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For entire functions of the form Y2, a,ez" where the 0, are integers satisfying
the Hadamard gap condition it is proved that Wiman’s inequality can be improved
to M(r)< u(r) (log pu(r))"* (log log u(r))! +#, for almost every ¢ and all r except a
set Es(¢) of finite logarithmic measure.  © 1987 Academic Press, Inc.

I. INTRODUCTION

Wiman [9] proved that any entire function f(z)=3Y2_,a,z" with
maximum modulus M(r)=max _,|f(z)] and maximal term u(r)=
max,,|a,| r" satisfies

M(r) < p(r)(log u(r))'2*?, (1.1)

for all 6 >0 and all 0 <r < oo except a set E; of finite logarithmic measure
([, (dr/r) < c0).

In Rosenbloom [6] an elegant probabilistic method was introduced
which used the theory of exponential families and Chebyshev’s inequality
to obtain a sharper form of Wiman’s theorem

M(r) < p(r)(log u(r))"? (log log u(r))' ** (1.2)

for all 6> 0 and all 0 <r < oo except a set E; of finite logarithmic measure.
Just by considering e, one can see that (1.2) is the best possible result as
far as the exponent of log pu(r) is concerned.

This is in contrast to the result of Lévy [5] on random entire functions,

a,e™)z", (1.3)
0

[z, 0)=

n
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WIMAN’S INEQUALITY 551

where 6,(w) are independent uniformly distributed random variables on
[0, 2n]. Under a regularity condition on f(z) (satisfied when a,=1/n!),
Lévy was able to show that with probability one,

M(r, @) < p(r) (log p(r)) /4 +° (1.4)

for all >0 and all 0<r<oo except a set Es(w) of finite logarithmic
measure.

Building on the technique of Rosenbloom, Erdds, and Rényi [1] (1969)
were able to remove the regularity restrictions in Lévy’s theorem and to
obtain for (1.3) the sharper result that with probability one,

M(r, @) < p(r) (log p(r))""* (log log u(r))' *° (1.5)

for all 6>0 and all 0<r<oo except a set Es(w) of finite logarithmic
measure.

The objective of this article is to establish the analog of the Erdos—Rényi
theorem for the class of entire functions

flz, t)= f a, ez (1.6)
n=0

where 0, is a fixed sequence of integers satisfying the Hadamard gap con-
dition 0, ,/0,,> g > 1 for n>0. Explicitly, we have

THEOREM 1. If f(z)=32 ,a,z" is entire and 8, are positive integers
satisfying 0, ,,/8,>q>1, then for any 6>0 and for almost every t the
maximum modulus of (1.6), M(r, t)=max,, _,|f(z, t)|, satisfies

M(r, 1) < pu(r) (log u(r))"* (log log u(r))' ** (1.7)
Jor all 0 <r< oo except a set Es(t) of finite logarithmic measure.

This result will be obtained as a corollary to a slightly stronger one
which is also analogous to a theorem of Erdds and Rényi [1]. This
time the bound on M(r) is expressed in terms of S(r), where
SN =350 la,l?

THEOREM 2. Suppose f(z)=Y2_,a,z" is entire and 0, are integers
satisfying 0,,,/0,=q>1 for all neZ™*. There exists a constant ¢ (not
depending on r or t) such that for almost every t,

M(r, 1) < cS(r) (log log u(r))'”? (1.8)

Jor all 0 <r < oo except a set Es(t) of finite logarithmic measure.
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To see that Theorem 2 implies Theorem 1 we note that Rosenbloom’s
inequality (1.5) applied to fi(z)=>_, |a,| z" implies

S*(r) < p(r) i la,| r" < p(r) (log u(r))'* (log log u(r))' +° (1.9)

n=0

for all r¢ E;. By (1.8), we then have
M(r, t) <cp(r) (log u(r))"* (loglog u(r))' +°? (1.10)

for all r¢ E;u Es(t)= Ej5(¢), and this inequality is equivalent to (1.7).

It therefore remains only to prove Theorem 2. For this there are basically
two steps. The first of these is the derivation of a maximal inequality, and
the second is an interpolation argument. These are carried out in Sections 2
and 3. In Section4 a probabilistic argument is used to show that
Theorem 3 is essentially best possible.

As a last introductory point, one should note that the results of the
present paper are more in the domain of Wiman’s inequality and it’s
extensions rather than in the explicit domain of random series as typified
by the work of Kahane [4] which would now be considered the standard
reference in the theory of random series.

Two relevant works, which were not covered in Kahane [4], are
Takafumi [7, 8] where progress is reported on the behavior of random
series with gaps. A recent work on the non-probabilistic growth aspects of
analytic functions is Juneja and Kapoor [3]. That work develops a sharper
form of Wiman’s inequality than that given by Rosenbloom [6], and it
provides exercises which explore the senses in which their sharper
inequality cannot be improved. Juneja and Kapoor [3] do not consider
random series and they do not pursue the work begun in Erdds and
Rényi [1]. The sharpest inequalities in the non-random case are of
necessity less sharp than the Erdés—Rényi inequality (1.5).

II. MAXIMAL INEQUALITY

For brevity and to stress the parellel with the probabilistic methods of
Erdés and Rényi[1], we write P(4)=(2n)"'[,dr for any Borel
Ac[0,2n]. For any function f(z), A={f(t)>A4} will be used to
abbreviate 4= {0<7<2n: f(t)>A}. Before proving our maximal
inequality we establish a result of large deviation type for lacunary
polynomials. The technique used depends on an elegant representational
device due to Jakubowski and Kwapién [2].
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LEMME 2.1.  For any q> 1 there are constants A, and B, (depending only
on q) such that any positive integers n,, 1 <k < N, which satisfy n, , /n.>q,
we have for any complex numbers a,

g

Proof. To begin with, we will suppose that the a, are real and that
g = 2. In this case, we note that the sum of the elements of each of the 2V
subsets of {n,,n,,.,ny} are distinct. For each 1<k<N we let r(w)
denote the kth Rademacher function, ie., r(w)=sign(sin2*nw) for
0<w<1. Now we let

N

N 1/2
Y ak(cosnkt)’>Aq/I<Z Iak|2> )<qu’:z. (2.1)

k=1 k=1

flw, t)= ﬁ (1+r(w)cos n,t) (2.2)

k=1

and note that f(w, t) is a probability density with respect to the product
measure dwdP, ie., f(w, t)>0 and [3" [} f(w, t) do dP=1.
The point of introducing (2.2) is the representation

1

cos n,(t=j r(w) f(w, t) do (2.3)

0

which yields the basic identity

N N
Y a, cosnt= j (Z akrk(co)) flw, t) do. (2.4)
k=1

k=1

By Markov’s inequality, (2.4), and Jensen’s inequality (respectively) we

have for all a >0,
. (2 dat
2A|<e ™ —
/1) e L exp (a >27r

(|2
oo o] o

Y a, cosn,t
=1
2n
=e “"j exp<

The Rademacher functions are independent when viewed as random
variables so recalling e ~* + ¢* < 2¢* and setting $>=Y»_, a2 one has

N

Y a, cosnt
k=1

f a,ri(w) de (2.5)

N

1 N 1
f exp (a Y akrk(w)) dow = n 5(e°‘”‘+e*°“’k)<e“252. (2.6)
0 k=1

k=1
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Since also e/ < e "+ €%, (2.5) and (2.6) yield

N
P< Y. a, cosnt
k=1
so choosing o to minimize the exponent yields an upper bound of
2 exp(—4%/4S?).
This completes the proof of the lemma in case of real a, and ¢>2. In
fact it shows 4,=2 and B, =2 suffice for that case. For a, still real but for

1<g<2, we need to choose a new integer s such that ¢*>2, e.g,
s=[(log,q) ']+ 1. We now write

> z) <2 exp(a2S? — ad), (2.7)

N s—1
Y agcosmt=) Y a,cosnt, (2.8)
k=1

Jj=0k=jmods

and note by our result for ¢ > 2 that by (2.7) and Schwarz’s inequality

2 N
P( =212y ai)
k=1

\

N

Y a, cosn,t
k=1

s—1
< Z P<s
j=0

< 25 exp( —A%/4s).

Y a, cosnmt

k=jmods

2
CYSIEDY a,z(>

k=jmods

This completes the proof of the lemma for real @, and specifies the values of
A, and B,. The inequality |u+ iv| <ﬁmax(|x[, | ¥|) shows that the real
case of (2.1) suffices to imply the complex case. ||

We can now prove our basic maximal inequality.

LEMMA 2.2. For any q> 1 there is a constant c, z (depending only on g
and ) such that we have the following:

For all complex numbers c,, 1 <k < N, and all positive integers n, satisfy-
ing ny . /ne = q we have

0<p<2n

P( max

N
Y ce® cosngt|=c, ;S(log N)m)sN"ﬁ (2.10)

k=1
where S*=YN_ | |cl?

Proof. We let M be a positive integer and set ¢,=2mj/M for
Jj=0,1,.,M—1. By Schwarz’s inequality and the fact that
le — e < |a— b for real a, b; we have

N
Y. cre*¥cos nt| +2nSM N2,
k=1

N
max | Y cqe®® cosnt
0<¢<2n k=1

< max
0<j<M

(2.11)
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Choosing M =[4nN*?A4,;'A]1+1 then setting A=2./alogN (for
N >=3), one can simplify the inequalities

P( max

0<¢<2n

N
Y. cre™? cos nyt
k=1

>A,,S,l>

M—1
<Y P ( >4,5h— 27tSM‘1N3/2> <MB,e =

j=0

N
Y cre™cos nt
k=1

(2.12)

in order to obtain (2.10) for 0 < <a —3. Since « >0 is arbitrary the proof
is complete. ||

Remark. The preceding result for cos n, ¢ is just as valid for sin n,1, so
in (2.10) we can replace cos n.t by exp(in,t) at the expense of replacing
¢, p by 2¢, 4.

III. PROOF OF THEOREM 2

First we give an interpolation argument which parallels Erdés and
Rényi [1] although we deal directly with S instead of p.

For a given entire f(z) =Y , a,z, we set f,(z)=>>_, |a,| z" and let E;
denote the exceptional set in Rosenbloom’s inequality (1.2) as applied to
fi(z). Without loss of generality we can assume E; is the union of disjoint
open intervals (a;, b;), 1 <j<oo. Next, we set S*(r)=Y>_, |a,|* r*" and
proceed to define recursively a sequence {r,} of interpolation nodes for
S(r).

Given r, we let r¥=inf{r:log S(r)=1+1log S(r.)}. If rf¢ E; we let
ri o =rf, but if rfel,=(a;, b;) for some j we let r,,,=a; and r, , ,=b,.
To begin the construction we can just take r,=0.

The main properties of {r,} are

r.¢ Es, for all 0 <k < o0, (3.1)
log S(r) = [£/2], (3.2)
log S(ry,,)=1+1log S(ry) if the interval (r, r,. ;) contains

any point not in Ej. (3.3)

We will first check that to prove Theorem 2 it suffices to show that there
is a constant ¢, such that for almost every re [0, 2n] there is a N(¢) such
that

M(ry, 1) <coS(r,)(log log pu(r,))'"? (3.4)
for all k= N(1).
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To see why (3.4) implies Theorem 2 take r € (ry, . ) N E§, and note by
monotonicity and Rosenbloom’s inequality that
M(r, 1) < coS(ri s 1)(log log u(ry1))"?
<coeS(r)(loglog S(r . 1))"?
<coeS(re){log(1 +1log S(ry))}'"?
<coeS(r,){log(1 + L log pu(ry) + log f1(re)) }'?
< coeS(ry){log(1 +1log u(ry) + 4 log log pu(r)
+ (1+6)log loglog u(r))} "2 (3.5)
The last term in (3.5) is clearly majorized by c,S(r)(loglog u(r))"? for
¢,=cqe’ and all r> R, where R does not depend on ¢ (only on u). This

completes the argument that Theorem 2 follows from (3.4).
To establish (3.4) we first note that for any A(r) and C(r) that

M(r, 1) < ) la,| r"

|n— A(r)| = C(r)
+ max Y a,e™r" exp(if,t)|. (3.6)
0<é<2n || _ani<cirn

We consider a random variable X with P(X=n)=a,| r"/f;(r) and take
A(r)=E(X) and C(r)=TB(r), where B*(r)=VarX. Then by the
Chebyshev and Rosenbloom inequalities one has

) la,| r" < fi(r)/T?

[n— A(r)| = TB(r)

< u(r)(log u(r))*(log log u(r))' *°/T*  (3.7)
for all r¢ E;. Letting T =1log u(r) we see
> la,| r" < p(r) < S(r) (3.8)

|n— A(r)| > TB(r)

for all r¢ Ej=E;0 [0, ry] for some r,. To make (3.8) useful we note that
Rosenbloom (1962) showed that

E={r: B*(r)>log f\(r)(loglog f,(r))***}

has finite logarithmic measure (cf. Erdés and Rényi [1, p. 50]). Without
loss of generality we can assume that E is contained in the exceptional set
E; of (3.1) and that

1<B(r,) < (log u(r)' *° (39)
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for all r,, k= k,. So, for such k, we have

(log .u("k))l/z < C(ry)=TB(r,) < (log 1(re))! o

and by Lemma 22 (and the subsequent remark) by taking N=
[(log u(r,))' *°27+4 1 we have

P< max

0<¢<2n

Y a,e™r; exp(i(),,t)‘

|n— A(ri)l = C(r)

> ¢, 5(1+8) S(r)log log u(rk))‘”)

< (log u(ry)) 7. (3.10)
Now since r, ¢ E5 we have
p(re) < S(ri) < plrie)' fi(re)'?2
< u(ry)(log u(ry))"*(log log u(r,)) "2 * 2, (3.11)
so, in particular,
log u(r,) <log S(r,) <2log u(ry) (3.12)

for all k& greater than some k,. Choosing =2 and applying (3.10), (3.12)
and the Borel-Cantelli lemma we have for almost every 0 <7< 2n that

max Y a,e™r! exp(if,t)
0<8<27 1 — 4= cr)
<(1+9)cp,S(re)(log log u(ry))"? (3.13)

for all k> k(). By (3.6), (3.8), (3.13) and the basic reduction (3.4) the
proof of Theorem 2 is complete. |

IV. BEST POSSIBLE

We will now sketch the proof that Theorem 1 cannot be improved as far
as the exponent of log u(r) is concerned. This follows from the con-
sideration of

flz,o,0)=Y o e @)gtni 7 (4.1)

n=0"""
where 6,(w) are independent random variables which defined on a
probability triple (£2, F, v) and which are uniformly distributed on [0, 27 ].



558 J. MICHAEL STEELE

The 6, are the lacunary integers used earlier. The main observation is that
for any te[0,2n] the random variables X, =e“(“e® are again ii.d.
bounded random variables with mean zero, so by (a mild generalization of)
the assertion of Erdos and Rényi [1, p. 48], we have for all ¢

lim M(r, o, t)/u(r)(log u(r)) ¢+ =0 (4.2)

r— o

for all £>0 and all we Q,, with v(2,,)=1. By Fubini’s theorem the set
A= {(w, t):lim, , , M(r, @, t)/u(r)(log u(r)) **"* =00} has vx(dt/2n)
measure 1, and consequently we can find a section A, =
An {(w, 1): w=w,} which has dt/2n measure 1. The choice f(z, w,,) thus
provides an example of a function which shows the exponent of log u(r) in
Theorem 1 cannot be taken as §—e¢, ¢>0.

REFERENCES

1. P. ERDOs AND A. RENY1, On random entire functions. Zastosowania Matematyki 10 (1969),
47-55. (Also, Selected Papers of A. Rényi 111, ED. P. Turan, Akadémia Kaido, Budapest.
pp. 542-550.)

2. J. JAKUBOWSKI AND S. KWwWAPIEN, On multiplicative systems of functions. Bulletin de
L’ Academie Polonaise des Sciences. 27 (1979), 689-694.

3. O. P. JuNEJA AND G. P. KAPOOR, “Analytic Functions—-Growth Aspects,” Research Notes
in Mathematics, Pitman Advanced Publishing Program, Boston, 1985.

4. J. P. KAHANE, “Some Random Series of Functions” (Second ed.) Cambridge Studies in
Advanced Mathematics Vol. 5, Cambridge Univ. Press, Cambridge, 1985.

S. P. LEvy, Sur la croissance de fonctions entiére. Bull. Soc. Math. France, 58 (1930), 29-59,
127-149; “@uvres de Paul Lévy 11,” (D. Dugué, Ed.), pp. 62-114, Gauthier—Villars, 1930.

6. P. C. ROsENBLOOM, Probability and entire functions, in “Studies in Mathematical Analysis
and related topics, Essays in Honor of G. Pélya (D. Gilbarg, H. Solomon, and others,
Eds.), pp. 325-332, Stanford Univ. Press, Stanford, 1962.

7. M. TakAaruMi, The central limit theorem for trigonometric series, Nagoya Math J. 87
(1982), 79-94.

8. M. TakaruMi, The boundary behavior of Hadamard lacunary series, Nagoya Math. J. 89
(1983), 65-76.

9. A. WiMaN, Uber dem Zuzammenhang zwischen dem Maximalbetrage einer analytischen
Funktion und dem grossten Gliede der Zugehorigem Taylorschen Reibe, Acta Math. 37
(1914), 305-326.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium



	
	
	
	
	
	
	
	
	
	


