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THE PREDICTION OF SEQUENCES / (N [ S U

by
David Blackwell

I. INTRODUCTION

Suppose a predictor is allowed to observe the Buccessive
terms 61,62,... of an iInfinite sequence of O's and 1's until
he decides to stop. If the first two unobserved terms are
1,0 in that order he loses; otherwise he wins. For a given
number p > O, does there exist a method of prediction (1.e.,
a randomized stop rule) for which the probability of winning
1s at least p for every infinite sequence x = (61,62,...)
of O's and 1's? If so, what is such aapethod? It 1s clear
that for p > 3/4, no method exists, since if the sequence
18 chosen by coiln tossing the average success probability
over all sequences 1s exactly 3/4 for any method. For any
p < 3/4, methods willl be given below, and 1t will be shown
that for p = 3/4 no method exists. /

The problem described above 1s an instance of a class
of problems, 1n which the predictor observes as many terms
of an infinlite sequence 61,62,... of O's and 1's as he

pleases, after which he chooses an action from a finite

set. He wins an amount depending only on the action chosen




v

RM-1570
10-12-55
—2—

and on the first few unobserved terms of the sequence. One
problem of this type, whish furnished the stimulation for
writing this paper, i1s the "two-move lag bomber—battleship
game” solved by Dubins [1] and Isaacs and Karlin [2], in
which the sequence €1,€2,°°° describes the motion of the
battleship, with €1 4+ coe 4+ €N being its position at time N.
The bomber watches the ship as long as he pleases, after
which he drops a bomb, which lands two time units later at
any position designated by the bomber. Thus the bomber wins
if and only if he predicts correctly the sum of the first
two unobserved terms.

As will be noted below, it follows from general theorems
of Wald [4] and Karlin [3] that problems of this type,
considered as games between the sequence chooser and the
predictor, have a value, and that the sequence chooser has
& good strategy. Some properties of these good strategies
will be obtained, and it will be shown that there exists a
stationary good strategy: one in which the probability
that any specified finite sequence begins at time N is
independent of N.

No systematic method exists for solving prediction
games, even for the special case of predicting when a given
sequence & 1is not about to begin. A method of Milnor,
which ylelds the value for certain &, including all & of
length not exceeding 3, will be described below. It will
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be shown that, except in the trivial case in which all
coordinates of 5 are equal, no optimal prediction method

exists,

II. DESCRIPTION OF PREDICTION GAMES

Denote by S the set of all finite sequences s =
(el,---,eN) of O's and 1's, and by X the set of infinite
sequences i = (€1,€2,°"). We shall call a finite sequence
E= (él,---,em) of elements of S a partition if every x has
exactly one e, as an initial segment. Let E = (el,---,em)
be a partition, and let A = ||A(1,J)|| be an m x n matrix.
Associated with (E,A) 1s a prediction game, in which the
pure strategies for blayer I are sequenceé x tX, and in
which the pure strategies for player II are pairs y = (F,g),
where F = (fl""'fr) is a partition, and g is a function
associating with each f, an integer J = g(fk), l1<J3<n,
The payoff to I is

M(x:y) - A(ixg(fk)) ’

where i,k are the unique integers such that \rk,ei) is an
initial segment of x.

A mixed strategy for I is determined by specifying for
each 8 £S5 the probability P(s) of the set of all sequences
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X with 8 as initial segment. The function P satisfies

P(6) = 1, P(s) > 0, and P(s) = P(s,0) + P(s,1), where © is
the empty sequence, and any P satisfying thesé conditions
determines a mixed strategy for I. Player II has only a
countable set of pure strategles VysVosts so that a mixed
strategy for him is specified by a sequence Q = (xl,xz,o--),
A 20, > Ay = 1. Thus the payoff to I when he uses P

against Q is
M(P:Q) - Z )\iM(P,yi) ’
i

where

k,1

This game satisfies the hypotheses of theorems of Wald
[¥] and Karlin [3]:

(a) The strategy spaces are convex: For every Pl’ P2

and A, 0 < A < 1, there is a P with M(P,Q) = m(Pl,Q) +
(1 - )\)M(Pa,Q) for all Q, and similarly for II. (This is

obvious.)

(b) 1I's strategy space is separable: There is a

countable set Q,, QQ, «++ guch that for any Q there 18 a
subsequence Q! of Q such that M(P,Qﬁ)'—> M(P,Q) for all P.
(This condition is always satisfied when the set of II's

pure strategies 18 countable.)
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(¢) I's strategy space is compact: For any sequence

P there 1s a P and a subsequence PA of Pn such that

n?
M(Pﬁ,Q) —> M(P,Q) for all Q. (A subsequence of P can be
selected which conQerges for each 8 to some P, and con-—
vergence of M follows. )

According to the Wald-Karlin theorem, the game has a
value and I has a good strategy: there 18 a (uniqye)

number v and a P* such that
M(PﬁFQ) > v for all Q

and

inf sup M(P,Q) = v .
Q P

Theorem 1. If P is a good strategy and P(s) > O,

then P,, defined by Ps(t) = P(s,t)/P(s), is also a good

strategy.

Proof: Let (so,sl,---, t) be any partition with
8y = 8; let Yoo eVt be any strategies for I1I; and let y*
be the strategy for II which consists of waiting until some
8,  occurs and then using Yy on the sequence beginning imme—

diately thereafter: Ify, = (Fk,gk), where F, = (fkl""’fkrk)’

then y* = (F*,g*), where F* = {(sk’fkj)} and S*(Bk’fkj) - gk(fkj)‘
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Then for any optimal P we have

M(P,y*) = %; P(sk)M(PBk,yk) 2V,

so that

S R(s)m > v,
k

where
m_w= inf M(P_ ,y) .
k y sk’

Since every m, satisfies m <V, Wwe have m, = v for P(ak) > 0,

and every P, with P(sk) > 0 is a good strategy.
k

Theorem 2. P is & good strategy if and only if for

every 8 with P(8) > O we have

(1) S Ps(ei)A(i,J) > v for all J .
1

Proof: Clearly (1) holds if P is a good strategy since

P being also a good strategy, must yleld at least v against

8,
taking action J immediately. Conversely, for any y and P,

(2) M(P,y) = Zk: P(rk)EE;_‘ ZACRLICTLICRN




RM-1570
10-12-55

If (1) holds, each bracketed expression is at least v, 8o

that P 18 a good strategy.

Corollary: For any P, inf M(P,y) > inf 3_ Ps(ei)A(i,J).
y 8,J

Theorem 3. There is a good strategy P which 1is

stationary, i.e., which satisfies P(s) = P(1,s) + P(O,s)

for every s.

Proof: For any P, let TP be defined by TP(s) =
P(1,8) + P(0,8) = P(l)Pl(s) + P(O)Po(s), and let Qg =
(P+TP%---+TN—1P)/N. A subsequence of Q converges for
each s to a limit, say, P*. Since TQy - Q = (TP - P)/N,
we have TP* = P*; thus P* 1s stationary. If P 18 a goéd

strategy, so is8 TP, belng an average of the good strategies

&,

0 and Pl. Consequently each QN, being an average'of good

strategles, 18 good; and 8o 18 P*, being a limit of good

P

strategiles.

III. THE GAME (1,0)

The game (1,0) described in the introduction is the
particular prediction game with E = \1,0), (0), (1,1)) and

1
A= o .
0
We note that if the sequence is chosen by coin tossing,

l.e., P*(g) = o for sequences of length N, equation (2)
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ylelds M(P*,y) = 1/4 for all y, so that v > 1/4. A method
of Milnor ylelds v ¢ 1/4 as follows. If v is the value and
P is a good strategy, then according to Theorem 2 we have

P.(1,0) > v 1f P(8) > 0; 1.e.,
(3) Pg(1)By 1(0) > v 1f B(s) > 0.

Since v > O, P(s) > O implies P(s,1) > O. Let g = inf PB(l),
where the inf 1s over all s with P(s) > 0. From (3) we get

v < (1_3)Ps(l) and, choosing s_ for which Pg 1) - g,

n

v<e(l-g) .

Since the maximum value of g(l-—g) 1s 1/4, we obtain v < 1/4,
Note that the foregoing method gives no clue as to optimal

prediction methods. We show in the next section that no
optimal prediction method exists. For any € > O we shall

now describe an € —optimal prediction method. Assoclated

with every finite sequence z = (ﬂl,-",nT) of integers with

n, > O for 1 T, Dqp = O 18 a stop rule as followa: Stop

after any s'which for some 1 (a) ends in exactly n, zeros

and (b) contains exactly 1 —1 other zeros. For fixed

N

Ag > 050000 hy > 0, g A, = 1, we select a stop rule z by

1
choosing n,,n_, -+ independently with Pr(ni - ]) = AJ,

with T as the smallest 1 for which ny = 0. - Thus
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Q(z) = A ,ec,n .
nl nT

For any x, let us investigate M(x,Q), the probability
of stopping Jjust before an occurrence of (1,0) in the
sequence x when the stop rule z 1s selected according to
Q. Let E1 be the event: Stopping occurs between the

(1 -1)-st and i-th zeros of x. Further, let F, be the

i

event E, followed by the occurrence of (1,0) immediately

i
after stopping. Now

Pr(n, = a,~-1)
a, = Pr(F, [E,) = r 1 ,
Pr(n1 < ai)

where a, = No. of 1's between the (1 -1)-8t and i-th zeros

of x. Thus a, = O if a, = O or if a, > N+1l. For 1l < a;, < N,

1 1
a = 7‘1-1/("0""'”‘1) and for a; = N+1, a; = M. Let
(4)  max (X';%"""’ ) :%T%+x ) :vt%;x ) +-?¥+K )=
o™ 0 1 Mo N Mo N

Then

M(x,Q) = 3~ Pr(F,) = 3~ Pr(E, )Pr(F|E;) < w3~ Pr(E,) =w .
1 1 1

Thus we have reduced the problem to that of finding the
smallest w for which a solution of (4) with Ay > O exists.
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For any w > 1/4, a solution exists, for a solution of

Zi i zi—l = wzi

with initial conditions z = 0 1is

-1
z, = (2 cos ©)” 8in (n +1)0,

©@m=1, 0< 6 < 7/2. Choosing N so that

where 4w cos
£, - 0« zy < eee < By, 2y > Zynel? and defining xi -

2, — 2, 3, from 0 < 1 < N we obtain Ay = W(hy+ ceot

i 1+1)
for 0 <1 <N, N = sz+1/zN < W= w(>\0+---+)\N), 8o that
(4) 1s satisfied.

Thus, for any w > 1/4, the associated prediction scheme
guarantees a probability of w or less that the stopping
point is followed immediately by (1,0), against every
sequence x. Operationally, the prediction scheme may be
described as follows. For a given w > 1/4, define LY YRRRPY
as above. Select an integer ny according to the distribution
&ki} . If n, = O, stop initially, i.e., without observing
anything. If n; > 0, wait until either n, 1's or a O occurs.
If n; 1's occur initially, stop. If a O occurs before
n) 1's do, select a new n, according to {xi} and wait until
elther n, 1l's or a second O occurs. If the former, stop

according to {ki},etc.

immediately; if the latter, select n3
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For @ = 1/18, corresponding to w = ,2577, the distri—
bution {ki} has veen computed (N = 15) and turns out to

requirg an absurdly long expected waiting time against many i 1

sequences., For instance, we have xo = ,000013, so that,
against the sequence x = (0,0,°+*), the expected number of
observed digits is 1/x0~453000. hgain, we have A\ = . 000056,
so that, against the sequence x = (1,0,1,0,-++), the expected
number of digits 1is 2/()\0 + kl)*'27000; and, of course, when
we do stop, with probability w it will be after O so that
(1,0) does occur immediately thereafter.

.It would be desirable to exhiblt near—optimal prediction
schemes involving less observation. The best prediction
scheme requiring at most k observations is near—optimal for
large k, but 1t seems unlikely that any simple description

of this scheme can be given.

IV. NONEXISTENCE OF OPTIMAL PREDICTION METHODS

For any sequence 3 £ S, we consider the game in which
the predictor wins unless the unobserved sequence begins

with §.

Theorem 4, Except for the trivial case in which all

digits of & are alike, there 18 no optimum prediction

method for % .

A LA i ke Ykl it P BN s 0
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Proof: Say v is the value and P 18 a good strategy
for I, and let Q be any strategy for II. We may suppose
the 1nitial digit of & to be 1. Except in the trivial
case mentioned above, the following facts are easily

verified:
(a) O0<vl;

(v) P(aN) > O for all N, where s, = (1,1,---,1)

N
of length N ;

(¢) M(x*,Q) = O, where x* = (1,1,---) .

If kn = Prob of stopping after n observations using Q against
x*, choose N so that g A >1 -v. Then M(x,Q) < v against

any sequence x with initial segment 8N4k’ where k = length

of §; for II always wins againast such an x when he stops

after N or fewer observations, and N was chosen 8o that the
probabllity of this already exceeds 1 - v. However,

J M(x,Q)daP(x) > v, since P 1is an optimum strategy for I.

Since M(x,Q) < v on a set of sequenceé of positive P—probability
(the set of sequences with 8y 28 initial segment ), we must

have M(x,Q) > v for some x, so that Q cannot be optimal,

and the theorem is proved.

[
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