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Let x = (xq,X3,...) be an infinite sequence of Os and ls, initially unknown to you. On
day n = 1,2,... you observe h, = (Xy, . . ., X,-1), the first n — 1 terms of the sequence,
‘and must predict x,. What is a good prediction method, and how well can you do?

A prediction method p is just a function that associates with each finite sequence h of
Os and 1s a prediction p(h) =0 or 1, your prediction of the next x when you have
observed history h. Denote by w,(p,x) the proportion of correct predictions that
method p makes against sequence x in the first n days.

Looking for a p that does well against every x seems hopeless, since for every p there
is an x for which w, (p,x) = 0 for all n: p is always wrong against x. You can con-
struct x sequentially: choose x| so that p’s first prediction is wrong:

x; = 1 — p(empty sequence).
Then choose x, so that p’s second prediction, given X, is wrong:
X2 =1- p(xl)

etc.

But we can improve matters by allowing randomized predictions. For instance if we
toss a fair coin everyday, predicting 1 on heads, 0 on tails, the strong law of large
numbers guarantees that, for every x, the proportion of cormrect predictions will
approach 50% as n — oo, with probability 1. A random prediction method is a func-
tion p that specifies the probability of predicting 1 next, given the past x-history
Xy, - . - » Xp-; and the past predictions y;, ..., y,j. Thus p associates with each x
sequence a random sequence y = (y},Ys,...) of predictions such that

PGy, =Uyp- oo ¥n) = PXppe oo Xpels Yo -+ 5 Yo

For any x and p, define
r, = lify,=x, 1, = 0if y, #x,,
(H

u, = (xp 4+ +x)/n, vy = (p+-+ry/n,

so that u, is the proportion of 1s among Xy, . . . , Xq and vy is the proportion of correct
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- predictions in the first n days. It follows from a vector m1mmax theorem (Blackwell
[1956]) that there is a random prediction method pg such that, for every x,

(*) liminf (v, - max(u, 1 —u)) > 0 as.

N—pao
Thus, using pg, we know that, after many days, if the historical frequency of 1s is
70%, we shall have been right nearly 70% of the time, at least; if at a later time the

historical frequency of 1s has dropped to 20%, at that point we shall have been right
nearly 80% of the time, at least, ete.

Here is one such py. Given Xy, ..., X1y Y15 - + -+ » Ya-1» Po Will depend only on u,_,
and v,_,, as follows. Withu=u,_ |, v=v,,,

po = 0ifus<l2andv 2y,

po = lifu>122andv21-u,

po = (u-v)/(1=-2v)if v<min(u,1 - )

Here is a picture:
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For v < min(u, 1 — u), po is the u-coordinate of the intersection of the line through
(1/2,1/2) and (u,v) with the u-axis. The proof that py satisfies (*) for every x is a bit
messy. We shall refer to py as the minimax predictor.

If, instead of insisting on (*) for every x, we put a probability distribution A on the set
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X of sequences x, and look for a prediction method p that satisfies (*) except for a set
of xs having A probability zero, things become much easier. Then the most obvious

nonrandom prediction — predict the more probable result — works, and the proof is
simple.

Theorem 1. Ler x = (x4, x,,...) be any 0-1 stochastic process, and define
Yo = LifP(xp=1]x,...,%x9) 2 172,
= 0 otherwise.

Then, with r,, u,, v, as in (1), (*) holds.

Proof. Write Eo(-) for E(+|xy, ..., x,_1) and put z, = Eg(x,), t, = Eq (r, = x,,), SO
that t, = max(zn, 1 — z,) — 2, 2 0. With w,=r, —x, —t,, we have Eq(w,) =0, so
that E(wy|wy, ..., wypy) =0. Thus from a well-known strong law of large numbers
(see Stout [1974], Theorem 3.3.1)

Wo=(Wp+:---+w)/n = 0 as.
But W, = v, — u, ~ t,, where t, 2 0, so that
liminf(v, - u) > 0 as.

Similarly, with T, =Eqy(r, — (1 - x;)), we have T, =max(z,1-z)-(1-2)20
and, with W, =1, — (1 = x;) = T, we get W_ — 0, and

liminf(vy — (1 = uy)) 2 0 as.
Thus

liminf (v, -~ max (u,, 1 = u,)) 2 0 as.

We shall refer to the predictor y in the Theorem as the Bayes predictor.

The contrast between the minimax predictor py and the Bayes predictor y is strong.
The minimax predictor is not obvious, it is randomized, it satisfies (*) for every x, but
the proof is not easy. The Bayes predictor is extremely obvious, it is not randomized,
it satisfies (*) only for almost all x, and the proof is simple.

The random predictor pg, as defined, does not take advantage of apparent patterns in
the data. For instance against the sequence x = (010101....) the long run frequency of
correct predictions would be only 50%. We could however split our prediction prob-
lem into two separate problems: predicting the sequence xo of xs after a 0 and the
sequence x, of xs after a 1. For the above x we have xg = (1111...) and x; = (0000...)
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and pg, applied separately to x, and x,, predicts perfectly.

More generally, denote by S, the set of 2" sequences of Os and 1s of length n. For
each x and each se S, put x,(k) = the x-coordinate immediately after the kth
occurrence of s in x (if there is a kth occurrence). By applying py separately to each
Xs» We can take advantage of patterns in the xg: there is a random prediction method p,
such that for every x, and every s that occurs infinitely often in x, we have

(**) liminf(v,(s) — max(u,(s), 1 —u,(s)) 2 0 as.

What is the corresponding non-randomized predictor that satisfies (**) for almost all
x? The same as before: predict the more likely result — not separately for each s, but
overall, given the entire past (information never hurts). We formuate the result as

Theorem 2. Let x = (Xy,Xy,...), be any 0-1 stochastic process and let a = (ay, a,...) be
any process. Define

_ Lif Py = 1agxy, .0, X3y 2 172,
" 0 otherwise. |
Then, with 1., u,, v, as in (1), (*) holds.

¥n

To get the (**) result for the Bayes predictor apply Theorem 2 separately for each s,

with x = x(s) and the a process being the blocks of coordinates between the coordi-
nates of the x (s) process.

The proof of Theorem 2 is like that of Theorem 1, with Eg(-) defined as
E(-Ial,xl, e ey xn_la.n).
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