HiGrad: Statistical Inference for Stochastic Approximation and Online Learning

Weijie Su
University of Pennsylvania
Collaborator

- Yuancheng Zhu (UPenn)
Learning by optimization

Sample Z_1, \ldots, Z_N, and $f(\theta, z)$ is cost function

Learning model by minimizing

$$\argmin_{\theta} \frac{1}{N} \sum_{n=1}^{N} f(\theta, Z_n)$$
Learning by optimization

Sample Z_1, \ldots, Z_N, and $f(\theta, z)$ is cost function

Learning model by minimizing

$$\arg\min_{\theta} \frac{1}{N} \sum_{n=1}^{N} f(\theta, Z_n)$$

- Maximum likelihood estimation (MLE). More generally, M-estimation
- Often no closed-form solution
- Need optimization
Gradient descent

- Start at some θ_0
- Iterate

\[\theta_j = \theta_{j-1} - \gamma_j \frac{\sum_{n=1}^{N} \nabla f(\theta_{j-1}, Z_n)}{N}, \]

where γ_j are step sizes

Dates back to Newton, Gauss, and Cauchy
Difficulty with gradient descent

Modern machine learning

Gradient descent often not feasible due to
Difficulty with gradient descent

Modern machine learning

- Data arrives in a stream

Gradient descent often not feasible due to

- Essentially an offline algorithm
Difficulty with gradient descent

Modern machine learning

- Data arrives in a stream
- Number of data points N is exceedingly large

Gradient descent often not feasible due to

- Essentially an offline algorithm
- Evaluating full gradient is computationally expensive
Aka incremental gradient descent

- Start at some θ_0
- Iterate

$$\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$$
Stochastic gradient descent (SGD)

Aka incremental gradient descent

▷ Start at some θ_0
▷ Iterate

$$\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$$

SGD resolved these challenges

• Online in nature
Stochastic gradient descent (SGD)

Aka incremental gradient descent

- Start at some θ_0
- Iterate

$$\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$$

SGD resolved these challenges

- Online in nature
- One pass over data
Stochastic gradient descent (SGD)

Aka incremental gradient descent

- Start at some θ_0
- Iterate

$$\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$$

SGD resolved these challenges

- Online in nature
- One pass over data
SGD in one line
SGD vs GD
SGD: past and now

Statistics
- Robbins & Monro (1951); Kiefer & Wolfowitz (1952); Robbins & Siegmund (1971); Ruppert (1988); Polyak & Juditsky (1992)

Machine learning and optimization
- Nesterov & Vial (2008); Nemirovski et al (2009); Bottou (2010); Bach and Moulines (2011); Duchi et al (2011); Diederik & Ba (2014)

Applications
- Deep learning, recommender systems, MCMC, Kalman filter, phase retrieval, networks, and many
Using SGD for prediction

Averaged SGD

An estimator of \(\theta^* := \arg\min E f(\theta, Z) \) is given by averaging

\[
\bar{\theta} = \frac{1}{N} \sum_{j=1}^{N} \theta_j
\]

Recall that \(\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j) \) for \(j = 1, \ldots, N \).
Using SGD for prediction

Averaged SGD

An estimator of $\theta^* := \text{argmin} \mathbb{E} f(\theta, Z)$ is given by averaging

$$\overline{\theta} = \frac{1}{N} \sum_{j=1}^{N} \theta_j$$

Recall that $\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$ for $j = 1, \ldots, N$.

Given a new instance $z = (x, y)$ with y unknown

Interested in $\mu_x(\overline{\theta})$

- Linear regression: $\mu_x(\overline{\theta}) = x' \overline{\theta}$
- Logistic regression: $\mu_x(\overline{\theta}) = \frac{e^{x' \overline{\theta}}}{1+e^{x' \overline{\theta}}}$
- Generalized linear models: $\mu_x(\overline{\theta}) = \mathbb{E}_{\overline{\theta}}(Y|X = x)$
How much can we trust SGD predictions?

We would observe a different $\mu_x(\bar{\theta})$ if

- Re-sample Z'_1, \ldots, Z'_N
- Sample with replacement N times from a finite population z_1, \ldots, z_m
How much can we trust SGD predictions?

We would observe a different $\mu_x(\bar{\theta})$ if

- Re-sample Z'_1, \ldots, Z'_N
- Sample with replacement N times from a finite population z_1, \ldots, z_m

Decision-making requires uncertainty quantification

- Should I invest in Bitcoin?
- How early to leave to catch a flight?
A real data example

Adult dataset on UCI repository

- 123 features
- \(Y = 1\) if an individual’s annual income exceeds $50,000
- 32,561 instances

Randomly pick 1,000 as a test set. Run SGD 500 times independently, each with 20 epochs and step sizes \(\gamma_j = 0.5j^{-0.55}\). Construct empirical confidence intervals with \(\alpha = 10\%\)

\(^1\)https://archive.ics.uci.edu/ml/datasets/Adult
High variability of SGD predictions
What is desired

Can we construct a confidence interval for $\mu_x^* := \mu_x(\theta^*)$?
What is desired

Can we construct a confidence interval for $\mu_\star := \mu_x(\theta^\star)$?

Remarks

- Bootstrap is computationally infeasible
- Most existing works concern bounding generalization errors or minimizing regrets (Shalev-Shwartz et al, 2011; Rakhlin et al, 2012)
- Chen et al (2016) proposed a batch-mean estimator of SGD covariance, and Fang et al (2017) proposed a perturbation-based resampling procedure
A new method: Hierarchical Incremental GRAdient Descent
This talk: HiGrad

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad

- Online in nature with same computational cost as vanilla SGD
This talk: HiGrad

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator
This talk: HiGrad

A new method: Hierarchical Incremental GRAdient Descent

Properties of HiGrad

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator
- Estimator (almost) as accurate as vanilla SGD
Preview of HiGrad

\[\theta = \frac{2}{3} \theta^0 + \frac{1}{3} \theta^1 + \mu \]

\[\mu_x = \mu_1 x + \mu_2 x = 0 \]

The 90% HiGrad confidence interval for \(\mu^* \) is

\[[\mu_1 x - t_{0.05} \sqrt{0.375} | \mu_2 x - t_{0.05} \sqrt{0.375}] \]

\[= [-0.025, 0.285] \]
• $\bar{\theta}_1 = \frac{1}{3} \bar{\theta}^0 + \frac{2}{3} \bar{\theta}^1$, $\bar{\theta}_2 = \frac{1}{3} \bar{\theta}^0 + \frac{2}{3} \bar{\theta}^2$
• $\bar{\theta}_1 = \frac{1}{3}\bar{\theta}^0 + \frac{2}{3}\bar{\theta}^1$, $\bar{\theta}_2 = \frac{1}{3}\bar{\theta}^0 + \frac{2}{3}\bar{\theta}^2$
The HiGrad estimator is
\[\mu_x = \mu_x(\bar{\theta}_1) = 0.15, \quad \mu_x = \mu_x(\bar{\theta}_2) = 0.11 \]
• $\bar{\theta}_1 = \frac{1}{3} \bar{\theta}^0 + \frac{2}{3} \bar{\theta}^1$, $\bar{\theta}_2 = \frac{1}{3} \bar{\theta}^0 + \frac{2}{3} \bar{\theta}^2$

• $\mu_x^1 := \mu_x(\bar{\theta}_1) = 0.15$, $\mu_x^2 := \mu_x(\bar{\theta}_2) = 0.11$

• HiGrad estimator is $\bar{\mu}_x = \frac{\mu_x^1 + \mu_x^2}{2} = 0.13$
Preview of HiGrad

- \(\bar{\theta}_1 = \frac{1}{3} \theta^0 + \frac{2}{3} \theta^1, \quad \bar{\theta}_2 = \frac{1}{3} \theta^0 + \frac{2}{3} \theta^2 \)
- \(\mu^1_x := \mu_x(\bar{\theta}_1) = 0.15, \quad \mu^2_x := \mu_x(\bar{\theta}_2) = 0.11 \)
- HiGrad estimator is \(\bar{\mu}_x = \frac{\mu^1_x + \mu^2_x}{2} = 0.13 \)
- The 90\% HiGrad confidence interval for \(\mu^*_x \) is

\[
\left[\bar{\mu}_x - t_{1,0.95} \sqrt{0.375} |\mu^1_x - \mu^2_x|, \quad \bar{\mu}_x + t_{1,0.95} \sqrt{0.375} |\mu^1_x - \mu^2_x| \right] = [-0.025, 0.285]
\]
Outline

1. Deriving HiGrad
2. Constructing Confidence Intervals
3. Configuring HiGrad
4. Empirical Performance
Problem statement

Minimizing convex f

$$\theta^* = \arg\min_{\theta} f(\theta) \equiv \mathbb{E} f(\theta, Z)$$

Observe i.i.d. Z_1, \ldots, Z_N and can evaluate unbiased noisy gradient $g(\theta; Z)$

$$\mathbb{E} g(\theta, Z) = \nabla f(\theta) \text{ for all } \theta$$

To be fulfilled

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator
- Estimator (almost) as accurate as vanilla SGD
The idea of contrasting and sharing

- Need more than one value μ_x to quantify variability: **contrasting**
The idea of contrasting and sharing

- Need more than one value μ_x to quantify variability: **contrasting**
- Need to share gradient information to elongate threads: **sharing**
The HiGrad tree

- $K + 1$ levels
- each k-level segment is of length n_k and is split into B_{k+1} segments

\[n_0 + B_1n_1 + B_1B_2n_2 + B_1B_2B_3n_3 + \cdots + B_1B_2\cdots B_Kn_K = N \]
The HiGrad tree

- \(K + 1 \) levels
- each \(k \)-level segment is of length \(n_k \) and is split into \(B_{k+1} \) segments

\[
n_0 + B_1n_1 + B_1B_2n_2 + B_1B_2B_3n_3 + \cdots + B_1B_2\cdots B_Kn_K = N
\]

An example of HiGrad tree: \(B_1 = 2, B_2 = 3, K = 2 \)
The HiGrad tree

- $K + 1$ levels
- each k-level segment is of length n_k and is split into B_{k+1} segments

$$n_0 + B_1 n_1 + B_1 B_2 n_2 + B_1 B_2 B_3 n_3 + \cdots + B_1 B_2 \cdots B_K n_K = N$$

An example of HiGrad tree: $B_1 = 2, B_2 = 3, K = 2$
The HiGrad tree

- $K + 1$ levels
- each k-level segment is of length n_k and is split into B_{k+1} segments

$$n_0 + B_1 n_1 + B_1 B_2 n_2 + B_1 B_2 B_3 n_3 + \cdots + B_1 B_2 \cdots B_K n_K = N$$

An example of HiGrad tree: $B_1 = 2$, $B_2 = 3$, $K = 2$
Iterate along HiGrad tree

Recall: noisy gradient $g(\theta, Z)$ unbiased for $\nabla f(\theta)$; partition $\{Z^s\}$ of $\{Z_1, \ldots, Z_N\}$; and $L_k := n_0 + \cdots + n_k$
Iterate along HiGrad tree

Recall: noisy gradient $g(\theta, Z)$ unbiased for $\nabla f(\theta)$; partition $\{Z^s\}$ of $\{Z_1, \ldots, Z_N\}$; and $L_k := n_0 + \cdots + n_k$

- Iterate along level 0 segment: $\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$ for $j = 1, \ldots, n_0$, starting from some θ_0
Iterate along HiGrad tree

Recall: noisy gradient $g(\theta, Z)$ unbiased for $\nabla f(\theta)$; partition $\{Z^s\}$ of $\{Z_1, \ldots, Z_N\}$; and $L_k := n_0 + \cdots + n_k$

- Iterate along level 0 segment: $\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_p)$ for $j = 1, \ldots, n_0$, starting from some θ_0

- Iterate along each level 1 segment $s = (b_1)$ for $1 \leq b_1 \leq B_1$

 $$\theta^s_j = \theta^s_{j-1} - \gamma_j + L_0 g(\theta^s_{j-1}, Z^s_j)$$

 for $j = 1, \ldots, n_1$, starting from θ_{n_0}
Iterate along HiGrad tree

Recall: noisy gradient $g(\theta, Z)$ unbiased for $\nabla f(\theta)$; partition $\{Z^s\}$ of $\{Z_1, \ldots, Z_N\}$; and $L_k := n_0 + \cdots + n_k$

- Iterate along level 0 segment: $\theta_j = \theta_{j-1} - \gamma_j \nabla f(\theta_{j-1}, Z_j)$ for $j = 1, \ldots, n_0$, starting from some θ_0

- Iterate along each level 1 segment $s = (b_1)$ for $1 \leq b_1 \leq B_1$

$$\theta^s_j = \theta^s_{j-1} - \gamma_j + L_0 g(\theta^s_{j-1}, Z^s_j)$$

for $j = 1, \ldots, n_1$, starting from θ_{n_0}

- Generally, for the segment $s = (b_1 \cdots b_k)$, iterate

$$\theta^s_j = \theta^s_{j-1} - \gamma_j + L_{k-1} g(\theta^s_{j-1}, Z^s_j)$$

for $j = 1, \ldots, n_k$, starting from $\theta^{(b_1 \cdots b_{k-1})}_{n_{k-1}}$
A second look at the HiGrad tree

An example of HiGrad tree: $B_1 = 2, B_2 = 3, K = 2$
A second look at the HiGrad tree

An example of HiGrad tree: $B_1 = 2$, $B_2 = 3$, $K = 2$

Fulfilled

- Online in nature with same computational cost as vanilla SGD
A second look at the HiGrad tree

An example of HiGrad tree: $B_1 = 2, B_2 = 3, K = 2$

Fulfilled

- Online in nature with same computational cost as vanilla SGD

Bonus

Easier to parallelize than vanilla SGD!
The HiGrad algorithm in action

Require: \(g(\cdot, \cdot), Z_1, \ldots, Z_N, (n_0, n_1, \ldots, n_K), (B_1, \ldots, B_K), (\gamma_1, \ldots, \gamma_{NK}), \theta_0 \)
\(\bar{\theta}^s = 0 \) for all segments \(s \)

function NodeTreeSGD(\(\theta_s \), \(s \))
\(\theta_0^s = \theta \)
\(k = \#s \)

for \(j = 1 \) to \(n_k \) do
 \(\theta_j^s \leftarrow \theta_{j-1}^s - \gamma_{L_k-1} g(\theta_{j-1}^s, Z_j^s) \)
 \(\bar{\theta}^s \leftarrow \bar{\theta}^s + \theta_j^s / n_k \)
end for

if \(k < K \) then
 for \(b_{k+1} = 1 \) to \(B_{k+1} \) do
 \(s^+ \leftarrow (s, b_{k+1}) \)
 execute NodeTreeSGD(\(\theta_{n_k}^s \), \(s^+ \))
 end for
end if

end function

execute NodeTreeSGD(\(\theta_0 \), \(\emptyset \))

output: \(\bar{\theta}^s \) for all segments \(s \)
Outline

1. Deriving HiGrad

2. Constructing Confidence Intervals

3. Configuring HiGrad

4. Empirical Performance
Estimate μ^*_{x} through each thread

Average over each segment $s = (b_1, \ldots, b_k)$

$$\bar{\theta}^s = \frac{1}{n_k} \sum_{j=1}^{n_k} \theta^s_j$$

Given weights w_0, w_1, \ldots, w_K that sum up to 1, weighted average along thread $t = (b_1, \ldots, b_K)$ is

$$\bar{\theta}_t = \sum_{k=0}^{K} w_k \bar{\theta}^{(b_1, \ldots, b_k)}$$
Estimate μ_x^* through each thread

Average over each segment $s = (b_1, \ldots, b_k)$

$$\bar{\theta}^s = \frac{1}{n_k} \sum_{j=1}^{n_k} \theta_j^s$$

Given weights w_0, w_1, \ldots, w_K that sum up to 1, weighted average along thread $t = (b_1, \ldots, b_K)$ is

$$\bar{\theta}_t = \sum_{k=0}^{K} w_k \bar{\theta}^{(b_1, \ldots, b_k)}$$

Estimator yielded by thread t

$$\mu_x^t := \mu_x(\bar{\theta}_t)$$
How to construct a confidence interval based on
\[T := B_1 B_2 \cdots B_K \] many such \(\mu_x^t \) estimates?
Assume normality

Denote by μ_x the T-dimensional vector consisting of all μ_x^t.

Normality of μ_x (to be proved soon)

$\sqrt{N}(\mu_x - \mu_x^* 1)$ converges weakly to normal distribution $\mathcal{N}(0, \Sigma)$ as $N \to \infty$.
Convert to simple linear regression

From $\mu_x \sim \mathcal{N}(\mu^*_x, \Sigma/N)$ we get

$$\Sigma^{-\frac{1}{2}} \mu_x \approx (\Sigma^{-\frac{1}{2}} 1) \mu^*_x + \tilde{z}, \quad \tilde{z} \sim \mathcal{N}(0, I/N)$$
Convert to simple linear regression

From $\mu_x \sim \mathcal{N}(\mu_x^* \mathbf{1}, \Sigma/N)$ we get

$$\Sigma^{-\frac{1}{2}} \mu_x \approx (\Sigma^{-\frac{1}{2}} \mathbf{1}) \mu_x^* + \tilde{z}, \quad \tilde{z} \sim \mathcal{N}(0, I/N)$$

Simple linear regression! Least-squares estimator of μ_x^* given as

$$\begin{align*}
(1' \Sigma^{-\frac{1}{2}} \Sigma^{-\frac{1}{2}} \mathbf{1})^{-1} 1' \Sigma^{-\frac{1}{2}} \Sigma^{-\frac{1}{2}} \mu_x &= (1' \Sigma^{-1} \mathbf{1})^{-1} 1' \Sigma^{-1} \mu_x \\
&= \frac{1}{T} \sum_{t \in T} \mu_t^x = \bar{\mu}_x
\end{align*}$$

HiGrad estimator

Just the sample mean $\bar{\mu}_x$
A t-based confidence interval

A pivot for μ_x

$$\frac{\bar{\mu}_x - \mu^*_x}{\text{SE}_x} \sim t_{T-1},$$

where the standard error is given as

$$\text{SE}_x = \sqrt{\frac{(\mu' - \mu^*1')\Sigma^{-1}(\mu - \mu^*1)}{T - 1}} \cdot \frac{\sqrt{1'\Sigma 1}}{T}$$
A t-based confidence interval

A pivot for μ^*_x

$$\frac{\bar{\mu}_x - \mu^*_x}{SE_x} \sim t_{T-1},$$

where the standard error is given as

$$SE_x = \sqrt{\frac{(\mu'_x - \bar{\mu}_x 1')\Sigma^{-1}(\mu_x - \bar{\mu}_x 1)}{T - 1}} \cdot \frac{\sqrt{1'\Sigma 1}}{T}$$

HiGrad confidence interval of coverage $1 - \alpha$

$$[\bar{\mu}_x - t_{T-1,1-\frac{\alpha}{2}} SE_x, \quad \bar{\mu}_x + t_{T-1,1-\frac{\alpha}{2}} SE_x]$$
Do we know the covariance Σ?
An extension of Ruppert–Polyak normality

Given a thread $t = (b_1, \ldots, b_K)$, denote by segments $s_k = (b_1, b_2, \ldots, b_k)$

Fact (informal)

$\sqrt{n_0}(\bar{\theta}^{s_0} - \theta^*)$, $\sqrt{n_1}(\bar{\theta}^{s_1} - \theta^*)$, \ldots, $\sqrt{n_K}(\bar{\theta}^{s_K} - \theta^*)$ converge to i.i.d. centered normal distributions
An extension of Ruppert–Polyak normality

Given a thread $\mathbf{t} = (b_1, \ldots, b_K)$, denote by segments $s_k = (b_1, b_2, \ldots, b_k)$

Fact (informal)

$\sqrt{n_0}(\theta^{s_0} - \theta^*)$, $\sqrt{n_1}(\theta^{s_1} - \theta^*)$, \ldots, $\sqrt{n_K}(\theta^{s_K} - \theta^*)$ converge to i.i.d. centered normal distributions

- Hessian $H = \nabla^2 f(\theta^*)$ and $V = \mathbb{E} [g(\theta^*, Z)g(\theta^*, Z)']$. Ruppert (1988), Polyak (1990), and Polyak and Juditsky (1992) prove

$$\sqrt{N}(\bar{\theta}_N - \theta^*) \Rightarrow \mathcal{N}(0, H^{-1}VH^{-1})$$
An extension of Ruppert–Polyak normality

Given a thread $t = (b_1, \ldots, b_K)$, denote by segments $s_k = (b_1, b_2, \ldots, b_k)$

Fact (informal)

$\sqrt{n_0}(\bar{\theta}^{s_0} - \theta^*)$, $\sqrt{n_1}(\bar{\theta}^{s_1} - \theta^*)$, \ldots, $\sqrt{n_K}(\bar{\theta}^{s_K} - \theta^*)$ converge to i.i.d. centered normal distributions

- Hessian $H = \nabla^2 f(\theta^*)$ and $V = E[g(\theta^*, Z)g(\theta^*, Z)']$. Ruppert (1988), Polyak (1990), and Polyak and Juditsky (1992) prove

 $$\sqrt{N}(\bar{\theta}_N - \theta^*) \Rightarrow \mathcal{N}(0, H^{-1}VH^{-1})$$

- Difficult to estimate sandwich covariance $H^{-1}VH^{-1}$ (Chen et al, 2016)
An extension of Ruppert–Polyak normality

Given a thread \(t = (b_1, \ldots, b_K) \), denote by segments \(s_k = (b_1, b_2, \ldots, b_k) \)

Fact (informal)
\[
\sqrt{n_0}(\bar{\theta}^{s_0} - \theta^*), \sqrt{n_1}(\bar{\theta}^{s_1} - \theta^*), \ldots, \sqrt{n_K}(\bar{\theta}^{s_K} - \theta^*) \text{ converge to i.i.d. centered normal distributions}
\]

- Hessian \(H = \nabla^2 f(\theta^*) \) and \(V = \mathbb{E}[g(\theta^*, Z)g(\theta^*, Z)'] \). Ruppert (1988), Polyak (1990), and Polyak and Juditsky (1992) prove
 \[
 \sqrt{N}(\bar{\theta}_N - \theta^*) \Rightarrow \mathcal{N}(0, H^{-1}VH^{-1})
 \]
- Difficult to estimate sandwich covariance \(H^{-1}VH^{-1} \) (Chen et al, 2016)
- *To know covariance of \(\{\mu_x(\bar{\theta}_t)\} \), really need to know \(H^{-1}VH^{-1} \)?*
Covariance determined by number of shared segments

Consider $\mu_x(\theta) = T(x)' \theta$ and observe

- $\sqrt{n_0}(\mu_x(\bar{\theta}^s_0) - \mu^*_x), \sqrt{n_1}(\mu_x(\bar{\theta}^s_1) - \mu^*_x), \ldots, \sqrt{n_K}(\mu_x(\bar{\theta}^s_K) - \mu^*_x)$ converge to i.i.d. centered univariate normal distributions

- $\mu^t_x - \mu^*_x = \mu_x(\bar{\theta}^t) - \mu^*_x = \sum_{k=0}^{K} w_k \left(\mu_x(\bar{\theta}^s_k) - \mu^*_x \right)$
Covariance determined by number of shared segments

Consider \(\mu_x(\theta) = T(x)' \theta \) and observe

- \(\sqrt{n_0}(\mu_x(\bar{\theta}^s_0) - \mu^*_x), \sqrt{n_1}(\mu_x(\bar{\theta}^s_1) - \mu^*_x), \ldots, \sqrt{n_K}(\mu_x(\bar{\theta}^s_K) - \mu^*_x) \) converge to i.i.d. centered univariate normal distributions

- \(\mu^t_x - \mu^*_x = \mu_x(\bar{\theta}_t) - \mu^*_x = \sum_{k=0}^{K} w_k \left(\mu_x(\bar{\theta}^s_k) - \mu^*_x \right) \)

Fact (informal)

For any two threads \(t \) and \(t' \) that agree at the first \(k \) segments and differ henceforth, we have

\[
\text{Cov} \left(\mu^t_x, \mu^{t'}_x \right) = (1 + o(1))\sigma^2 \sum_{i=0}^{k} \frac{w_i^2}{n_i}
\]
Specify Σ up to a multiplicative factor

If $\mu_x(\theta) = T(x)' \theta$, then for any two threads t and t' that agree only at the first k segments,

$$
\Sigma_{t, t'} = (1 + o(1))C \sum_{i=0}^{k} \frac{\omega_i^2 N}{n_i}
$$
Specify Σ up to a multiplicative factor

If $\mu_x(\theta) = T(x)' \theta$, then for any two threads t and t' that agree only at the first k segments,

$$
\Sigma_{t,t'} = (1 + o(1))C \sum_{i=0}^{k} \frac{\omega_i^2 N}{n_i}
$$

- Do we need to know C as well?
Specify Σ up to a multiplicative factor

If $\mu_x(\theta) = T(x)' \theta$, then for any two threads t and t' that agree only at the first k segments,

$$\Sigma_{t,t'} = (1 + o(1))C \sum_{i=0}^{k} \frac{\omega_i^2 N}{n_i}$$

- Do we need to know C as well?
- No! Standard error of $\bar{\mu}_x$ invariant under multiplying Σ by a scalar

$$SE_x = \sqrt{\frac{(\mu'_x - \bar{\mu}_x 1')}{T - 1} \Sigma^{-1} (\mu_x - \bar{\mu}_x 1) \Sigma^{-1}} \cdot \frac{1' \Sigma 1}{T}$$
Some remarks

- In generalized linear models, μ_x often takes the form $\mu_x(\theta) = \eta^{-1}(T(x)'\theta)$ for an increasing η. Construct confidence interval for $\eta(\mu_x)$ and then invert.

- For general nonlinear but smooth $\mu_x(\theta)$, use delta method.

- Need less than Ruppert–Polyak: remains to hold if $\sqrt{N}(\hat{\theta}_N - \theta^*)$ converges to some centered normal distribution.
Formal statement of theoretical results
Assumptions

1. **Local strong convexity.** $f(\theta) \equiv \mathbb{E} f(\theta, Z)$ convex, differentiable, with Lipschitz gradients. Hessian $\nabla^2 f(\theta)$ locally Lipschitz and positive-definite at θ^*

2. **Noise regularity.** $V(\theta) = \mathbb{E} [g(\theta, Z)g(\theta, Z)']$ Lipschitz and does not grow too fast. Noisy gradient $g(\theta, Z)$ has $2 + o(1)$ moment locally at θ^*
Examples satisfying assumptions

- **Linear regression**: \(f(\theta, z) = \frac{1}{2} (y - x^\top \theta)^2 \).
- **Logistic regression**: \(f(\theta, z) = -yx^\top \theta + \log \left(1 + e^{x^\top \theta} \right) \).
- **Penalized regression**: Add a ridge penalty \(\lambda \| \theta \|^2 \).
- **Huber regression**: \(f(\theta, z) = \rho_\lambda (y - x^\top \theta) \), where \(\rho_\lambda (a) = a^2 / 2 \) for \(|a| \leq \lambda \) and \(\rho_\lambda (a) = \lambda |a| - \lambda^2 / 2 \) otherwise.

Sufficient conditions

\(X \) in *generic* position, and \(\mathbb{E} \| X \|^{4+o(1)} < \infty \) and \(\mathbb{E} |Y|^{2+o(1)} \| X \|^{2+o(1)} < \infty \)
Main theoretical results

Theorem (S. and Zhu)

Assume K and B_1, \ldots, B_K are fixed, $n_k \propto N$ as $N \to \infty$, and μ_x has a nonzero derivative at θ^*. Taking $\gamma_j \propto j^{-\alpha}$ for $\alpha \in (0.5, 1)$ gives

$$
\frac{\bar{\mu}_x - \mu^*_x}{SE_x} \implies t_{T-1}
$$
Main theoretical results

Theorem (S. and Zhu)

Assume K and B_1, \ldots, B_K are fixed, $n_k \propto N$ as $N \to \infty$, and μ_x has a nonzero derivative at θ^*. Taking $\gamma_j \asymp j^{-\alpha}$ for $\alpha \in (0.5, 1)$ gives

$$
\frac{\bar{\mu}_x - \mu^*_x}{SE_x} \xrightarrow{} t_{T-1}
$$

Confidence intervals

$$
\lim_{N \to \infty} P\left(\mu^*_x \in \left[\bar{\mu}_x - t_{T-1,1-\frac{\alpha}{2}} SE_x, \, \bar{\mu}_x + t_{T-1,1-\frac{\alpha}{2}} SE_x \right] \right) = 1 - \alpha
$$
Main theoretical results

Theorem (S. and Zhu)

Assume K and B_1, \ldots, B_K are fixed, $n_k \propto N$ as $N \to \infty$, and μ_x has a nonzero derivative at θ^*. Taking $\gamma_j = j^{-\alpha}$ for $\alpha \in (0.5, 1)$ gives

$$\frac{\mu_x - \mu_x^*}{\text{SE}_x} \xrightarrow{} t_{T-1}$$

Confidence intervals

$$\lim_{N \to \infty} \mathbb{P} \left(\mu_x^* \in \left[\mu_x - t_{T-1,1-\frac{\alpha}{2}} \text{SE}_x, \quad \mu_x + t_{T-1,1-\frac{\alpha}{2}} \text{SE}_x \right] \right) = 1 - \alpha$$

Fulfilled

- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator
How accurate is the HiGrad estimator?
Optimal variance with optimal weights

By Cauchy–Schwarz

\[N \text{Var}(\bar{\mu}_x) = (1 + o(1))\sigma^2 \left[\sum_{k=0}^{K} n_k \prod_{i=1}^{k} B_i \right] \left[\sum_{k=0}^{K} \frac{w_k^2}{n_k \prod_{i=1}^{k} B_i} \right] \]

\[\geq (1 + o(1))\sigma^2 \left[\sum_{k=0}^{K} \sqrt{w_k^2} \right]^2 = (1 + o(1))\sigma^2, \]

with equality if

\[w_k^* = \frac{n_k \prod_{i=1}^{k} B_i}{N} \]
Optimal variance with optimal weights

By Cauchy–Schwarz

\[N \text{Var}(\bar{\mu}_x) = (1 + o(1))\sigma^2 \left[\sum_{k=0}^{K} n_k \prod_{i=1}^{k} B_i \right] \left[\sum_{k=0}^{K} \frac{w_k^2}{n_k \prod_{i=1}^{k} B_i} \right] \]

\[\geq (1 + o(1))\sigma^2 \left[\sum_{k=0}^{K} \sqrt{w_k^2} \right]^2 = (1 + o(1))\sigma^2, \]

with equality if

\[w_k^* = \frac{n_k \prod_{i=1}^{k} B_i}{N} \]

• Segments at an early level weighted less
Optimal variance with optimal weights

By Cauchy–Schwarz

\[N \operatorname{Var}(\bar{\mu}_x) = (1 + o(1))\sigma^2 \left[\sum_{k=0}^{K} n_k \prod_{i=1}^{k} B_i \right] \left[\sum_{k=0}^{K} \frac{w_k^2}{n_k \prod_{i=1}^{k} B_i} \right] \]

\[\geq (1 + o(1))\sigma^2 \left[\sum_{k=0}^{K} \sqrt{w_k^2} \right]^2 = (1 + o(1))\sigma^2, \]

with equality if

\[w_k^* = \frac{n_k \prod_{i=1}^{k} B_i}{N} \]

- Segments at an early level weighted less
- HiGrad estimator has the same asymptotic variance as vanilla SGD
Optimal variance with optimal weights

By Cauchy–Schwarz

\[
N \text{Var}(\bar{\mu}_x) = (1 + o(1))\sigma^2 \left[\sum_{k=0}^{K} n_k \prod_{i=1}^{k} B_i \right] \left[\sum_{k=0}^{K} \frac{w_k^2}{n_k \prod_{i=1}^{k} B_i} \right]
\]

\[
\geq (1 + o(1))\sigma^2 \left[\sum_{k=0}^{K} \sqrt{w_k^2} \right]^2 = (1 + o(1))\sigma^2,
\]

with equality if

\[
w_k^* = \frac{n_k \prod_{i=1}^{k} B_i}{N}
\]

- Segments at an early level weighted less
- HiGrad estimator has the same asymptotic variance as vanilla SGD
- Achieves Cramér–Rao lower bound when model specified
Prediction intervals for vanilla SGD

Theorem (S. and Zhu)

Run vanilla SGD on a fresh dataset of the same size, producing μ_{x}^{SGD}. Then, with optimal weights,

$$\lim_{N \to \infty} \mathbb{P} \left(\mu_{x}^{\text{SGD}} \in \left[\bar{\mu}_{x} - \sqrt{2t_{T-1,1-\alpha/2}} \text{SE}_{x}, \quad \bar{\mu}_{x} + \sqrt{2t_{T-1,1-\alpha/2}} \text{SE}_{x} \right] \right) = 1 - \alpha.$$

- μ_{x}^{SGD} can be replaced by the HiGrad estimator with the same structure
- Interpretable even under model misspecification
HiGrad enjoys three appreciable properties

Under certain assumptions, for example, f being locally strongly convex

Fulfilled

- Online in nature with same computational cost as vanilla SGD
 ✓
- A confidence interval for μ_x^* in addition to an estimator
 ✓
- Estimator (almost) as accurate as vanilla SGD
 ✓
Outline

1. Deriving HiGrad
2. Constructing Confidence Intervals
3. Configuring HiGrad
4. Empirical Performance
Which one?
Length of confidence intervals

Denote by $L_{CI} = 2t_{T-1,1-\frac{\alpha}{2}} \text{SE}_x$ the length of HiGrad confidence interval.

Proposition (S. and Zhu)

$$\sqrt{N}{\text{E}}L_{CI} \to \frac{2\sigma \sqrt{2} t_{T-1,1-\frac{\alpha}{2}} \Gamma \left(\frac{T}{2} \right)}{\sqrt{T-1} \Gamma \left(\frac{T-1}{2} \right)}$$
Length of confidence intervals

Denote by $L_{CI} = 2t_{T-1,1-\frac{\alpha}{2}} SE_x$ the length of HiGrad confidence interval

Proposition (S. and Zhu)

$$\sqrt{N\mathbb{E}L_{CI}} \to \frac{2\sigma \sqrt{2}t_{T-1,1-\frac{\alpha}{2}} \Gamma \left(\frac{T}{2}\right)}{\sqrt{T-1} \Gamma \left(\frac{T-1}{2}\right)}$$

- The function $\frac{t_{T-1,1-\frac{\alpha}{2}} \Gamma \left(\frac{T}{2}\right)}{\sqrt{T-1} \Gamma \left(\frac{T-1}{2}\right)}$ is decreasing in $T \geq 2$
Length of confidence intervals

Denote by \(L_{CI} = 2t_{T-1,1-\frac{\alpha}{2}} \text{SE}_x \) the length of HiGrad confidence interval

Proposition (S. and Zhu)

\[
\sqrt{N} \mathbb{E} L_{CI} \to \frac{2\sigma \sqrt{2} t_{T-1,1-\frac{\alpha}{2}} \Gamma \left(\frac{T}{2} \right)}{\sqrt{T-1} \Gamma \left(\frac{T-1}{2} \right)}
\]

- The function \(\frac{t_{T-1,1-\frac{\alpha}{2}} \Gamma \left(\frac{T}{2} \right)}{\sqrt{T-1} \Gamma \left(\frac{T-1}{2} \right)} \) is decreasing in \(T \geq 2 \)
- The more threads, the shorter the HiGrad confidence interval on average
Length of confidence intervals

Denote by $L_{CI} = 2t_{T-1,1-\frac{\alpha}{2}} SE_x$ the length of HiGrad confidence interval

Proposition (S. and Zhu)

$$\sqrt{N\mathbb{E}L_{CI}} \to \frac{2\sigma \sqrt{2} t_{T-1,1-\frac{\alpha}{2}} \Gamma \left(\frac{T}{2} \right)}{\sqrt{T-1} \Gamma \left(\frac{T-1}{2} \right)}$$

- The function $\frac{t_{T-1,1-\frac{\alpha}{2}} \Gamma \left(\frac{T}{2} \right)}{\sqrt{T-1} \Gamma \left(\frac{T-1}{2} \right)}$ is decreasing in $T \geq 2$

- The more threads, the shorter the HiGrad confidence interval on average

- More contrasting leads to shorter confidence interval
Really want to set $T = 1000$?
\(T = 4 \) is sufficient

![Plot of \(\frac{t_{T-1,0.975} \Gamma(T/2)}{\sqrt{T-1} \Gamma(T/2 - 0.5)} \)]

- Too many threads result in inaccurate normality (unless \(N \) is huge)
- Large \(T \) leads to much *contrasting* and little *sharing*
How to choose \((n_0, \ldots, n_K)\)?

\[
n_0 + B_1n_1 + B_1B_2n_2 + B_1B_2B_3n_3 + \cdots + B_1B_2\cdots B_Kn_K = N
\]

Length of each thread

\[
L_K := n_0 + n_1 + \cdots + n_K
\]
How to choose \((n_0, \ldots, n_K)\)?

\[
n_0 + B_1n_1 + B_1B_2n_2 + B_1B_2B_3n_3 + \cdots + B_1B_2\cdots B_Kn_K = N
\]

Length of each thread

\[
L_K := n_0 + n_1 + \cdots + n_K
\]

- Sharing: want a larger \(L_K\) by setting \(n_0 > n_1 > \cdots > n_K\)
How to choose \((n_0, \ldots, n_K)\)?

\[n_0 + B_1 n_1 + B_1 B_2 n_2 + B_1 B_2 B_3 n_3 + \cdots + B_1 B_2 \cdots B_K n_K = N \]

Length of each thread

\[L_K := n_0 + n_1 + \cdots + n_K \]

- **Sharing**: want a larger \(L_K\) by setting \(n_0 > n_1 > \cdots > n_K\)
- **Contrasting**: want \(n_0 < n_1 < \cdots < n_K\)
Outline

1. Deriving HiGrad
2. Constructing Confidence Intervals
3. Configuring HiGrad
4. Empirical Performance
General simulation setup

X generated as i.i.d. $\mathcal{N}(0, 1)$ and $Z = (X, Y) \in \mathbb{R}^d \times \mathbb{R}$. Set $N = 10^6$ and use $\gamma_j = 0.5j^{-0.55}$

- Linear regression $Y \sim \mathcal{N}(\mu_X(\theta^*), 1)$, where $\mu_x(\theta) = x' \theta$
- Logistic regression $Y \sim \text{Bernoulli}(\mu_X(\theta^*))$, where

$$\mu_x(\theta) = \frac{e^{x' \theta}}{1 + e^{x' \theta}}$$

Criteria

- Accuracy: $\|\bar{\theta} - \theta^*\|^2$, where $\bar{\theta}$ averaged over T threads
- Coverage probability and length of confidence interval
Accuracy

Dimension $d = 50$. MSE $\|\bar{\theta} - \theta^*\|^2$ normalized by that of vanilla SGD

- **null case** where $\theta_1 = \cdots = \theta_{50} = 0$
- **dense case** where $\theta_1 = \cdots = \theta_{50} = \frac{1}{\sqrt{50}}$
- **sparse case** where $\theta_1 = \cdots = \theta_5 = \frac{1}{\sqrt{5}}, \theta_6 = \cdots = \theta_{50} = 0$
Accuracy

Linear regression, null

Linear regression, sparse

Linear regression, dense

Logistic regression, null

Logistic regression, sparse

Logistic regression, dense
Coverage and CI length

HiGrad configurations

- $K = 1$, then $n_1 = n_0 = r = 1$;
- $K = 2$, then $n_1/n_0 = n_2/n_1 = r \in \{0.75, 1, 1.25, 1.5\}$

Set $\theta_i^* = (i - 1)/d$ for $i = 1, \ldots, d$ and $\alpha = 5\%$. Use measure

$$\frac{1}{20} \sum_{i=1}^{20} 1(\mu_{x_i}(\theta^*) \in \text{CI}_{x_i})$$
Linear regression: \(d = 20 \)

0.956	1, 4, 1	0.0851
0.938	1, 8, 1	0.0683
0.9185	1, 12, 1	0.0653
0.887	1, 16, 1	0.0637
0.8488	1, 20, 1	0.0637
0.9425	2, 2, 1	0.0801
0.9472	2, 2, 1.25	0.0811
0.9452	2, 2, 1.5	0.0828
0.9448	2, 2, 2	0.0815
0.924	3, 2, 1	0.061
0.9318	3, 2, 1.25	0.0614
0.935	3, 2, 1.5	0.062
0.9378	3, 2, 2	0.0633
0.925	2, 3, 1	0.0605
0.9185	2, 3, 1.25	0.0606
0.9245	2, 3, 1.5	0.0618
0.9348	2, 3, 2	0.0621
Linear regression: $d = 100$

<table>
<thead>
<tr>
<th>0.9472</th>
<th>0.9478</th>
<th>0.9308</th>
<th>0.92</th>
<th>0.9125</th>
<th>0.9312</th>
<th>0.9338</th>
<th>0.9358</th>
<th>0.9302</th>
<th>0.9</th>
<th>0.9065</th>
<th>0.9148</th>
<th>0.917</th>
<th>0.894</th>
<th>0.8992</th>
<th>0.897</th>
<th>0.9115</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1, 4, 1</td>
<td></td>
<td>0.2403</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 8, 1</td>
<td></td>
<td>0.2197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 12, 1</td>
<td></td>
<td>0.2312</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 16, 1</td>
<td></td>
<td>0.2495</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1, 20, 1</td>
<td></td>
<td>0.2649</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 2, 1</td>
<td></td>
<td>0.1917</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 2, 1.25</td>
<td></td>
<td>0.1927</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 2, 1.5</td>
<td></td>
<td>0.1946</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 2, 2</td>
<td></td>
<td>0.1972</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 2, 1</td>
<td></td>
<td>0.1412</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 2, 1.25</td>
<td></td>
<td>0.1428</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 2, 1.5</td>
<td></td>
<td>0.1453</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, 2, 2</td>
<td></td>
<td>0.1489</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 3, 1</td>
<td></td>
<td>0.1457</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 3, 1.25</td>
<td></td>
<td>0.1466</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 3, 1.5</td>
<td></td>
<td>0.1491</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2, 3, 2</td>
<td></td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>
A real data example: setup

From the 1994 census data based on UCI repository. Y indicates if an individual’s annual income exceeds $50,000

- 123 features
- 32,561 instances
- Randomly pick 1,000 as a test set

Use $N = 10^6$, $\alpha = 10\%$, and $\gamma_j = 0.5 j^{-0.55}$. Run HiGrad for $L = 500$ times. Use measure

$$\text{coverage}_i = \frac{1}{L(L-1)} \sum_{\ell_1} \sum_{\ell_2 \neq \ell_1} 1 (\hat{p}_{i\ell_1} \in \text{PI}_{i\ell_2})$$
A real data example: histogram
Comparisons of HiGrad configurations

<table>
<thead>
<tr>
<th>Configurations</th>
<th>Accuracy</th>
<th>Coverage</th>
<th>CI length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>⭐⭐⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐⭐⭐</td>
<td>⭐⭐⭐⭐⭐⭐⭐</td>
</tr>
</tbody>
</table>

Note: The table contains ratings for accuracy, coverage, and CI length, represented by stars. The ratings vary from 1 to 5 stars, indicating different levels of performance.
Default HiGrad parameters

HiGrad R package default values

\[K = 2, B_1 = 2, B_2 = 2, n_0 = n_1 = n_2 = \frac{N}{7} \]
Concluding Remarks
Straightforward extensions

- **Flexible tree structures**
 HiGrad tree can be asymmetric

- **N unknown**
 Grow the tree assuming a lower bound on N

- **Burn-in**
 Get a better initial point

- **A criterion for stopping**
 Need to incorporate selective inference

- **Mini-batch sizes**
 Evaluate (less) noisy gradient

\[
\bar{g}(\theta, Z_{1:m}) = \frac{1}{m} \sum_{i=1}^{m} g(\theta, Z_i)
\]
Future extensions

Improving statistical properties

- Finite-sample guarantee
 - Better coverage probability

- Extend Ruppert-Polyak to high dimensions
- Number of unknown variables growing
- New template for online learning
- Adaptive step sizes and pre-conditioned SGD
- AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)
- General convex optimization and non-convex problems
 - SVM, regularized GLM, and deep learning
Future extensions

Improving statistical properties

- Finite-sample guarantee
 - Better coverage probability

- Extend Ruppert-Polyak to high dimensions
 - Number of unknown variables growing
Future extensions

Improving statistical properties

▶ Finite-sample guarantee
 • Better coverage probability

▶ Extend Ruppert-Polyak to high dimensions
 • Number of unknown variables growing

A new template for online learning

▶ Adaptive step sizes and pre-conditioned SGD
 • AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)
Future extensions

Improving statistical properties

- Finite-sample guarantee
 - Better coverage probability

- Extend Ruppert-Polyak to high dimensions
 - Number of unknown variables growing

A new template for online learning

- Adaptive step sizes and pre-conditioned SGD
 - AdaGrad (Duchi et al, 2011) and Adam (Diederik & Ba, 2014)

- General convex optimization and non-convex problems
 - SVM, regularized GLM, and deep learning
Take-home messages

Idea

Contrasting and sharing through hierarchical splitting
Take-home messages

Idea
Contrasting and sharing through hierarchical splitting

Properties (local strong convexity)
- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_*^x in addition to an estimator
- Estimator (almost) as accurate as vanilla SGD
Take-home messages

Idea
Contrasting and sharing through hierarchical splitting

Properties (local strong convexity)
- Online in nature with same computational cost as vanilla SGD
- A confidence interval for μ_x^* in addition to an estimator
- Estimator (almost) as accurate as vanilla SGD

Bonus
Easier to parallelize than vanilla SGD!
Thanks!

- **Reference.** *Statistical Inference for Stochastic Approximation and Online Learning via Hierarchical Incremental Gradient Descent*, Weijie Su and Yuancheng Zhu, coming soon

- **Software.** R package HiGrad, coming soon