (X, X)€E, if Y;=0.

The random variable of interest here is D,, the length in the usual Euclidean
distance of the shortest directed path through all of the vertices V), of G,,.

It may not be apparent that there is always a directed path through V,, but its
existence follows from a classic result of Rédei (1934). An algorithmic proof of
Rédei’s theorem is given in passing in Steele (1986a), but the main results of that

paper are the following:

Treorem 5. There is a constant 0 < B < o such that as n — ©
(7.1) ED, ~ Byn .

TreoreM 6. There is a polynomial time algorithm which provides a directed path
through V,, with length D¥ which satisfies

"

(7.2) ED¥ < (1 +€)ED,,

forall € > 0 and n = N(e).

The directed traveling salesman problem has only been studied formally in the
plane, but it is not hard to show by the same methods that the natural d-dimensional
analog ED, ~ B,n“~Y/? holds for any d > 2. A more serious issue concerns the
possibility of stronger types of convergence. Because of the secondary randomization
of the ¥, ’s used to determine the direction of the edges, the almost sure convergence
theory for the directed TSP seems substantially trickier than that for the undirected
problem. Still, the complete convergence problem for the directed TSP has recently
been solved in Talagrand (1989).
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In the course of juxtaposing the limit theory of D, and its algorithmic theory, it is
worth recalling that one does not always need the exact limit theory in order to
provide a useful algorithmic theory. This fact is nicely developed in Halton and
Terada (1982) where the probabilistic partitioning algorithm for the TSP in R¢ is
given in detail. Finally, one cautionary point is that there is not much in common
between the directed TSP just reviewed and the asymmetric TSP considered in Karp
(1979) and Karp and Steele (1985).

‘8. Problems of location and triangulation. The TSP and MST are natural
candidates for the development of a refined limit theory because they are among the
most studied problems in the area of Euclidean combinatorial optimization. But
besides the TSP, MST, and their variants, there are many other functionals of interest
and importance. This section discusses two such functionals, the first of which is the
k-center problem.

Given an integer & and any set of n points {x,, x,, ..., x,} of R?, one defines the
cost of the K-center location problem by

i

(8.1) M(k;x),xy,...,x,) = min ) minlx, —x

S:[Sl=k i=1 jes /

For 0 < p < o we can also define the more general functional

n

M (k;x), xy,...,%,) = min Y, min|x; — x,|”.
S {8l=k j=1 jes

Upper and lower bounds determining the order of magnitude of M were obtained in
Fisher and Hochbaum (1980) and Papadimitriou (1981), and the following analog of
the BHH theorem for M, was obtained in Hochbaum and Steele (1982).

Tueorem 7. If {X}} are independent and uniformly distributed on [0, 112, then for
any 1 < p <2 and 0 < a < 1 we have with probability one that

lim M, ([an]; X,, X,,..., X,)/n' 72 =c_

n—w

for some constant 0 < ¢, , < <.

This result was obtained by using subadditivity and Tauberian arguments to obtain
the asymptotics of EM, and by using the Efron-Stein inequality to bound Var(M,).

The same approach was applied successfully in Steele (1982) to prove a conjecture
of Gydrgy Turén on the rate of growth of the minimal triangulation of n points
independently and uniformly distributed in the unit square.

By a triangulation of a finite set § = {x,x5...,x,) C R?, we mean a decomposi-
tion of the square [0, 1]* into triangles such that each x; € § and each of the square’s
four corners is a vertex of some triangle. An important technical aspect of this
definition is that we do not require that each vertex of the triangulation be an
element of S. As one might expect, the length of triangulation is taken to be the sum
of the lengths of all the edges in the triangulation, and the quantity central of interest
is T(xy, x5, ..., x,), the minimum length over all possible triangulations.

The main limit result for triangulation takes on a familiar cast, but—as will be
reviewed shortly—there are new features of the triangulation problem for which
Theorem 8 fails to give a good hint.
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Tueorem 8. If T, = T(X|, X,,..., X,) where X;, 1 <i < are independent and
uniformly distributed in [0, 1)%, then

lim - =
im —= =
n >0 ‘\/;l_‘

with probability one for some constant B > 0.

To dispel any sense that Theorem 8 only presents more business as usual, one
should ponder some of the problems that wait in the wings. Can one avoid the
Steinerization which was introduced as the technical part of the definition? Also,
what is the proper analog of this result in [0, 11?7 An interesting aspect of the second
question is that the analog of edge lengths of the triangulations in R? is surely the
area of the faces of the simplicial decomposition in R9. This problem leads to the
consideration of a discrete probabilistic Plateau problem. Such problems were first
posed in Beardwood, Halton, and Hammersley (1959); but, despite the near 30-year
lapse, there has been no progress in dimension d > 3.

9. Two sample matchings. Growth rates of order n“~"/¢ occur so frequently in
problems of combinatorial optimization in Euclidean space, one eventually yearns for
problems which exhibit different behavior.

Ajtai, Komlds, and Tusnidy (1984) considered the natural problem of minimal
Euclidean matchings of a pair of random samples for [0, 1*, and found a striking new
ynlog n behavior. An amusing twist of their discovery is that for d > 3, the
logarithmic term is no longer present and the habitual n@=Y/4 growth rate again
prevails. ‘

In the course of their work, Ajtai, Komlés, and Tusnady also developed two
powerful qualitative features of random samples in [0,1]> which are intimately
related to many optimization problems. But, before describing these features, we
should lay out the results for which they were developed. Given X;, 1 <i <, and
Y., 1 <i <, two independent sequences of random variables with the uniform
distribution on [0, 112, the random variable of central interest in Ajtai, Komlés, and
Tusnady (1984) is defined by

(9.1) T, = min L 1X,, = Yl

i==1

In longhand, T, is the cost of the minimal bipartite matching between the X’s and
the Y’s. The main theorem of Ajtai, Komlés, and Tusnady (1984) sharpened an
earlier upper bound of 0,(n'/? log n) due to R. Karp (unpublished) and determined
the exact order of T,

TueoreMm 9. There are constants 0 < ¢, < ¢, < @ such that

(9.2) P(cn/n logn < T, <cyynlog n) -1

as n — w,

There are two ingenious ideas which underlie the proof of (9.2). First, the proof of
the lower bound depends upon the construction of a weight function f (which
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depends upon the X’s and Y’s) such that f overweights the X’s, in the sense that

(93) Pl H(X) — S AV > LewfnTogn | - 1.

i=1 i=1
The function f is also proved to be Lipschitzian,

(9.4) | f(x) = f(y)] < Llx = yl.

The facts (9.3) and (9.4) instantly justify the lower bound in (9.2), and there are
doubtless other two-sample problems where the existence of such an f is a powerful
tool. It also is interesting to see a Lipschitz function crop up again after the
appearance of the deterministic Lip, function which proved so useful in studying
power weighted minimal spanning trees.

The second device developed to prove (9.2) concerns an elegant continuous
analogue to the transportation problem. Risking a little colorful language, suppose
you have a pile of dirt of weight 1/n located at each n random points X, X,,..., X,
in [0, 1]%. Further, suppose you want to spread that dirt out over a rectangular field
R, < [0,1]* of area exactly 1/n, such that all of X’s dirt is spread evenly over X,’s
rectangle R;. The total transportation cost of this redistribution can be measured by

n

(9.5) SX = Z[|X,.~u|du.
i=1"R;

Here, of course, the rectangles R, are random pairwise disjoint sets that form a
partition of [0,1]*. We should note each R; depends on all of the variables X,
1 < i < n, and, also, there is no requirement that X, € R,.

The main fact about the variables S, is that the R, can be constructed so that as
n — © we have

(9.6) P(S,f{ <cynlogn ) - 1.

Inequality (9.6) speaks directly to the bound sought in (9.2) since
(9.7) T,<SX+S),

as one can see by confirming that shipping the X’s dirt to [0, 1]* and reversing the
shipment of the Y’s dirt to [0, 1]* gives a real-valued solution to the transportation
problem between X and Y. By a classical result of linear optimization, the minimal
transportation solution must be a matching, and, therefore, the cost 7, of the
minimal matching has to be less than SX + SY.

A final aspect of the two-sample matching problem is that it has rich connections to
several other problems of interest: bin packing, grid matching, and empirical discrep-
ancies of lower layers. For these connections and many other interesting geometric
insights one can rely on Shor (1985), Leighton and Shor (1986), and Coffman and
Shor (1989).

10. Greedy matchings. One reason subadditive methods are effective in the
probabilistic study of optimization problems is that optimality often provides an
almost automatic path to the required subadditivity properties. Such circumstances
no longer prevail when one studies asymptotically suboptimal heuristics, and in such
cases considerable restructuring of the basic subadditive machinery may be required
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before limit results can be obtained. For example, the analysis of the greedy
algorithm for minimal matching given in Avis, Davis, and Steele (1988) depended
critically upon extracting subadditive inequalities directly from the combinatorial
properties of the greedy matching process, even though the eventual result is just as
one would expect:

Tueorem 10. For each integer d > 2, there is a positive constant ¢y such that if
X, X5,..., areiid. random variables with values in R and bounded support, and if
G, denotes the Euclidean edge weight of the maiching attained by the greedy algorithm
applied to {X,, X,, ..., X,}, then with probability one as n — »,

G, ~ Cdn(d~l)/d fRdf(x)(d—l)/ddx_

Here, f is the density with respect to d-dimensional Lebesgue measure of the absolutely
continuous part of the distribution of the X.

One way to appreciate the analysis of the greedy matching problem is to consider
heuristics for some closely related problems which still resist analysis. For example,
for TSP heuristics based on nearest neighbors, minimal insertions, and many other
processes (Karp et al. 1984, Lawler et al. 1985, and Rosenkrantz et al. 1977), one
expects a result like Theorem 10. Such results are not yet available, and they are not
likely to come easily. In the meanwhile their resistance helps illuminate the distinc-
tive nature of those problems, like the greedy matching problem, where progress has
been made.

11. Worst case growth rate results. The worst case behavior of a Euclidean
functional is often remarkably parallel to its probabilistic behavior. This fact may
come as a surprise, but the TSP and MST provide forceful illustrations.

To spell out the details, we again represent a tree or a tour by a graph G = (V,,, E),
where V, denotes a set of n points in [0, 1]4, E denotes a subset of the edges of the
complete graph on the points of V,, and L(E) denote the sum of the lengths of the
edges in E.

Conceptually, the worst case analyses of the TSP and MST are simpler than the
probabilistic analysis, since the whole problem boils down to understanding the
asymptotic behavior of the numerical sequences p ysr(n) and prsp(n) defined by

(11.1) pmst(n) = max{min Y lel: T is a spanning tree of Vn} and
v, \T

esT

(11.2) prsp(n) = max{m;n Y lel: T is a tour of V,,}.
V’l

eeT

The following result from Steele and Snyder (1989) recalls the form of the
probabilistic results for the TSP and MST, but repetition of form should not obscure
the substantial shift in perspective and technique due to the absence of probability
theory.

Tuporem 11. For any dimension d > 2, there are constants Bygy and PBrsp
satisfying 1 < Byst < Brsp such that as n — o,

(11.3) pust(n) ~ BMST”(d_D/d and

(11.4) prsp(n) ~ BTSPn(d_l)/d'
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Exact asymptotic results for pyop and prgp are recent, but considerable earlier
work focused on bounds for prgp and pygr which translate into bounds on B,; and
Brsp- For example, Verblunsky (1951) proved that in d = 2 one has prep(n) <
(2.8n)'72 + 3.15, and Fejes-T6th (1940) established that prgp(n) and pyer(n) are
both at least as large as (1 — e)4/3)"/*n'/? for all n > N(e). Next, Few (1955)
improved the upper bound of Verblunsky (1951) to prep(n) < Q)2 + 1.75 in
d =12 and obtained prsp(n) < d{2(d — DY ~D/24p@d=1/d 4 (1 =2/4) for general
d > 2. More recently, Moran (1984) obtained essential improvements on the upper
bounds of Few (1955) for large values of d.

‘The simplest and sharpest bound on pgp(#) in dimension two is given in Supowit,
Reingold, and Plaisted (1983), where it is proved that the additive term 1.75 can be
dropped from Few’s upper bound to give prsp(n) < (2n)'/2 That paper also gives
another new proof of the appealing lower bound due to Fejes-T6th (1940) that
prsp(n) > 2(12)7'/*n'/?, and while the abstract of Supowit, Reingold, and Plaisted
(1983) asserts prsp(n) = avn + o(yn), that statement accidentally sacrifices preci-
sion for brevity. The text of Supowit, Reingold, and Plaisted (1983) is quite clear and
no claim is made concerning results like Theorem 11.

The idea which underlies the exact asymptotic analysis of pysr(n) and pgp(n) is
that both sequences satisty inequalities which bound their rates of growth and which
express an approximate recursiveness. The following lemma looks technical, but it
gets at the essence of the asymptotics prgp(n) and p (7).

Lemma 2. If p(1) = 0 and there is a constant ¢ > 0 such that
(11.5a) (i) p(n+1)<p(n) +cn Y and
(11.5b) (i) m? (k) = m k9= (k) < p(mik),
where r(k) — 0 as k — o, then as n —

(11.6) p(n) ~ Bntd-1/4d

for a constant B.

To justify the hypotheses of Lemma 2 for pygr and p-gp, one has to develop some
basic properties of the MST and TSP. The following lemma points out one of
particular interest because it provides a bound which does not depend upon n.

Lemma 3. There is a constant ¢ such that for all x > 0, one has vygr(x) < cx™9
where vyor(x) denotes the maximum number of edges larger than x any minimal
spanning tree of {x,, x,,..., x,} < [0, 1]

The worst case behavior of the MST and TSP has a parallel for minimal and greedy
matchings. Steele and Snyder (1987) studied these problems in the context of general
power weighted edges, and provided exact asymptotic results to complement the
bounds obtained in Avis (1981, 1983).

The sequence associated with minimal matching is naturally

(11.7) pu(n) = max{min Y. lel*: M is a matching of Vn},
n M eseM

but for the honest analysis of greedy matchings it turns out to be necessary to
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consider the two sequences:

(11.8)  pg(n) = max{max Y lel*: M is a greedy matching of V,,} and
Va M cem

(11.9) po(n) = max{min Y lel®: M is a greedy matching of Vn}.
Vo A\ M ey

The reason one is forced to comsider both p; and p; is that one can have
matchings M, and M, which are both bona fide greedy matchings of a set V' =
{x,, x5,...,x,}, but for which

L(M) = L lel” # L(M;) = % lel”
eeM, esM,

This phenomenon is due to the possibility of ties, but when investigating worst case
configurations, ties cannot be shrugged off. In fact, they are surely to be expected in
most optimal configurations. As it happens, one can establish a minimax result which
says that p.(n) = pg(n) for all n > 1, so after some worry, one comes back to the
consideration of just two basic sequences. Moreover, the results for p,, and pg are
just as expected:

(11.10a) py(n) ~ Byn@ /4 and

(11.10b) po(n) = po(n) ~ Bantd=o7/4,

where B,, and B are nonzero constants which depend on d > 2.

The techniques behind (11.10a) and (11.10b) largely parallel the worst case analyses
of the TSP and MST, but new turns are required, particularly for the greedy
matchings. As in the stochastic analysis of the greedy matching, subadditive inequali-
ties do not come easily from suboptimality, and one has to look hard at the
underlying algorithmic process.

12. Non-Euclidean cousins. True to title and design, this review has focused on
the probabilistic and worst case analyses of classical problems of combinatorial
optimization in Euclidean space, but some recent results on the probabilistic analysis
of closely related non-Euclidean problems are so interesting they require at least a
brief look.

First, consider the weight M, of the minimal spanning tree for the complete graph
on n vertices where the weight of any edge e = (i,j) is given by X, and the
{X,;: 1 <i <j < n} are independent random variables. Timofeev (1984) established a
number of interesting results concerning the behavior of M, and in particular proved

(12.1) EM, <3.29

provided the {X;;} are uniformly distributed in the unit interval [0, 1]. Still, the
crowning result in this direction is due to Frieze (1985):

(12.2) M, - {(3)/F'(0)

where the convergence is in probability and in L', {3) = £5_n~? = 1202 -- -, and

n

F is the common distribution of the nonnegative independent random variables { X ;}.
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The assignment problem with random costs has also had an interesting set of
developments. If K, , denotes the complete bipartite graph and independent uni-
form costs X;; are associated with each edge of K, , then the assignment problem is
to determine the minimum value A4, of a matching of K, .

The stochastic analysis of A4, was considered in the Bachelor’s thesis of Lazarus
(1979) who showed EA, < clog n. Independently, Walkup (1979) established the
remarkable fact—in keeping with Timofeev’s bound (12.1)—that for all n > 1 one
has EA, < 3. Most recently, Karp (1987) introduced a new conditioning method
which was simpler than Walkup’s method and which provided the sharper bound
EA, < 2. The development we wish to review in more detail on is the generalization
and systematization of Karp’s conditioning method provided by Dyer, Frieze, and
McDiarmid (1986), and McDiarmid (1986).

It is well known that the value A4,—as well as all of the other functionals we have
reviewed—can be expressed in terms of a linear programming problem. What is truly
remarkable is that one can obtain good bounds on EA, and similar quantities within
that general framework.

Dyer, Frieze, and McDiarmid (1986) consider the general problem:

(12.3) minimize } ¢;x;
j=1

il

n
subject to ) a;x; =b,;, i
j=1

1,2,...,m,

i

x, =20, j=1,2,...,n.

7

The coefficients ¢; of the objective function are assumed to be independent, nonnega-
tive random variables (with possibly different distributions), but all of the remaining
parameters are assumed to be known constants. The Dyer-Frieze-McDiarmid in-
equalities relate the pointwise (random) optimal solution z* of (12.3) to the fixed
feasible solutions of (12.3). For example, if the ¢, are independent and uniform on
[0,1] and £, %,,..., %, is a fixed feasible solution of (12.3), then the simplest of the

Dyer-Frieze-McDiarmid inequalities is
(12.4) Ez* <mmax{£,:j=1,2,...,n}.

To see how (12.4) relates to Karp’s bound on E(A,) we note the assignment problem
can be written as '

12.5 minimize z = CiiX;;
ijviy
I<i,j<sn
subject to L o x;=1, 1<i<n,
I<i<n
Z x; =1, 1<j<n, and
Igign
x; >0, I1<i,j<n.

Looking at the assignment problem in terms of the formulation (12.3), we see that
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m = 2n and also that £,; = 1/n is a feasible solution. Consequently, inequality (12.4)
implies Karp’s inequality E(A4,) < 2.

The main result of Dyer, Frieze, MecDiarmid (1986) is an apt generalization of
inequality (12.4) to a class of random cost variables which retain a conditioning
property of the uniform. Specifically, the generalization concerns independent ran-
dom variables c; for which there is a 8, 0 < B < 1 such that

(12.6) E(cle; = h) = E(c;) + Bh

for all & > 0 with P(c; > h) > 0.
The main inequality of Dyer, Frieze, and McDiarmid (1986) can be written as

(12.7) E(z*) <B~' max {
S:18|=m

>z )eiECi}

eS

To see how (12.7) contains the handy inequality (12.4), we first note that for
uniformly distributed ¢; we can take 8 = 1/2 in (12.6) and Ec; = 1/2, so the right
side of (12.4) certainly majorizes the right side of (12.4).

The great distinction between the non-Euclidean cousins considered in this section
and the problems considered previously rests entirely in the assumption of indepen-
dence in the costs {c;}. It is still hard to see how the methods of Dyer, Frieze, and
McDiarmid (1986) can be used where the dependence of the costs carries as much
complexity as it must in Euclidean problems, but nevertheless it seems likely that the
Dyer-Frieze-McDiarmid inequalities will become part of the standard machinery of
probability as it is applied in combinatorial optimization.

13. Conclusion. One intention of this review has been to show that the work
initiated by Beardwood, Halton, and Hammersley (1959) and fueled by Karp (1976)
has good prospects of growing into a rich and useful theory. The review should have
also conveyed the spirit of a young theory with open problems, rough edges, and
many opportunities for invention.

Added in Proof. The conjecture of R. Bland discussed in §6 has been proved
recently by D. Aldous and the author by techniques unrelated to those of this survey.
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