g

AN ANALOG OF THE MINIMAX THEOREM FOR
VECTOR PAYOFFS

DAvID BLACKWELL

Reprinted from Pacific Journal of Mathematics Vol. 6, No. 1,
1 95 6




e

AN ANALOG OF THE MINIMAX THEOREM FOR
VECTOR PAYOFFS

DAVID BLACKWELL

1. Introduction. The von Neumann minimax theorem [2] for finite
games asserts that for every 7 xs matrix M=|m(¢, j)| with real elements
there exist a number v and vectors

p=(p19 *°y pr)r q=(Q1, M qC)r D¢, QJZO! ZP:""“Z q4'=1
such that

>, pem(i, j)szg_‘. qsm(, )

for all ¢, 5. Thus in the (two-person, zero-sum) game with matrix M,
player I has a strategy insuring an expected gain of at least », and
player II has a strategy insuring an expected loss of at most », An
alternative statement, which follows from the von Neumann theorem
and an appropriate law of large numbers is that, for any >0, I can,
in a long series of plays of the game with matrix M, guarantee, with
probability approaching 1 as the number of plays becomes infinite, that
his average actual gain per play exceeds v—e and that II can similarly
restrict his average actual loss to v+e. These facts are assertions about
the extent to which each player can control the center of gravity of
the actual payoffs in a long series of plays. In this paper we investigate
the extent to which this center of gravity can be controlled by the
players for the case of matrices M whose elements m(z, §) are points
of N-space. Roughly, we seek to answer the following question. Given
a matrix M and a set S in N-space, can [ guarantee that the center of
gravity of the payoffs in a long series of plays is in or arbitrarily near
S, with probability approaching 1 as the number of plays becomes in-
finite? The question is formulated more precisely below, and a complete

solution is given in two cases: the case N=1 and the case of convex S.
Let

M=|m(, )|, Iisr, 155<s

be an rxs matrix, each element of which is a probability distribution
over a closed bounded convex set X in Euclidean N-space. By a
strategy for Player 1 is meant a sequence f={f,}, n=0, 1, 2, ... of
functions, where f, is defined on the set of n-tuples (x,, ---, x,), z,€ X
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and has values in the set P of vectors p=(p,, -++, p,) with p,=>0, 3 ip,=
1; f, is simply a point in P. A strategy g= {g,} for Player II is defined
similarly, except that the values of g, are in the set @ of vectors ¢g=
(g1, +++, ¢,) with ¢;=>0, >1¢;=1. The interpretation is that I, II select
4, j according to the distributions f,, g, respectively, and a point ;€ X
is selected according to the distribution m(, 7). The players are told
x,, after which they again select ¢, 7, this time according to the distri-
butions f,(z,), g.(x,), a point @, is chosen according to the m(s, j) cor-
responding to their second choices, they are told x, and select a third
i, j according to fi(xzy, @), g2, ), ete. Thus each pair (f, g) of
strategies, together with M, determines a sequence of (vector-valued)
random variables z;, z,, +---

Let S be any set in N-space. We shall say that S is approachable
with f* ¢n M, if for every >0 there is an N, such that, for every g,

Prob {8,22¢ for some n2=N,} <e,

where 8, denotes the distance of the point 3 P z,/n from S and «,, 2,
.+« are the variables determined by f*, g. We shall say that S is ez-
cludable with g* in M, if there exists d >0 such that for every >0
there is an N, such that, for every f,

Prob {8,22d for all n=N,} >1—¢,

where z,, @, --- are the variables determined by f, g*. We shall say
that S is approachable (excludable) in M, if there exists f* (¢*) such
that S is approachable with f* (excludable with ¢g*). Approachability
and excludability are clearly the same for S and its closure, so that we
may suppose S closed.

In terms of these concepts, von Neumann’s theorem has the follow-
ing analog.

For N=1, associated with every M are a number v and vectors p € P,
g€ Q such that the set S=={x2>t} is approachable for t<y with f:f,=p
and excludable for t™>v with g g.==q.

A slightly more complete result for N=1, characterizing all ap-
proachable and excludable sets S for a given M, is given in §4 below.

Obviously any superset of an approachable set is approachable, any
subset of an excludable set is excludable, and no set is both approach-
able and excludable. Another obvious fact which will be useful is that
if a closed set S is approachable in the sx» matrix M’, the transpose
of M, then any closed set T not intersecting S is excludable in M with
any strategy with which S is approachable in M’. Thus any sufficient
condition for approachability yields immediately a sufficient condition for
excludability. A sufficient condition for approachability is given in § 2.

It turns out that every convex S satisfies either this condition for
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approachability or the corresponding condition for excludability, enabling
us to .give in § 3 a complete solution for convex S. For non-convex S,
the problem is not solved except for N=1. An example of a set which
is neither approachable nor excludable in a given M is given in § 5, the
concepts of weak approachability and excludability are introduced, and
it is conjectured that every set is either weakly approachable or weakly
excludable.

2. A sufficient condition for approachability. If 2, y are distinct
points in N-space, H is the hyperplane through y perpendicular to the
line segment zy, and z is any point on H or on the opposite side of H
from z, then all points interior to the line segment 2z and sufficiently
near « are closer to ¥ than is 2. This fact is the basis for our sufficient
condition for approachability.

For any matrix M, denote by M the matrix whose elements (%, 5)
are the mean values of the distributions m(z, 7). For any pe P denote
by R(p) the convex hull of the s points 3, (¢, j). The sufficient
condition for approachability is given in the following theorem.

THEOREM 1. Let S be any closed set. If for every x¢ S there is a
p (=p(x)) € P such that the hyperplane through y, the closest point in S
to z, perpendicular to the line segment xy separates x from R(p), then
S 18 approachable with the strategy f:f., Wwhere

(p@) if n>0 and :v-—-(% ix‘)¢S

n

arbitrary if n=0 or z,€S.

Proof. Suppose the hypotheses satisfied, let I use the specified
strategy, let II use any strategy, and let z,, z,, -+ be the resulting
sequence of chance variables. For

a=(- $a)es,

n 1

let ¥, be the point of S closest to z,, and write U,=Y,—2Z,. Then, for
zZ. ¢S, '

( 1 ) E((um mn+l)_lxh ] xn)g(um yn)r

where E(zly) denotes the conditional expectation of x given y and («, v)
denotes the inner product of the vectors % and v.
Let 8, denote the squared distance from z, to S. If 3,>0, then

(2 ) 5n+1§_|57,.+1—y,.|’= |57n—2/;.|’+2(57n—2/m 57n+1_57n)+ |%n+l—a_jn|2'
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Since Zp.1—Z=(Tps1—2,)/(n+1), we have

(En—ym xn+1—yn) + (En'-ym yn'_in)
n+1 n+1

(3) (57,.—217.; —én+l_5n)=
and
(4) I5n+l-—5n|2§c/(n+l)gr

where ¢ depends only on the size of the bounded set X. From (2), using
(1), (8), and (4), we obtain, replacing = by n—1,

(5) E@ulas, -+, 8y )<(1= 2 )00+, O 8,0,
n n

Moreover

(6) 0<s. <a

and

(7) 18, = 8p <2
n

Thus it remains only to establish the following.

LeMMA. A sequence of chance variables &8, &, <+« satisfying (5),
(6), and (7) converges to zero with probability 1 at a rate depending only
on a, b, ¢, that 18, for every >0 there is an N, depending only on e,
a, b, ¢ such that for auy {08,} satisfying (5), (6), and (7), we have

Prob {6,=¢ for some n=>N,} <le.

Proof of Lemma. Let n, be any integer. There exists n,>n,,
depending only on n,, e, a, ¢ such that

Prob {8,=2¢/2 for n,<nn,} <ef2.

- To see this, define, for n>n,, a,=4, if §_>0 for n,<i<n, and a,=0

otherwise. Then a,<l¢/2 implies §,<e/2 for some ¢ with n,<i<n. Also
a,,<a and, for n>n,,

E(a"la"o' M an_l)g(l——z-)au_, +'c‘2 ,
n n
so that

Ba)<(1-2)E(@,-) +<.
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Thus E(cx,)—0 at a rate depending only on n,, a, ¢, and there is an =,
depending only on n,, ¢, a, ¢ for which E(«,) is so small that

Prob {a, <e/2} >1—(e/2) .

For every n, k with n<k we define variables z,, as follows. Un-
less 8,.,<¢/2 and 6,2¢/2, 2,,=0 for all k. If §,_,<e/2 and &,=¢/2 for
n<t<k, then z,,=d.. If 6,.,<e/2, 8,=2¢/2 for n<i<lk, and §,,<e/2,
then 2z,,+2.,=8,, for k=k,. If 8,=¢ for some n=n,, either ,=¢/2
for all » such that n,<n<n, or z,.>e¢ for some n>n,. The former
event has already been shown to have probability less than ¢/2; it
remains to show that the probability of the latter event can be made
less than &/2 by choosing n, sufficiently large.

Fix n>n, and write f,=2,,—2, x-1, £>n, f,=0. Then, if z, ,_,=¢/2

E@uleum o -+ Pa)S— 2 20p i+ S5- 2

for sufficiently large n, depending on ¢ and ¢, and |53,|<blk. If 2, ... <
e/2, B,=0 so that, in any case

(8) . ‘E(:Bklﬁn' ) ﬁk—l)g_'ze'gmax(lﬁk“ﬁm ""',B);_l),.

We now apply the following form of the strong law of large
numbers, recently proved by the writer [1].

THEOREM 2. If z,, 2,, -+ i3 a sequence of random wvariables such
that |2,|<1 and

E(zk|21’ <eey 2 ) —u max (lzknzl’ crey Zeoy), u>0,
then for all t,

Prob {z,+--- +2,>t for some Ic};’_(i_z?‘,,y .
u

. The variables 2, =(n/b)B,.,., satisfy the hypotheses of Theorem 2,
with u=(¢/2b), so that

Prob {z,,~2,,>t for some k>n}<r, r=(i_|__u )”b ,
u

For large n,, z,,</3¢/4, so that Zn=>¢ for some &k implies 2,,—z,,>¢/4.
Thus

Prob {z,,=2¢ for some k>n}<s",

Where s=r" g0 that
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Prob {z,,=>¢ for some n=>n,, k=>n} < :i‘, s®,
. "o

which will be less than /2 for n, sufficiently large. This completes the
proof.

3. The case of convex S.

THEOREM 8. Let T(q) denote the convex hull of the r points
Suasmii, 7). A closed convexr set S is approachable if and only if it
intersects every set T(q). If it fails to intersect T(q.), it is ewxcludable
with g : g.=q,.

Proof. Suppose S intersects every T'(q), let #, ¢ S, let y be the point
of S closest to x,, and consider the game with matrix A=|a(s, j)|, where
a(®, 5)=(y—=x,, Mm(i, 5)). Its value is

min max (y—x,, 3, ¢,;m(t, j))=min max (y —,, t)=>min (y —,,8).
Q J J e tET(Q €S

Consequently there is a p e P such that
(y—=o 3 pin(i, 5)Zmin (y—2o, 8)

for all j, that is,
(y—2o, MY —Z0s ¥)

for all re R(p). Since (y—x,, 2,)<(y—2,, y¥), the hyperplane (y—x,, )=
(y—=,, y) separates z, from R(p), completing the proof.

On the other hand, any T(g,) satisfies the hypotheses of Theorem 1
in M’ with f:f.=q. and so is approachable in M’ with this f. Con-
sequently, if S fails to intersect T(g,), S is excludable in M with

g gn=Go.
COROLLARY 1. The sets R(p) are approachable with f:f,=p.

COROLLARY 2. A closed convex set S is approachable if and only if
Sor every vector u,

o(u)= rr;isn (%, 9),

where v(u) is the value of the game with matriz |(u, m(@3, 7))| .

Proof of Corollary 2. If for some u, the inequality fails, then T(q,)
is disjoint from S, where ¢, is a good strategy for II in the game with
matrix |[(u,, M(%, 5))|, and conversely if any T(g,) is disjoint from S and
U, is a vector with
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max (%, t)< min (u,, 8),
teT(qo) 8ey

then
(%)< misn (uq, 8).

4. The case N=1.

THEOREM 4. For N=1, let v, v’ be the values of the games with
matrices M, M'. If v<v, a closed set S i3 approachable if it inter-
sects the closed interval v'v and excludable otherwise. If v'Z=v, a closed
set S 13 approachable if it containg the closed interval vv’ and excludable
otherwise.

Proof. Application of Corollary 2 to the closed interval AB, 4A<B
with u=+1 yields that AB is approachable if and only if v=>A4 and
—v'>~B, If vXv, these are simply the conditions that AB intersect
the closed interval v'v, and if v'>wv, they are the conditions that AB
contain vv’. Thus if v'<v every point in vv is approachable, so that
any set S intersecting v’v contains an approachable subset and is hence
approachable, while if v'>v, the interval »v’ and hence any set con-
taining it, is approachable. The last sentence, applied to M’, yields
that if »'<{v, the interval v»’v is approachable in M’, so that any closed
set not intersecting v'v is excludable in M, and that if »'>>», any point
in vv’ is approachable in M’ so that any closed set not containing wv’
is disjoint from a point approachable in M’ and consequently is exclud-
able in M. This completes the proof.

5. An example. We saw in the last section that for N=1 every
set is approachable or excludable. This is false for N=2 as is shown
by the following example. Let

r=8=2, m(]-» 1)=m(lr 2)=(0' 0)’ m(2, 1)=(11 O)v m(z, 2)=(11 1)’

let I, be the set of points (3, y), 0<y<%, let I, be the set of points
(1, ¥), Zy<l, and let S=I,\JI.. For every =, player I has a strategy
which guarantees that Z,,e S, as follows: f,;=(0, 1) for <z, so that
Zo=(u, 1); if u>%, f==(0, 1) for j=n, and if u<3, f,=(1, 0) for j=n.
Then for u2%, Z., € I,, and for u<3%, %, €I,. However S is not approach-
able, since the following strategy for II does permit Z, to remain near
either Il or Ii‘ Let 57n=(a’m bn)» if a'n__Z_.%’ g,.=(1, O) ’ if an<§" gn=(0’ 1)
Thus S is neither approachable nor excludable.

In the above example, S is weakly approachable, where a set S is
said to be weakly approachable in M if for every ¢>0 there is an N,
such that for every n=>N, there is a strategy f for I such that, for
all g,
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Prob {8, >¢} <,

where 4, is the distance from z, to S. Similarly S is weakly excludable
in M if there is a d>0 such that for every >0 there is an N, such
that for every n=N, there is a strategy ¢ for II such that, for all f,

Prob {3,<d} <e.

Clearly no S is both weakly approachable and weakly excludable, we
conjecture that every S is one or the other. In the above example, it
is not hard to show that a closed S is weakly approachable if it inter-
sects the graph of every function % defined for 0<{{<{1 which satisfies

R(0)=0, O=(A(t,)—A(t))/(t.—t)<1 for 0L8,<8,L1,

and is weakly excludable if there is such an % whose graph it fails to

intersect.
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