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AN OPTIMAL BETTING STRATEGY FOR REPEATED GAMES

GARY GOTTLIEB,* New York University

Abstract

We consider the problem of finding a betting strategy for an infinite sequence
of wagers where the optimality criterion is the minimization of the expected exit
time of wealth from an interval. We add the side constraint that the right
boundary is hit first with at least some specified probability. The optimal
strategy is derived for a diflusion approximation.

GAMBLING SYSTEMS; KELLY CRITERIA; OPTIMALITY CRITERIA; DIFFUSION APPROXI-
MATION; REPEATED GAMES

1. Introduction

Suppose a gambler is faced with an infinite sequence of identical wagers, and
seeks a betting strategy. We propose the optimality criterion of minimizing the
expected first-exit time of his wealth from a specified interval subject to the
requirement that the probability of reaching the upper boundary before the
lower boundary is at least p. The optimal strategy is derived for a diffusion
approximation to the original problem. '

Let {X,);-1 be a sequence of bounded, i.i.d. random variables, with p =
EX,>0, > = Var X,. A bet of t on the nth trial returns ¢ + ¢X,. Let 8 = (8. )~
be a betting strategy where B, is the proportion of wealth bet on the nth trial.
Assume that B, is a non-negative Borel-measurable function of
(X1, X3, + *» Xo-1) with 1 + B.X, = 0 a.s. For each B, define the associated wealth
process W# = (W?%):., where

Ws=1,

w’:=u (1+B8X), nzl

An appealing and well-studied strategy proposed by Kelly (1956) and studied
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by Breiman (1961), Ferguson (1965), Finklestein and Whitley (1981), Ethier and
Tavaré (1983) and others is to bet a fixed proportion B* of wealth on each trial
where B* maximizes E log(l + BX1). The associated wealth process W*" has
many desirable properties including that {W2/ W2, n = 0} is a supermartingale,
where B is any other strategy.

For p small, then under fairly general conditions B* = pn/o’. A complete
discussion of this point is given in Lemma 3.1 of Ethier and Tavaré (1983). In this
case, the Kelly betting system is much like a proportional betting system
(proportional to W,, u and (c*)"') where the constant of proportionality is 1. A
generalization is to set B, = fulo? for all n where f is a positive constant. The
incentive to choose f < 1 is to reduce the probability of a ‘bad event’ which could
be defined to be the wealth ever dropping below a specified level. The
motivation behind our suggested optimality criterion is similar. The proportional
betting strategy is discussed in Friedman (1981); Wong (1981) and Gottlieb
(1985).

Our problem is as follows: given a choice of a <1, b>1 and p €[0, 1], with
T* = inf{t >0: WEE& (a, b)}, find the strategy B which minimizes E (T?) subject
to the condition that P(W% = b)=p.

Note that many games satisfy o> » ., with u small and positive. The pass line
at craps (from the casino perspective) has u = 0.014 and o’ = 1. For the case
where o>® p, a diffusion approximation is appropriate. The above problem is
solved for the diffusion approximation to W.

Assume that

(1.1 Bani(Xi - X2)=f(WE),  nZ1, f some continuous function.
Then,

(12) E(WS., - W2
i.3) Var(W4.,— W2

Wi, -, W= f(WDWip,
Wi, -, Wi = fWH (W)Yo’

Following (1.2) and (1.3), define the diffusion process {Y'(), t 2 0} satisfying
Y'(0)=1 ‘
dY' = f(Y' ()Y (dt + of (Y ()Y (t)dB(1).

Take {Y/(t),t =0} to be a diffusion approximation to {Wf.’,n = 0}. Here,
one time unit of Y’ corresponds to one wager in the W?® process. Let
r =inf{t=0: Y'(t)=a or b}. For p €[0,1], let

C(p)=1{f:(a, b)— R : f continuous, P(r/ <»)=1, P(Y'(r")= b)=p},

C'v(p) =C(p) N{f:f(x)z0,allx € (a,‘b)}_.,
We solve the following problem.
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Problem 1. 1f C*(p)#@, find the f € C*(p) which minimizes E(r') over
C*(p). Find the set of p for which C*(p)=@.

We show that if C*(p)#Q, minimizing E(r') over C*(p) and over
U=, C*(q) yield the same answer.

First consider a related problem. Let g be any function with g(a)=0,
g(b)=1. Let E,(*)= E(-| Y/(0) = x) with E(-)= E\(-) and define P, and P
similarly.

Let
(1.4) u(x)=, sup E.[g(Y/(r')- A7'].

continuous

Problem 1I. Find the ‘control’ f for which the supremum of the right-hand
side of (1.4) is attained.

Lemma 1. Suppose that for a given A >0, f is the optimal control for
Problem 1l. Further, suppose that f € C*(p). Then [ is the optimal control for
Problem 1.

Proof. Immediate.

Note that the inclusion of non-Markovian, non-anticipatory controls in
Problem II would be irrelevant in the sense that the optimal control (assuming
existence) over the larger set could be taken to be Markovian. By Lemma 1, the
same holds for Problem I, hence (1.1) is innocuous.

2. Derivation of optimal policy

Problem II is solved in this section. Its solution is used to find the optimal
control for Problem I. The infec+(,) E(7') is computed as a function of a, b
and p.

Lemma 2. u"(x)<O0 for x €(a, b).

Proof. Choose an x € (a,b) and ¢ >0 with (x — ¢, x + €)C(a,b).

Let w(¥) = n/v. Let F be the class of continuous controls with the following
restriction. Let @ =inf{t >0: Y*=x—¢ or x + €}. Require that for f € F, if
Y/(0)=x, then for t 5 6, f(v) = w(»).

Then,

u(x)= s’lelg E.[g(Y (<) - Arl]

(2.1) = —AE.0+ sup E.Evo[g(Y' (7))~ A7)

f continuous

—AE.0 + E.u(Y*(6)).
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For t =6, Y* is Brownian motion with drift np and instantaneous variance
2.2
nao.

From Karlin and Taylor (1981), p. 205,

o e 4 e YL _exp(=2nux/n’c®)— exp(—2np(x ~ eNn’a’).
P.(Y"(8)=x+e)= exp(—2nu(x + e)/n’o”) —exp(—2npu(x — e)/n’c’)

@2 ) 2ue 2u’el, o (i:)

Further,
g’ e’
@.3) E.(0)=Z5+o(5
From (2.1), (2.2) and (2.3), one gets
u(x)Zlu(x +e)+iu(x—¢)
1 pe e’
+3 8 (u(x + €)= u(x - )+ O (?) .
This reduces to

u(x + €)= 2u(x)Fulz ~e) _ i ulx—e)=uE+8) (1
3 s tetipaittloo ().

Letting € —0 yields
" -— 2 r 1
u'(x)s #u(x)-PO(?).

Noting that u’(x) >0, and letting n be sufficiently large proves that u"(x)<0.

Theorem 1. f(x)=(u/a?)(1+ px™") is the optimal control for Problem II
where p is some constant.

Proof. For each x € (a, b), u(x) satisfies the equation

2.4) + A =sup ie’y’x u"(x) + (uyx)u'(x)}.

yER

Maximizing the right-hand side of (2.4) as a function of y yields

@5) y= - (48).
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From Lemma 2, we know that u"(x)#0, x €(a, b).
Substituting the derived value of y into (2.4) yields
(2.6) lo’x -%——,( ,,(x)) "(x)+y.x( ;é‘—__%_l) W'(x)= A

Letting A' = —2A0?/u?, (2.6) reduces to
2.7) A'u"(x) = (u'(x))
The solution to (2.7) is

u(x)=-A'In(x +p)+k, where p and k, are constants.

So,
.8) w'(x)= x"+ p :
2.9) u'(x)= G+ay p)

Substituting (2.8) and (2.9) into (2.5), and setting f(x) =y gives
@.10) f)= K x4 0) =24 (14 ™)

Set

_1~-a
Po=p—a-

Theorem 2. For p € (po, 1], f(x)= (n/a®)(1+ px™"), where

ba-1)-p(a-b)
P p@=b)-(a-1)

is the optimal control for Problem 1. For p =p,, C*(p)=0.

Proof. Choose a p € (p,1). The idea is to find a p so that f(x) € C*'(p).
Then, by Lemma 1, the result follows.,
Choose a p and set

@.11) f(x)=f, (1+px7™).
For f given in (2.11), Y’ is a diffusion with scale density

s(x)=(x+p)2

Let R(x)=P,(Y! = b). From Karlin and Taylor (1981), Equation (3.10), p.
195,
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_S(x)-S(a)
R()=51)=5()

where
se)= [ st)dn.

So,

b+p)x—a

Setting R(1) = p and solving for p yields

_b(l-a)-p(b-a)

¢ P pE-a)-(1=a)

Fix p using (2.12) and note that for f defined by (2.11), f € C(p). It remains to
consider the sign of 1+ px™' for x € (a, b).

For p € (po, bpo), p Z0 so f € C*(p). Note that as p Lpa p 1.

For p € (bpo,1), p <0, but 1 +px~' =0 for x €[a, b). The last inequality is
strict unless p=1 and x = a.

To verify the last assertion, choose any f€ C*(p) and let w(x)=x.

Applying Dynkin's lemma to the submartingale Y’ yields

@.13) Ew(Y'(#')=1+E L " LY (O (Y ()t

The left-hand side of (2.13) is pb + (1 — p)a, while the right-hand side of (2.13) is
strictly greater than 1. Hence, p > po.

Lemma 3. For p > po,

min E(r')= min min E().
rec*p) txqzp [EC" Q) )

Proof. Choose p;, p» with 1 Z p,> p,> po and let fi(f:) be the optimal control
for Problem 1 where p = pi(p2).

Suppose that E(r%) < E(7"). Let f"(x)=n and let ps)= P(Y'»=b), e.=
E(+"). Now, €, —0 as 1 —> %, S0 p@)=> po as n —> .

Define a sequence (r.)--1 satisfying r.p)+ (1 = 1.)p2 = pr. For n large enough,
o<r <l

Consider the random control u" which uses the control f; throughout with
probability 1 - r, and uses the control f* throughout with probability r.. For n
large enough, the probability of first hitting b is p,, while the expected hitting
time to a or b is less than E (t"). Because of the remarks following Lemma 1,
this is a contradiction which proves the lemma.
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Henceforth, fix p € (ps, 1), define p by (2.12) and set f(x) = (n/a’)(1 + px 7).
Let M(x,p)=E.[7'}.

Theorem 3. For p € (ps, 1),

2.14) M(l.p)=39;{ |n(l+p)+————+d}
"
where
o (£58) (@ + p)(b + )
b-a '

b+p

Proof. Write M(x) for M(x, p).
From Karlin and Taylor (1981), p. 196,

M(x)=2R() [ (5(6)- S@Im(@)ds

2.15) ,
+20- R [ (5@)- S@ym(@)ag

where R and S are defined in Theorem 2 and m(x) is the speed density of Y’
So, 2 -1
m(x)= (B2 (x+p¥) (st
(2.16) ,

[*4

=—z.
I

Substituting (2.16) into (2.15) yields

M= () e
+(1_£jg::;)L‘(Iip-aip)ﬁj’d{}
2.17) 2%1_,;{4"(”‘)”@ +:)b)£xa—)?x)tl§)b)+p)

(b x)(a +p)in(a + p)}
(b—a)(x+p) )

Setting x =1 in (2.17) reduces it to (2.14).

Corollary 1.
2
(2.18) M(1,1)=27;'-;- {ln (;’T”‘f)} :

a
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Proof. Setp=1,s0p=—a and {a} is a natural boundary for Y. So, letting
o, =inf{t >0: Y/(t)=r or s},

(2.19) M(x)= l‘lm E.mlss.

To evaluate M(x), it suffices to replace a in 2.17) with a + 8 and to replace p
with —a and calculate the limit as 8 | 0.
So,

. 20, (x-a
M(x)= Tln (b-—a) .

Setting x to 1 completes the proof.

We now compare the expectation of the hitting time under the policy given by
Theorem 1 to a fixed proportional strategy. For each y >0, let v" (x) = yulo’l,
x € (a,b) and call v” a fixed proportional strategy. Let y*=inf{t>0:Y" " =a
or b}.

It is easy to show that

h h

2.20) P(Y" ()= D)= 3
for x €(a, b) where
2
2.21 h=-—+1
@21) -
and

2

. ) — 20 ” s a
(2.22) E.(v*) m{x Ina/b+a*Inb/x +b"Inx/a}, y#2.

Various values of a and b are chosen for Tables 2.1 and 2.2. In each table,
p’la’ is set to 1.

TabLE 2.1
(a=4b=2)
- M(,p)
P M(1,p) M(1.p) M(Lp)
13 0 0
04 0.0194 0.0204 1.0515
0.5 0.1178 0.1201 1.0195
0.6 0.2967 0.2977 1.0034
0.7 0.5596 0.5602 1.0011
08 09192 0.9357 1.0180
09 1.4084 1.5210 1.0800
0.95 1.7309 2.0223 1.1684
0.99 20714 2.9826 1.4399
0.999 2.1848 4.1731 1.9100

1 21972 « o
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TABLE 2.2
(a=4Lb=2)
- M(1,p)
p M(,p) M(l.p) M.p)
3/7 0 0
0.5 0.0206 0.0232 1.1262
0.6 0.1184 0.1274 1.0760
0.7 0.3003 0.3106 1.0343
0.8 0.5787 0.5819 1.0055
0.9 0.9870 0.9920 1.0051
0.95 1.2688 1.3166 1.0377
0.9 1.5769 1.8662 1.1835
0.999 1.6755 24745 1.4769
1 1.6946 P o

For each p, v is chosen so that (1 — a*)/(b* — a*) = p, where h satisfies (2.21).
Then, E(y*) is computed using (2.22). Call this number M(1, p).
The reader should note that as p 11, y { 0 and E(y*) 1 «.
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