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• Methods

– Review of Bayes ideas

– Shrinkage methods (ridge regression)

– Bayes factors: threshold |z| >
√

log n

– Calibration of selection methods

– Empirical Bayes (EBC) |z| >≈
√

log p/q

• Goals

– Characteristics, strengths, weaknesses

– Think about priors in preparation for next step
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Bayesian Estimation

Parameters as random variables

• Parameter θ drawn randomly from prior p(θ).

• Gather data Y conditional on some fixed θ.

• Combine data with prior to form posterior,

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )

• Drop marginal p(Y ) since constant given Y

p(θ|Y )︸ ︷︷ ︸
posterior

∝ p(Y |θ)︸ ︷︷ ︸
likelihood

× p(θ)︸︷︷︸
prior

Key Bayesian example Inference on normal mean µ

• Observe Y1, . . . , Yn|µ ∼ N(µ, σ2), with µ ∼ N(M, ν2 = c2σ2).

• Posterior is normal with (think about regression)

E(µ|Y ) = M +
ν2

ν2 + σ2/n
(Y −M)

=
(

n/σ2

n/σ2 + 1/ν2

)
Y +

(
1/ν2

n/σ2 + 1/ν2

)
M

• In special case of σ2 = ν2,“prior is worth one observation”:

E(µ|Y ) =
(

n

n + 1

)
Y +

(
1

n + 1

)
M
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θ

Y

E[Y|θ]=θ

Why Bayes Shrinkage Works

Steigler (1983) discussion of article by C. Morris in JASA.

Regression slope is

Cov(Y, θ)
Var Y

=
c2 σ2

(1 + c2)σ2

=
c2

1 + c2
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Ridge Regression

Collinearity

Originates in optimization problems where Hessian matrix in a

Newton procedure becomes ill-conditioned. Marquardt’s idea is

to perturb the diagonal, avoiding singular matrix.

Hoerl and Kennard (1970) apply to regression analysis, with

graphical aides like the ridge trace:

plot β̂ = (X ′X + λIp)−1X ′Y on λ

Bayes hierarchical model Lindley and Smith 1972

Data follows standard linear model, with a normal prior on

slopes:

Y ∼ N(Xβ, σ2In) , β ∼ N(0, c2σ2Ip) .

The posterior mean shrinks toward 0,

E(β|β̂) = (X ′X +
1
c2

Ip)−1X ′Y

= (Ip +
1
c2

(X ′X)−1)−1β̂

Shrinkage larger as c2 → 0.

Picture Collinear and orthogonal cases

Where is the variable selection?
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θ

Y

E[Y|θ]=θ

How to Obtain Selection from Bayes

Main point To do more than just shrink linearly to prior mean, we

have to get away from bivariate normal.

Three alternatives

• Spike-and-slab methods and BIC.

• Normal mixtures.

• Cauchy methods in information theory.
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Bayesian Model Selection

Conditioning on models

• Jeffreys (1935), recently Raftery, Kass, and others

• Which model is most likely given the data? Think in terms

of models M rather than parameters θ:

p(M |Y ) = p(Y |M)︸ ︷︷ ︸
?

p(M)/p(Y )

• Express p(Y |M) as average of the usual likelihood p(Y |M, θ)

over the parameter space,

p(M |Y ) =
∫

θ

p(Y |θ, M)︸ ︷︷ ︸
usual like

p(θ|M)dθ p(M)/p(Y )

Bayes factors

• Compare two models, M0 and M1.

• Posterior odds in favor of model M0 over alternative M1 are

p(M0|Y )
p(M1|Y )︸ ︷︷ ︸

Posterior odds =

=
(

p(Y |M0)
p(Y |M1)

)
︸ ︷︷ ︸

Bayes factor ×

p(M0)
p(M1)︸ ︷︷ ︸

Prior odds

• Since often p(M0) = p(M1) = 1/2, prior odds = 1 so that

Posterior odds = Bayes factor = K
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Using Bayes Factors

Bayes factor for comparing null model M0 to alternative M1

p(M0|Y )
p(M1|Y )︸ ︷︷ ︸

Posterior odds =

=
(

p(Y |M0)
p(Y |M1)

)
︸ ︷︷ ︸

Bayes factor K ×

1︸︷︷︸
Prior odds

What’s a big Bayes factor? Jeffreys’ Appendix (1961):

K > 1 ⇒ “Null hypothesis supported.”

K < 1 ⇒ “Not worth more than bare mention.”

K < 1/
√

10 ⇒ “Evidence against H0 substantial.”

K < 1/10 ⇒ “strong”

K < 1/103/2 ⇒ “very strong”

K < 1/100 ⇒ “Evidence against H0 decisive.”

Computing

p(Y |M) =
∫

θ

p(Y |θ, M) p(θ|M)dθ

can be very hard to evaluate, especially in high dimensions in

problems lacking a neat, closed-form solution.

Details in Kass and Raftery (1995).

Approximations?
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Approximating Bayes Factors: BIC

Goal Schwarz (1976), Annals of Statistics

Approximate p(Y |M) =
∫

θ
p(Y |θ, M) p(θ|M)dθ.

Approach Make the integral look like a normal integral.

Define g(θ) = log p(Y |θ, M)p(θ|M) so that

p(Y |M) =
∫

eg(θ)dθ

Quadratic expansion around max at θ̃ (post. mode):

g(θ) ≈ g(θ̃) + (θ − θ̃)′H(θ̃)(θ − θ̃)/2

≈ g(θ̃)− (θ − θ̃)′(Iθ)−1(θ − θ̃)/2

where H = [∂2g/∂θi∂θj ] and Iθ is information matrix.

Laplace’s method For θ ∈ Rp, posterior becomes

p(Y |M) ≈ exp(g(θ̃))
∫

θ

exp[(−1/2)(θ − θ̃)′(Iθ)−1(θ − θ̃)]dθ

= exp(g(θ̃)) (2π)p/2|Iθ|1/2

Log posterior approximately penalized log likelihood at MLE θ̂,

log P (Y |M) = log p(Y |θ̃, M) + log p(θ̃|M) + (1/2) log |Iθ|+ O(1)

= log p(Y |θ̂, M) + log p(θ̂|M)− (p/2) log n + O(1)

= log p(Y |θ̂, M)︸ ︷︷ ︸
log-likelihood at MLE

− (p/2) log n︸ ︷︷ ︸
penalty

+O(1)
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BIC Threshold in Orthogonal Regression

Orthogonal setup

Xj adds nβ̂2
j = σ2

(√
nβj

σ
+ Z

)2

to Regr SS

Coefficient threshold

• Add Xp+1 to a model with p coefficients?

• BIC criterion implies

Add Xp+1 ⇐⇒ penalized like increases

log p(Y |θ̂p+1)−
p + 1

2
log n > log p(Y |θ̂p)−

p

2
log n

which implies that the change in the residual SS must satisfy

RSSp −RSSp+1

2σ2
=

nβ̂2
p+1

2σ2
=

z2
p+1

2
>

log n

2

• Add Xp+1 when

|zp+1| >
√

log n ,

so that effective “α level” → 0 as n→∞.

Consistency of criterion

If there is a “true model” of dimension p, as n→∞ BIC will

identify this model w.p. 1. In contrast, AIC asymptotically

overfits since it tests with a fixed α level.
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Bayes Hypothesis Test

Problem

Test H0 : µ = 0 vs H1 : µ 6= 0 given Y1, . . . , Yn ∼ N(µ, σ2).

Pick the hypothesis with higher posterior odds.

Test of point null (Berger, 1985)

Under H0, µ = 0 and integration reduces to

p(H0|Y ) = p(Y |µ0 = 0)︸ ︷︷ ︸
N(0,σ2/n)

p(H0)/p(Y )

Under alternative H1 : µ ∼ N(0, σ2),

p(H1|Y ) =
(∫

µ

p(Y |µ)p(µ|H1)dµ

)
p(H1)/p(Y )

Bayes factor Assume p(H0) = p(H1) = 1
2 and σ2 = 1,

p(H0|y)
p(H1|y)

=
Y ∼ N(0, 1/n)

Y ∼ N(0, 1 + 1/n)

=

√
1 + 1/n

1/n

e−ny2/2

e−(n/(n+1))y2/2)

≈
√

n
e−ny2/2

e−y2/2
≈
√

n e−ny2/2

which is equal to one when

ny2 = log n or in z scores |z| =
√

log n
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Bayes Hypothesis Test: The Picture

Scale

Think on scale of z-score, so in effect the Bayes factor

p(H0|Y )
p(H1|Y )

=
N(0, σ2/n)

N(0, σ2(1 + 1/n))

is ≈ ratio of N(0, 1) to N(0, n).

Spike and slab With σ2 = 1 and n = 100

Thus, density of Y under H1 is incredibly diffuse relative to H0.

This leads to the notion of a “spike and slab” prior when ideas

are applied in estimation.
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Discussion of BIC

Bayes factor

• Posterior odds to compare one hypothesis to another.

• Requires a likelihood and various approximations.

Comparison to other criteria

Penalty Test Level α(n) z-statistic

BIC 1
2 log n Decreasing in n |z| >

√
log n

AIC 1 Fixed |z| >
√

2

RIC log p Decreasing in p |z| >
√

2 log p

⇒ BIC tends to pick very parsimonious models.

Consistency

Strong penalty leads to consistency for fixed θ as n→∞.

Important?

e.g., Is the time series AR(p) for any fixed order p?

Spike and slab prior for testimator

For p models, M1, . . . , Mp, with equal priors p(Mj) = 1/p

indexed by θ = (θ1, . . . , θp),

Bayes factors implies equal probability for 2p models with prior

p(θj) =

 1/2, θj = 0

c, θj 6= 0
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Criteria in McDonald’s Example

AIC

BIC
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Detour to Random Effects Model

Model Simplified version of variable selection problem.

Yj = θj + εj , εj ∼ N(0, σ2) , j = 1, . . . , p

or

Yj |θj ∼ N(θj , σ2) , θj ∼ N(0, ν2 = c2 σ2)

Decomposition of the marginal variance

Var Y = σ2 + ν2 = σ2(1 + c2)

so that c2 measures “signal strength”.

Examples

• Repeated measures (Yij , i = 1, . . . , nj , Yj ⇒ Y j)

• Center effects in a clinical trial

• Growth curves (longitudinal models)

Relationship to regression

• Parameters: θj ⇐⇒ Xj βj

• Residual SS: Sum of squares not fit,
∑

γj=0 Y 2
j

MLE Fits everything, so
θ̂j = Yj ⇒

∑
j E(θ̂j − θj)2 = pσ2
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Bayes Estimator for Random Effects

Model

Yj |θj ∼ N(θj , σ2) j = 1, . . . , p

θj ∼ N(0, ν2 = c2 σ2)

Posterior mean (given normality, c2)

E(θj |Y ) = Yj ×
(

1/σ2

1/σ2 + 1/ν2
=

c2

1 + c2

)
Risk of Bayes estimator∑

j

E(θj − E[θj |Y ])2 =
p

1/σ2 + 1/ν2

=
(

c2

1 + c2

)
pσ2

< pσ2 = Risk of MLE

Relative risk
E(θ − θ̂)2

E(θj − E[θj |Y ])2
= 1 +

1
c2

If c2 ≈ 0, Bayes estimator does much better... but what’s c2?

Approaches

Could put a prior on c2, or try to estimate from data...
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Shrink to Zero?

Model and estimator

Yj |θj ∼ N(θj , σ
2) θj ∼ N(0, c2 σ2)

E(θj |Y ) =
(

1− 1
1 + c2

)
Yj

Example

c2 = 1 ⇒ E(θj |Y ) =
Yj

2

How to shrink all the way to zero?

Revise model and use a mixture prior,

Yj |θj ∼ N(θj , σ2)

θj ∼ π N(0, c2 σ2) + (1− π) 10 ,

Where π denotes the probability of non-zero θj .

Bayes estimator?

Posterior mean E(θj |Yj) =?, but surely not zero.

Prior estimates?

Need π and c2.
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Alternative Strategy

Approach

Avoid direct evaluation of posterior mean E[θj |Yj ].

Indicator variables

Introduce indicators as used in regression

γ = (γ1, . . . , γp) , γj ∈ {0, 1} ,

and write the revised model as

Yj |θj ∼ N(θj , σ2)

γj ∼ Bernoulli(π)

where

θj ∼

 N(0, c2 σ2) γj = 1

= 0 γj = 0

Three-step process George & Foster, 1996

1. Estimate prior parameters c2 and π.

2. Maximize posterior over γ rather than find posterior mean,

necessitating the next step.

3. Shrink estimates identified by γ.
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Calibration of Selection Criteria

Revised model with mixture prior

Yj |θj ∼ N(θj , σ2) , θj ∼ π N(0, c2 σ2)︸ ︷︷ ︸
γj=1

+ (1− π) 10︸ ︷︷ ︸
γj=0

Calibration idea

• How do π and c2 affect choice of γj = 1?

• Result in a penalized likelihood, with previous penalties?

Posterior for γ Given c2, σ2, and π,

p(γ|Y ) ∝ p(γ)p(Y |γ)

∝ πq(1− π)p−q 1
σp

(
1

1 + c2

)q/2

exp− 1
2

( ∑q
j=1 Y 2

j

(1 + c2)σ2
+

∑p
j=q+1 Y 2

j

σ2

)

∝
(

π

1− π

)q (
1

1 + c2

)q/2

exp
(
−RSS

2σ2

c2

1 + c2

)
∝ exp

[
c2

1 + c2

(
RegrSS

2σ2
− qR(π, c2)

)]
where the penalty for each parameter to the log-likelihood is

R(π, c2) =
1 + c2

c2

(
log

1− π

π
+ 1

2 log(1 + c2)
)
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Calibration of Selection Criteria

Revised model with mixture prior

Yj |θj ∼ N(θj , σ2) , θj ∼ π N(0, c2 σ2) + (1− π) 10

Penalty

R(π, c2) =
1 + c2

c2

(
log

1− π

π
+ 1

2 log(1 + c2)
)

Matching terms

Maximizing the posterior gives:

π ≈ c2 Criterion Comments

1/2 3.92 AIC Lots of small coefs

1/2 n BIC

1/2 p2 RIC Few large coefs

But is the value π = 1
2 reasonable?

Insight

Each criterion ⇐⇒

 prob on number θj 6= 0

prior for nonzero coefficients
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Empirical Bayes for Random Effects

Model

Yj |θj ∼ N(θj , σ
2) θj ∼ N(0, c2 σ2)

Bayes estimator

E(θj |Y ) =
c2

1 + c2
Yj =

(
1− 1

1 + c2

)
Yj

Idea

Assume you know σ2 or have a good estimate.

Then estimate prior from marginal distribution

Yj ∼ N(0, (1 + c2)σ2) .

So define

ĉ2 =
s2

σ2
− 1 where s2 =

∑
Y 2

j

p

Almost James-Stein

Plug in estimator is

Ê(θj |Y ) =
(

1− 1
1 + ĉ2

)
Yj =

(
1− σ2

s2

)
Yj

James-Stein adjusts for fact that E1/ĉ2 6= 1/Eĉ2.
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Empirical Bayes Criterion

Model with mixture prior

Yj |θj ∼ N(θj , σ2) , θj ∼ π N(0, c2 σ2) + (1− π) 10

Step 1

Estimate for prior parameters via MLE for approximate

likelihood (no avg)

L∗(c2, π) = πq(1− π)p−q(1 + c2)q/2 exp(c2RegrSS/(2σ2(1 + c2))

ĉ2
γ =

(∑q
j=1 Y 2

j

qσ2
− 1

)
+

π̂γ = q/p

Clearly need large number of parameters. (large p)

Step 2

Iteratively identify nonzero θj as those maximizing posterior for

most recent set of estimates ĉ2 and π̂

max
γ

p(γ | Y ) ∝ p(Y | γ) p(γ)

Step 3

Shrink nonzero θj to compensate for maximization.

Simulations show that this step is essential.
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Properties of EBC

Maximized likelihood George & Foster 1996

Maximimum value of the approximate likelihood L∗ is

RegrSS

σ2
− q

(
1 + log

RegrSS

qσ2

)
− 2pH(q/p)

where the Boolean entropy function is

H(π) = −π log π − (1− π) log(1− π) ≥ 0 .

Adaptive penalty

Penalty depends on π̂ and estimated strength of signal in ĉ2.

Features

• Large RegrSS relative to q ⇒ BIC type behavior.

• Small π̂ = 1/p⇒ RIC behavior since

pH(1/p) ≈ log p
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Simulation of Predictive Risk

Conditions Normal with random effects setup X = In,

n = p = 1000. Full least squares scores 1000 in each case.

Weak signal c2 = 2

q 0 10 50 100 500 1000

Cp 572 577 599 627 845 1118

BIC 74.8 87.8 146 217 781 1488

RIC 2.9 21.0 93.3 183 899 1799

EBC 503 611 787 902 1000 999

EBCδ 20.3 61.7 474 872 1000 999

β̂ 1.1 19.9 91.8 168 501 667

Strong signal c2 = 100

q 0 10 50 100 500 1000

Cp 572 578 597 623 824 1072

BIC 75.4 88.7 143 213 771 1460

RIC 3.3 26.0 116 229 1142 2274

EBC 496 26.5 106 194 737 999

EBCδ 15.9 26.5 106 194 737 999

β̂ 1.1 26.4 106 193 731 990
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Discussion

Calibration

Model selection criteria correspond to priors on θi, with

typically many coefficients (p large):

AIC Prior variance four times σ2 ⇒ Lots of little θi

RIC Prior variance p2 times σ2 ⇒ Fewer, very large θi

Adaptive selection

• Tune selection criterion to problem at hand.

• With shrinkage, does better than OLS with any fixed

criterion.

Weakness of normal prior

• Cannot handle mixture of large and small nonzero θi

• Some effects are very significant (eg: age and osteoporosis)

• Others are more speculative (eg: hormonal factors)

• Mixing these “confuses” normal prior θi ∼ N(0, ν2)

Cauchy prior

• Tolerates mixture of large and small θj (Jeffreys, 1961)

• Not conjugate

• Useful in information theoretic context
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Empirical Bayes Estimators, Method 2

Full Bayes model

Yj |θj ∼ N(θj , σ2)

θj |γ ∼

 N(0, τ2 = c2 σ2) γj = 1

0 otherwise

γ ∼ πq(1− π)p−q, q = |γ|
π ∼ U [0, 1]

Conjugate priors lead to all the needed conditional distributions...

(π | γ, , θ, ν2, σ2, Y ) ∼ (π | γ) ∼ Beta(q + 1, p− q + 1)

ν2 | others ∼ Inverted gamma1

σ2 | others ∼ Inverted gamma2

(θj , γj) | others ∼ (Bernoulli, Normal)

Bayes probability

Bernoulli probability via likelihood ratio

P{γj = 1} =
π N(0, σ2 + ν2)[Yj ]

π N(0, σ2 + ν2)[Yj ] + (1− π) N(0, σ2)[Yj ]

Gibbs

Gibbs sampler avoids maximizing likelihood, but much

slooooooowwwwweeeeerrrrrr.
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Calibration in Regression

Goal

Think about various methods in a common setting, comparing

more deeply than just via a threshold.

Comparison

Method Threshold Prior for p Prior for β

Bayes factors (BIC)
√

log n Bi( 1
2 , p) Spike-and-slab

Predictive risk (AIC)
√

2 ? ?

Minimax risk (RIC)
√

2 log p ? ?

Bayesian variable selection George & Foster 1996

Put a prior on everything, particularly (γj = 1 implies fit βj)

p(γ), p(βγ |γ) ⇒ p(γ|Y )

In particular, consider beta prior for γ given some constant w

p(γ|w) ∝ wq(1− w)p−q , q = |γ| ,

and normal for β given γ, obs. variance σ2, and a constant c2:

p(β|γ, c, σ2) = N(0, c2σ2(X ′γXγ)−1) .
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Bayesian Calibration Results

Posterior for γ

p(γ|Y, σ, c, w) is increasing as a function of

RegrSSγ/σ2 − F (c2, w) |γ|

where

F (c2, w) =
1 + c2

c2

(
log(1 + c2) + 2 log

1− w

w

)
Match constants to known penalties

Since AIC, BIC, and RIC are selecting model based on

penalized likelihood (penalty factors 2, 1
2 log n, and log p)

calibrate by solving

F (c2, w) = 2 × penalty factor

Which solution?

Pick w = 1
2 and solve for c2?

If p is very large (or perhaps very small, do you expect half of

the coefficients to enter the model?

Next steps

• Put another prior on c2 and w?

• Choose c2 and w to maximize the likelihood L(c2, w|Y ).
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Empirical Bayes Criterion

Criterion

Pick the subset of p possible predictors γ which maximizes the

penalized likelihood (approximately)

SSγ

σ̂2
− q

(
1 + log

SSγ

qσ̂2

)
︸ ︷︷ ︸

BIC

+ 2 ((p− q) log(p− q) + q log q)︸ ︷︷ ︸
RIC

where q = |γ| chosen predictors and SSγ denotes the regression

sum-of-squares for this collection of predictors.

Empirical Bayes estimates

ĉγ =
(

SSγ

σ̂2q
− 1

)
+

, ŵγ = q/p

BIC component

Typically tr(X ′X) = O(n) so that for fixed γ,

1 + log
SSγ

qσ̂2
= O(log n)

RIC component

With q = 1, reduces to ≈ 2 log p.

Key property

Threshold varies with the complexity of model: Once q gets

large, decreasing threshold allows other variables into model.
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