Minimax vs Bayes prediction

By

D. Blackwell

University of California, Berkeley

Let $x = (x_1, x_2,...)$ be an infinite sequence of 0s and 1s, initially unknown to you. On day n = 1,2,... you observe $h_n = (x_1, \ldots, x_{n-1})$, the first n - 1 terms of the sequence, and must predict x_n . What is a good prediction method, and how well can you do?

A prediction method p is just a function that associates with each finite sequence h of 0s and 1s a prediction p(h) = 0 or 1, your prediction of the next x when you have observed history h. Denote by $w_n(p, x)$ the proportion of correct predictions that method p makes against sequence x in the first n days.

Looking for a p that does well against every x seems hopeless, since for every p there is an x for which $w_n(p, x) = 0$ for all n: p is always wrong against x. You can construct x sequentially: choose x_1 so that p's first prediction is wrong:

$$x_1 = 1 - p(empty sequence).$$

Then choose x_2 so that p's second prediction, given x_1 , is wrong:

$$x_2 = 1 - p(x_1)$$

etc.

But we can improve matters by allowing randomized predictions. For instance if we toss a fair coin everyday, predicting 1 on heads, 0 on tails, the strong law of large numbers guarantees that, for every x, the proportion of correct predictions will approach 50% as $n \to \infty$, with probability 1. A random prediction method is a function p that specifies the probability of predicting 1 next, given the past x-history x_1, \ldots, x_{n-1} and the past predictions y_1, \ldots, y_{n-1} . Thus p associates with each x sequence a random sequence $y = (y_1, y_2, \ldots)$ of predictions such that

$$P(y_n = 1 | y_1, ..., y_{n-1}) = p(x_1, ..., x_{n-1}, y_1, ..., y_{n-1}).$$

For any x and p, define

(1)
$$r_n = 1 \text{ if } y_n = x_n, r_n = 0 \text{ if } y_n \neq x_n, \\ u_n = (x_1 + \dots + x_n) / n, v_n = (r_1 + \dots + r_n) / n,$$

so that u_n is the proportion of 1s among x_1, \ldots, x_n and v_n is the proportion of correct

predictions in the first n days. It follows from a vector minimax theorem (Blackwell [1956]) that there is a random prediction method p_0 such that, for every x,

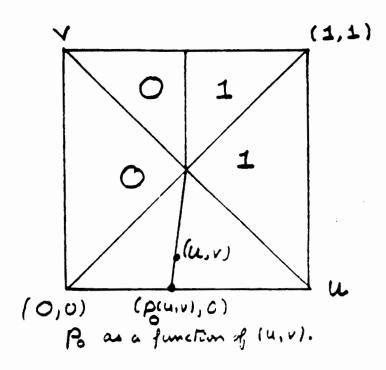
(*)
$$\lim_{n\to\infty}\inf(v_n-\max(u_n, 1-u_n)) \geq 0 \quad a.s.$$

Thus, using p_0 , we know that, after many days, if the historical frequency of 1s is 70%, we shall have been right nearly 70% of the time, at least; if at a later time the historical frequency of 1s has dropped to 20%, at that point we shall have been right nearly 80% of the time, at least, etc.

Here is one such p_0 . Given $x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-1}, p_0$ will depend only on u_{n-1} and v_{n-1} , as follows. With $u = u_{n-1}, v = v_{n-1}$,

$$p_0 = 0$$
 if $u \le 1/2$ and $v \ge u$,
 $p_0 = 1$ if $u > 1/2$ and $v \ge 1 - u$,
 $p_0 = (u - v)/(1 - 2v)$ if $v < min(u, 1 - u)$.

Here is a picture:



For v < min(u, 1 - u), p_0 is the u-coordinate of the intersection of the line through (1/2, 1/2) and (u,v) with the u-axis. The proof that p_0 satisfies (*) for every x is a bit messy. We shall refer to p_0 as the minimax predictor.

If, instead of insisting on (*) for every x, we put a probability distribution λ on the set

X of sequences x, and look for a prediction method p that satisfies (*) except for a set of xs having λ probability zero, things become much easier. Then the most obvious nonrandom prediction — predict the more probable result — works, and the proof is simple.

Theorem 1. Let $x = (x_1, x_2,...)$ be any 0-1 stochastic process, and define

$$y_n = 1 \text{ if } P(x_n = 1 | x_1, \dots, x_{n-1}) \ge 1/2,$$

= 0 otherwise.

Then, with r_n , u_n , v_n as in (1), (*) holds.

Proof. Write $E_0(\cdot)$ for $E(\cdot|x_1,\ldots,x_{n-1})$ and put $z_n = E_0(x_n)$, $t_n = E_0(r_n - x_n)$, so that $t_n = \max(z_n, 1 - z_n) - z_n \ge 0$. With $w_n = r_n - x_n - t_n$, we have $E_0(w_n) = 0$, so that $E(w_n|w_1,\ldots,w_{n-1}) = 0$. Thus from a well-known strong law of large numbers (see Stout [1974], Theorem 3.3.1)

$$\overline{w}_n = (w_1 + \cdots + w_n)/n \rightarrow 0$$
 a.s.

But $\overline{w}_n = v_n - u_n - \overline{t}_n$, where $\overline{t}_n \ge 0$, so that

$$\lim \inf(v_n - u_n) \ge 0$$
 a.s.

Similarly, with $T_n = E_0(r_n - (1 - x_n))$, we have $T_n = \max(z_n, 1 - z_n) - (1 - z_n) \ge 0$ and, with $W_n = r_n - (1 - x_n) - T_n$, we get $\overline{W}_n \to 0$, and

$$\liminf (v_n - (1 - u_n)) \ge 0 \text{ a.s.}$$

Thus

$$\lim\inf\left(v_n-\max\left(u_n,1-u_n\right)\right)\ \geq\ 0\ a.s.$$

We shall refer to the predictor y in the Theorem as the Bayes predictor.

The contrast between the minimax predictor p_0 and the Bayes predictor y is strong. The minimax predictor is not obvious, it is randomized, it satisfies (*) for every x, but the proof is not easy. The Bayes predictor is extremely obvious, it is not randomized, it satisfies (*) only for almost all x, and the proof is simple.

The random predictor p_0 , as defined, does not take advantage of apparent patterns in the data. For instance against the sequence x = (010101....) the long run frequency of correct predictions would be only 50%. We could however split our prediction problem into two separate problems: predicting the sequence x_0 of xs after a 0 and the sequence x_1 of xs after a 1. For the above x we have $x_0 = (1111...)$ and $x_1 = (0000...)$

and p_0 , applied separately to x_0 and x_1 , predicts perfectly.

More generally, denote by S_n the set of 2^n sequences of 0s and 1s of length n. For each x and each $s \in S_n$, put $x_s(k) =$ the x-coordinate immediately after the kth occurrence of s in x (if there is a kth occurrence). By applying p_0 separately to each x_s , we can take advantage of patterns in the x_s : there is a random prediction method p_n such that for every x, and every s that occurs infinitely often in x, we have

(**)
$$\liminf (v_n(s) - \max (u_n(s), 1 - u_n(s)) \ge 0$$
 a.s.

What is the corresponding non-randomized predictor that satisfies (**) for almost all x? The same as before: predict the more likely result — not separately for each s, but overall, given the entire past (information never hurts). We formulate the result as

Theorem 2. Let $x = (x_1, x_2,...)$, be any 0-1 stochastic process and let $a = (a_1, a_2,...)$ be any process. Define

$$y_n = \begin{cases} 1 & \text{if } P(x_n = 1 | a_1, x_1, \dots, x_{n-1} a_n) \ge 1/2, \\ 0 & \text{otherwise.} \end{cases}$$

Then, with r_n , u_n , v_n as in (1), (*) holds.

To get the (**) result for the Bayes predictor apply Theorem 2 separately for each s, with x = x(s) and the a process being the blocks of coordinates between the coordinates of the x(s) process.

The proof of Theorem 2 is like that of Theorem 1, with $E_0(\cdot)$ defined as $E(\cdot|a_1,x_1,\ldots,x_{n-1}a_n)$.

References

Blackwell, D. [1956]. An analog of the minimax theorem for vector payoffs. Pacific Jour. of Math. [6], pp. 1-8.

Stout, W.F. [1974]. Almost Sure Convergence. Academic Press.