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ABSTRACT

Given a set S of n points in the unit square [0, 1]d, an optimal traveling
salesman tour of S is a tour of S that is of minimum length. A worst-case

point set for the Traveling Salesman Problem in the unit square is a point
set S(n) whose optimal traveling salesman tour achieves the maximum
possible length among all point sets S ⊂ [0, 1]d, where |S| = n. An open

problem is to determine the structure of S(n). We show that for any
rectangular parallelepiped R contained in [0, 1]d, the number of points in

S(n) ∩R is asymptotic to n times the volume of R. Analogous results are
proved for the minimum spanning tree, minimum-weight matching, and
rectilinear Steiner minimum tree. These equidistribution theorems are the
first results concerning the structure of worst-case point sets like S(n).
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1. Introduction

In this note we show that for many problems of Euclidean combinatorial opti-

mization, the maximal value of the objective function is attained by point sets that

are asymptotically equidistributed. To facilitate exposition, we focus at first on the

traveling salesman problem (TSP) for a finite set S of points in the d-dimensional

unit cube [0, 1]d. Let τ(S) denote the set of tours that span S. The optimal TSP-

cost of S is the value given by

TSP(S) = min
T∈τ(S)

∑
e∈T
|e|, (1.1)

where |e| denotes the Euclidean length of the edge e.

For each dimension d ≥ 2, there are constants cd such that

TSP(S) ≤ cd|S|(d−1)/d, (1.2)

where |S| denotes the cardinality of S. Considerable effort has been devoted to

determining good bounds on cd; the earliest bounds are due to Few (1955), and

the current records are held by Karloff (1989) and Goddyn (1990). Simply by

considering the rectangular lattice one can see there are also constants c′d > 0 such

that for all n ≥ 2,

max
S⊂[0,1]d

|S|=n

TSP(S) ≥ c′dn(d−1)/d. (1.3)

If we let ρTSP(n) = max{TSP(S) : S ⊂ [0, 1]d, |S| = n }, then the usual con-

siderations of continuity and compactness show that there are n-sets S for which

TSP(S) = ρTSP(n) (cf. Moran (1984), P. 115); these are the worst-case point sets

referred to in our title. We suppress ρTSP’s dependence on d to keep notation simple.

The main result obtained here is that worst-case point sets are asymptotically

equidistributed in the sense made explicit in the following theorem.

2



Theorem 1. If {S(n) : 2 ≤ n < ∞} is a sequence of worst-case TSP point sets

with S(n) ⊂ [0, 1]d, d ≥ 2, and |S(n)| = n, then for any rectangular parallelepiped

R ⊂ [0, 1]d, we have

lim
n→∞

1
n
|S(n) ∩R| = vold(R). (1.4)

While Theorem 1 is certainly intuitive, the proof we provide requires more than

first principles; it relies essentially on the result of Steele and Snyder (1989) that

there exist constants βd > 0 such that

lim
n→∞

ρTSP(n)
n(d−1)/d

= βd. (1.5)

The exact asymptotic result (1.5) was motivated by the classical result of Beard-

wood, Halton, and Hammersley (1959) for the case of random point sets, and it

seems to provide just the refinement of bounds like (1.2) and (1.3) that is needed

to obtain equidistribution limit theorems.

We note that a proof of Theorem 1 in dimension two using techniques different

from the ones we use here is given in Snyder and Steele (1993). We also note that

Theorem 1 has a close connection to some results and a conjecture of Supowit,

Reingold, and Plaisted (1983). This connection will be explained more fully in

Section 4, after we have developed some notation.

In the next section we prove Theorem 1; Section 3 deals with problems other

than the TSP.

2. Proof of Theorem 1

For any fixed integer m ≥ 2, we partition [0, 1]d into md subcubes Qi, where

1 ≤ i ≤ md, each of side length 1/m. For any rectangle R and any ε > 0, there is an

m and sets A and B such that ∪AQi ⊂ R ⊂ ∪BQi and vold(∪i∈B−AQi) ≤ ε vold(R);

hence to prove Theorem 1 it suffices to consider equidistribution with respect to the

Qi. Specifically, it suffices to show that for each m ≥ 2 and 1 ≤ i ≤ md, we have

lim
n→∞

|Qi ∩ S(n)|
n

=
1
md

. (2.1)
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Our proof of (2.1) depends on the equality case of Hölder’s inequality,

which tells us that for 1 < p < ∞ and ui, vi ≥ 0, we have
∑k
i=1 uivi ≤(∑k

i=1 u
p
i

)1/p(∑k
i=1 v

p/(p−1)
i

)(p−1)/p. Setting vi = 1 for 1 ≤ i ≤ k, we have∑k
i=1 ui =

∑k
i=1 ui·1 ≤ (

∑k
i=1 u

p
i )

1/p (
∑k
i=1 1p/(p−1))(p−1)/p = (

∑k
i=1 u

p
i )

1/p k(p−1)/p.

The fact that is important for us is that one can have equality in this bound if and

only if u1 = u2 = · · · = uk (Hardy, Littlewood, and Polya (1964), pp. 21–26).

Let s(n, i) = |Qi ∩ S(n)|; i.e., s(n, i) is the number of points of a worst-case

point set S(n) that appear in the the ith subcube. We first establish a limit result

concerning the s(n, i) that measures their aggregate size in a way that works usefully

with Hölder’s inequality.

Lemma 1. For all m ≥ 2, we have

lim
n→∞

∑md

i=1 s(n, i)
(d−1)/d

n(d−1)/d
= m. (2.2)

Proof.

First write (1.5) as

ρTSP(n) = βdn
(d−1)/d + r(n), where r(n) = o(n(d−1)/d). (2.3)

Let W denote a closed walk on S(n) = {x1, x2, . . . , xn}; i.e, W is a sequence of edges

(xi1 , xi2), (xi2 , xi3), . . . , (xik−1 , xik), (xik , xi1) that visits each point of S(n) at least

once and begins and ends at the same point. Even if W visits some points more

than once and traverses some edges more than once, W is feasible for the traveling

salesman problem on S(n), so TSP(S(n)) ≤
∑
e∈W |e|.

We now construct a particular W on S(n) in the tradition of Karp (1976) and

Supowit, Reingold, and Plaisted (1983). In each subcube Qi for which S(n)∩Qi 6= ∅,

construct an optimal traveling salesman tour Ti of S(n) ∩Qi. This creates a set of

at most md within-subsquare tours. We then select a point x?i from each Ti and

let T ? be an optimal traveling salesman tour of {x?1, x?2, . . . , x?md}. The closed walk
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W is then formed by visiting subsquares in the order specified by T ?, visiting all

members of subsquare Qi by traversing Ti whenever T ? reaches x?i .

To assess the length of W , we first note that T ? is a TSP tour of md points,

so by (1.2),
∑
e∈T? |e| ≤ cdmd−1. This gives

ρTSP(n) = TSP(S(n))

≤
∑
e∈W
|e|

=
md∑
i=1

TSP(S(n) ∩Qi) +
∑
e∈T?

|e|

≤
md∑
i=1

TSP(S(n) ∩Qi) + cdm
d−1.

(2.4)

We now use (2.3) in (2.4) along with the fact that TSP(S(n) ∩ Qi) is at most

ρTSP(s(n, i)) scaled by the subcube size 1/m to get

ρTSP(n) = βdn
(d−1)/d + r(n)

≤
md∑
i=1

ρTSP(s(n, i))
m

+ cdm
d−1

≤ 1
m

md∑
i=1

βds(n, i)(d−1)/d +
1
m

md∑
i=1

r(s(n, i)) + cdm
d−1,

(2.5)

where, for all 1 ≤ i ≤ md, the value |r(s(n, i))| ≤ maxk≤n{r(k)} = o(n(d−1)/d).

Since m is fixed, we cancel βd in (2.5) to find

md∑
i=1

s(n, i)(d−1)/d ≥ mn(d−1)/d + h(n), (2.6)

where h(n) = o(n(d−1)/d). Dividing by n(d−1)/d and letting n → ∞ thus proves

half of the lemma. To obtain the other half, just apply Hölder’s inequality

with p = d/(d − 1) to
∑md

i=1 s(n, i)
(d−1)/d and use

∑md

i=1 s(n, i) = n to find that∑md

i=1 s(n, i)
(d−1)/d ≤ mn(d−1)/d.
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We are now in position to prove Theorem 1. First we recall the subsequence

convergence principle which says that if (ak) is any sequence of real numbers with

the property that for any integers n1 < n2 < · · · < nk < · · · there is a further

subsequence n′1 < n′2 < · · · < n′k < · · · such that an′
k
→ α as k → ∞, then in

fact one must have ak → α as k → ∞. One easy way to see the validity of this

principle is to note that if ak does not converge to α, then there is some α′ 6= α,

−∞ ≤ α′ ≤ ∞, and some subsequence of (ak) that converges to α′.

Now let (nk) be a given increasing sequence of integers. Since 0 ≤ s(n, i)/n ≤ 1

for all n and i, we can find a subsequence (n′k) of the (nk) and md constants

0 ≤ αi ≤ 1 such that for all 1 ≤ i ≤ md we have

lim
k→∞

s(n′k, i)/n = αi. (2.7)

Now, since
∑md

i=1 s(n, i) = n, we have from (2.7) that

md∑
i=1

αi = 1. (2.8)

Similarly, by (2.2) and (2.7), we have

md∑
i=1

α
(d−1)/d
i = m. (2.9)

Now, equation (2.9) and Hölder’s inequality applied with ui = α
(d−1)/d
i and p =

d/(d− 1) give us

m =
md∑
i=1

α
(d−1)/d
i ≤

(md∑
i=1

αi

)(d−1)/d(md∑
i=1

1d
)1/d

. (2.10)

But, by (2.8) we see that equality holds in (2.10), and thus α(d−1)/d
1 = α

(d−1)/d
2 =

· · · = α
(d−1)/d

md
, so applying (2.8) again, we see that αi = 1/md for all i. By the

subsequence convergence principle noted after Lemma 1, we therefore have for all

1 ≤ i ≤ md that s(n, i)/n→ 1/md as n→∞, and the proof is complete.
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4. Equidistribution in Related Problems

The method just used for the TSP can be applied to the minimum spanning

tree, the minimum-length matching, and the rectilinear minimum Steiner tree. If

L = L(S) denotes the optimal cost associated with any of these, then we can define

ρL(n) = supS⊂[0,1]d

|S|=n
L(S) and let S(n)

L be such that L(S(n)
L ) = ρL(n). To show that

S
(n)
L is asymptotically equidistributed boils down to checking that L satisfies two

conditions:

1. ρL(n) = βL,dn
(d−1)/d + o(n(d−1)/d), where βL,d > 0 is constant; and

2. ρL(n) ≤ m−1
∑md

i=1 ρL(sL(n, i)) + o(n(d−1)/d), where sL(n, i) = |S(n)
L ∩Qi|.

Condition 1 has been proved for the minimum spanning tree, minimum-length

matching, and rectilinear Steiner tree problems (cf., Steele and Snyder (1989) and

Snyder (1992)), and Condition 2 can be verified for these problems by the method

used in the proof of Lemma 1.

For example, if L(S) = MST(S) denotes the total length of a minimum span-

ning tree of S, we first form a minimum spanning tree MST(S(n)
MST ∩ Qi) on each

S
(n)
MST∩Qi. These trees can then be interconnected at total cost o(n(d−1)/d) by adding

md − 1 edges, each costing no more than c/m, where c is constant. This forms a

heuristic tree on S
(n)
MST. Since the lengths MST(S(n)

MST ∩Qi) are no greater than the

worst-case (within-subcube) lengths ρMST(sMST(n, i))/m, Condition 2 follows.

Checking these conditions for each of the problems yields the following.

Theorem 2. If {S(n)
L : 1 ≤ n <∞} is a sequence of worst-case point sets for the

function L, where L is the minimum spanning tree, the minimum-length matching,

or the rectilinear minimum Steiner tree, then, for any rectangular parallelepiped

R ⊂ [0, 1]d,

lim
n→∞

1
n

∣∣S(n)
L ∩R

∣∣ = Vold(R). (4.1)
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5. Concluding Remarks

The asymptotic equidistribution of worst-case point sets for the problems we

have considered offers some support to the conjecture of Supowit, Reingold, and

Plaisted (1983) that worst-case point sets are approximated by lattices as n→∞.

It is still a major open problem to resolve this conjecture.

Theorem 1 has a rather subtle relationship to some results of Supowit, Rein-

gold, and Plaisted (1983); we explain here how these results relate to ours. In

addition to improving current bounds on the constants c2 and c′2 in (1.2) and (1.3),

their analysis of the worst-case TSP in IR2 decomposed [0, 1]2 into m2 labeled sub-

squares of side length 1/m, then constructed a heuristic algorithm similar to that

of Karp (1976). Supowit, Reingold, and Plaisted noted that the worst-case perfor-

mance of the heuristic is attained on point sets that are equidistributed, and they

used this observation to prove that the leading constant of the worst-case length

of their heuristic tour is identical to the worst-case TSP constant β2 in (1.5). This

observation does not produce an equidistribution result for worst-case point sets,

but it is suggestive of a result like Theorem 1. Still, a rigorous proof of asymptotic

equidistribution of a worst-case TSP point set required a much different path.

There are other open problems that are motivated by our results. For the

Euclidean Steiner problem, the limit result for Condition 1 in Section 4 has yet to

be established. We believe such a result holds, and it would imply that a worst-

case point set for the Euclidean Steiner problem is asymptotically equidistributed.

It is also likely that the Steiner points in the Euclidean and rectilinear cases are

asymptotically equidistributed.

Another problem concerns the greedy matching. Though Condition 1 in Sec-

tion 4 holds for this problem, the methods we use to verify Condition 2 do not work

since they require a minimality condition. Hence, since the greedy matching is not

a minimum-length matching, showing equidistribution for a worst-case point set for

the greedy matching problem remains an open problem.
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