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Abstract

Covariance function plays a critical role in functional and longitudinal data analysis. In this

paper, we consider nonparametric covariance function estimation using a reproducing kernel

Hilbert space framework. A regularization method is introduced through a careful characteriza-

tion of the function space in which a covariance function resides. It is shown that the procedure

enjoys desirable theoretical and numerical properties. In particular, even though the covariance

function is bivariate, the rates of convergence attained by the regularization method are very

similar to those typically achieved for estimating univariate functions. Our results generalize and

improve some of the known results in the literature both for estimating the covariance function

and for estimating the functional principal components. The procedure is easy to implement

and its numerical performance is investigated using both simulated and real data. In particular

our method is illustrated in an analysis of a longitudinal CD4 count data from an HIV study.
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1 Introduction

Covariance function plays a critical role in functional and longitudinal data analysis. Important

examples include functional principal component analysis, functional linear regression, and func-

tional discriminant analysis. (see, e.g., Diggle et al., 2002; Ramsay and Silverman, 2002; 2005;

Ferraty and Vieu, 2006). Covariance function summarizes the dependency of observations at differ-

ent locations and characterizes many of the primary properties, such as smoothness and regularity,

of the sample path (see, e.g., Stein, 1999). It is of significant interest to estimate the covariance

function based on a random sample.

In the ideal setting where the whole random functions are observed in the continuum with-

out measurement errors, it is known that under mild regularity conditions the sample covariance

function converges to the population covariance function at the usual parametric rate, in terms of

integrated squared error (see, e.g., Bosq, 2000). However, the sample covariance function is only

of limited practical interest. In many applications such as longitudinal studies, it is only possible

to observe each curve at discrete sampling locations and with measurement errors. In this paper,

we study covariance function estimation in such a setting.

Let X(·) be a second-order stochastic process defined over a compact domain T ⊂ R, e.g.,

T = [0, 1]. Its covariance function is defined as

C0(s, t) = E ([X(s)− E(X(s))][X(t)− E(X(t))]) , ∀s, t ∈ T . (1)

Let {X1, X2, . . . , Xn} be a collection of independent realizations of X. Suppose that we observe

the random functions Xi at discrete points with measurement errors,

Yij = Xi(Tij) + εij , j = 1, . . . , m; i = 1, . . . , n, (2)

where the sampling locations Tij are independently drawn from a common distribution on T ,

and εij are independent and identically distributed measurement errors with mean zero and finite

variance σ2
0. In addition, the random functions X, sampling locations T , and measurement errors

ε are mutually independent. Such a model is commonly adopted and suitable for a large number

of applications in functional and longitudinal data analysis (see, e.g., Shi, Weiss and Taylor, 1996;

Staniswalis and Lee, 1998; James and Hastie, 2001; Diggle et al., 2002; Müller, 2005; Ramsay and

Silverman, 2005). The requirement that the same number of observations are taken from different

functions is not essential and only in place for ease of presentation and better illustration of the

interplay of the number of curves and sampling frequency on estimating the covariance function.

More general sampling schemes will be discussed in Section 6.
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A number of nonparametric approaches have been introduced to estimate the covariance func-

tion based on model (2). See James, Hastie and Sugar (2000), Rice and Wu (2001), Yao, Müller

and Wang (2005), Hall, Müller and Wang (2006), Paul and Peng (2009) among others. A two-step

procedure is routinely taken in practice, where each curve is first estimated through smoothing and

the covariance function C0 is then estimated by the sample covariance function of the smoothed

curves (see, e.g., Ramsay and Silverman, 2002). Despite its popularity, there is relatively little

theoretical guidance as to how it performs. Hall, Müller and Wang (2006) considered covariance

function estimation assuming that the sample path of X is twice differentiable and the curves are

either densely sampled with m À n1/4+δ for some δ > 0 or sparsely sampled with m fixed. It was

shown that when m À n1/4+δ, the two-step procedure can estimate C0 as well as if the whole curves

are observed, i.e., at the rate of 1/n in terms of integrated squared error. Alternatively, one could

treat the problem of estimating C0 as a bivariate smoothing task. In the case where m is held fixed

as the number of curves n increases, Hall, Müller and Wang (2006) show that C0 can be estimated

by a local polynomial estimator at the rate of n−2/3, the usual rate for bivariate smoothing. These

results appear to suggest that the different techniques should be employed depending on the sam-

pling frequency with the two-step procedure preferable in the densely sampled case, and the other

approach more appropriate in the sparsely sampled case where m is finite. It also remains unclear

what happens in more general setting where the random functions are of different smoothness with

the number of sampling points on each curve possibly growing slowly with n.

The gap between the requirement on sampling frequencies leaves us in an uncomfortable situa-

tion to choose between these two methods in practice. It is therefore of great practical importance

to address this dilemma and develop a more generally applicable and theoretically justifiable ap-

proach that can be used under different sampling frequencies. The main goal of this paper is to

offer such a solution in a more general setting using a reproducing kernel Hilbert space (RKHS)

framework. The proposed method is motivated by a careful examination of the function space in

which the covariance function C0 resides. By assuming that the sample path of X belongs to an

RKHS, we show that C0 necessarily comes from a tensor product space naturally connected with

the differentiability of the sample path of X. This observation reveals the distinction between the

covariance function estimation problem and the conventional bivariate smoothing problem as the

parameter space is no longer the usual Sobolev type spaces. To take advantage of this special fea-

ture, a novel method of regularization for estimating C0 is then introduced. The proposed method

enjoys desirable theoretical properties. It is shown that the estimator converges to C0 at the rate

of Op((nm/ log n)−2α/(2α+1) +n−1) under integrated squared error when assuming that the sample

path of X is α(> 1/2) times differentiable. Our results characterize the joint effect of the number
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of curves n and the sampling frequency m, and improves those available in the literature.

The rate exhibits an interesting phase transition effect similar to those recently observed when

studying the mean function estimation for functional data analysis (Cai and Yuan, 2010). Namely,

when the functions are sparsely sampled, i.e., m ¿ n1/2α log n, the convergence rates are determined

by the total number of observations N := nm. On the other hand, when the functions are densely

sampled, i.e., m À n1/2α log n, the rates remain 1/n regardless of m. Perhaps more surprisingly,

our results suggest that the proposed method is to a certain degree immune to the “curse of

dimensionality”. Since covariance functions are bivariate functions, one would naturally anticipate

nonparametric estimation of C0 to be more difficult than estimating a univariate function such as

the mean function. It is, however, somewhat unexpected to see that the only price we pay here is

at most a logarithmic factor.

Despite the generality of the method, we show that the estimators can be computed rather

efficiently thanks to a representer theorem which makes our procedure easily implementable and

enables us to take advantage of the existing techniques and algorithms for smoothing splines to

compute the estimator. Moreover, we show that our estimate of the covariance function allows

explicit calculation of the functional principal components and therefore avoids the usual numerical

approximation (see, e.g., Ramsay and Silverman, 2005) where one has to trade numerical accuracy

with computational efficiency. An R package implementing our method has been developed and is

publicly available on the web. Numerical performance of the estimator is investigated using both

simulated and real data. In particular our method is illustrated in an analysis of a longitudinal

CD4 count data for a sample of AIDS patients.

The rest of the paper is organized as follows. Section 2 introduces the methodology for esti-

mating the covariance function C0. The implementation of the proposed method for covariance

function estimation as well as computation of the functional principal components are discussed in

detail in Section 3. The practical merits of the method are demonstrated by simulations and by an

application to a longitudinal CD4 count dataset in Section 4. We study the rates of convergence

of the proposed estimate in Section 5. Section 6 discusses possible extensions of our work and its

connections with other related problems. The main results are proved in Section 7 and the proofs

of some technical lemmas are given in the Appendix.

2 Methodology

In this section, we introduce a regularization method for estimating the covariance function based

on discretely sampled data with noise. The sample path of X is assumed to be smooth in that it
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belongs to certain reproducing kernel Hilbert space (RKHS). Our method is motivated by a careful

examination of the function space in which the covariance function C0 resides. We first show that

C0 necessarily comes from a tensor product space naturally connected with the differentiability

of the sample path of X and then introduce our estimation procedure based on this important

observation.

2.1 Covariance function and tensor product spaces

We begin by reviewing some basic facts of RKHS. Let H be a Hilbert space of functions on T
associated with a inner product 〈·, ·〉H. A symmetric bivariate function K : T × T → R is said

to be its reproducing kernel if for every t ∈ T , K(·, t) ∈ H and f(t) = 〈f,K(·, t)〉H for every

f ∈ H. Since an RKHS H can be identified with its reproducing kernel K, we shall write H(K) in

what follows to signify the correspondence. As a concrete example, Sobolev space W2
2 of periodic

functions on T = [0, 1] that integrate to 0 and have square integrable second derivative forms an

RKHS when endowed with squared norm
∫

(f ′′)2 with reproducing kernel

K(s, t) =
1
4
B2(s)B2(t)− 1

24
B4(|s− t|) (3)

where Br(·) is the rth Bernoulli polynomial. The readers are referred to Aronszajn (1950) for

detailed discussions on RKHS.

Assuming that the reproducing kernel K is square integrable, Mercer’s theorem states that K

admits the following eigenvalue decomposition:

K(s, t) =
∑

k≥1

ρkϕk(s)ϕk(t) (4)

where the nonnegative scalars ρ1 ≥ ρ2 ≥ . . . are the eigenvalues and the eigenfunctions {ϕk(·) : k ≥
1} are a set of orthonormal basis of L2(T ), i.e.,

〈ϕj , ϕk〉 :=
∫

T
ϕj(t)ϕk(t)dt = δjk, (5)

where δ is Kronecker’s delta.

In this paper we shall assume that the sample path of X belongs to an RKHS H(K). Then we

can write

X(·) =
∑

k≥1

xkϕk(·) (6)

where xk = 〈X,ϕk〉L2 is the Fourier coefficient of X with respect to {ϕk(·) : k ≥ 1}. It is

worth pointing out that, despite the resemblance, the expression given by (6) differs from the
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usual Karhunen-Loève expansion. In (6), the basis functions {ϕk : k ≥ 1} are identified with the

reproducing kernel K and the function space H(K) whereas the basis functions used in Karhunen-

Loève expansion are the eigenfunctions of the covariance function C0 and are not known a priori.

With the expansion (6), the first two moments of X can be given in terms of those for the Fourier

coefficients:

µ0(t) := EX(t) =
∑

k≥1

E(xk)ϕk(t);

C0(s, t) =
∑

j,k≥1

Cov(xk, xj)ϕj(s)ϕk(t).

The above expression naturally identifies C0 with the tensor product space H(K ⊗ K) :=

H(K)⊗H(K), an RKHS associated with reproducing kernel

K ⊗K((s1, t1), (s2, t2)) = K(s1, s2)K(t1, t2). (7)

With slight abuse of notation, let the operator ⊗ also denote the tensor product of real-valued

functions on T , i.e.,

f1 ⊗ f2(s, t) = f1(s)f2(t). (8)

Then the tensor product space H(K ⊗K) can be characterized as follows. If f1, f2 ∈ H(K), then

f1 ⊗ f2 ∈ H(K ⊗K) with

‖f1 ⊗ f2‖H(K⊗K) = ‖f1‖H(K)‖f2‖H(K). (9)

Linear combinations of such tensor products are dense in H(K ⊗K). The norm of a linear combi-

nation is given by
∥∥∥∥∥∥

k∑

j=1

fj1 ⊗ fj2

∥∥∥∥∥∥

2

H(K⊗K)

=
k∑

i,j=1

〈fi1 , fj1〉H(K)〈fi2 , fj2〉H(K). (10)

Our first result, which is proved in Section 7, shows that the covariance function C0 is a member

of H(K ⊗K).

Theorem 1 If the sample path of X belongs to H(K) almost surely such that E‖X‖2
H(K) < ∞.

Then C0 belongs to the tensor product space H(K ⊗K).

Since {ϕk : k ≥ 1} is an orthonormal basis of L2(T ), it follows that {ϕj(·)ϕk(·) : j, k ≥ 1} forms

an orthonormal basis of L2(T × T ). For a function f ∈ L2(T × T ), write

f(s, t) =
∑

j,k≥1

fjkϕj(s)ϕk(t). (11)
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Recall that {ρk : k ≥ 1} is the set of eigenvalues of K. It is clear (see, e.g., Wahba, 1990) that the

tensor product space H(K ⊗K) contains all functions f such that

‖f‖2
H(K⊗K) :=

∑

j,k≥1

ρ−1
j ρ−1

k f2
jk < ∞. (12)

As an example, we revisit Sobolev space W2
2 defined on T = [0, 1]. In this case, H(K⊗K) consists

of periodic bivariate functions such that all its derivatives ∂k+lf(s, t)/∂sk∂tl are square integrable

for 0 ≤ k, l ≤ 2. It is noteworthy that this space differs from the second order Sobolev space defined

on a two dimensional torus.

2.2 Covariance function estimate

Theorem 1 shows that the covariance function C0 belongs to the tensor product space H(K ⊗K).

We are now in position to introduce the regularization estimate of C0 based on this important fact.

It is easy to see that the random vector Yi· := (Yi1, . . . , Yim)′ has mean µi· := (µ0(Ti1), . . . , µ0(Tim))

and covariance matrix Σi := [C0(Tij1 , Tij2)]1≤j1,j2≤m + σ2
0I. If the mean function µ0 is known, one

can regress [Yij1 − µ0(Tij1)][Yij2 − µ0(Tij2)] on (Tij1 , Tij2) to estimate C0. In the light of Theorem

1, we consider the following method of regularization:

Ĉλ = argmin
C∈H(K⊗K)

{
`n(C) + λ‖C‖2

H(K⊗K)

}
, (13)

where

`n(C) =
1

nm(m− 1)

n∑

i=1

∑

1≤j1 6=j2≤m

([Yij1 − µ0(Tij1)][Yij2 − µ0(Tij2)]− C(Tij1 , Tij2))
2 (14)

and λ ≥ 0 is a tuning parameter that balances the fidelity to the data measured by `n and

smoothness of the estimate measured by the squared RKHS norm.

Of course, the mean function µ0 is typically unknown in practice. In this case, we will replace

µ0 by its estimate in defining `n:

`n(C) =
n∑

i=1

∑

1≤j1 6=j2≤m

([Yij1 − µ̂(Tij1)][Yij2 − µ̂(Tij2)]− C(Tij1 , Tij2))
2 , (15)

where µ̂ is an estimate of µ0. The problem of estimating the mean function µ0 has been extensively

studied. In particular, Cai and Yuan (2010) investigated the optimal rates for estimating µ0 under

various settings. It was shown that with appropriate tuning parameters, the smoothing splines

estimate obtained by regressing Yij on Tij altogether achieves the optimal rate of convergence. We

shall therefore adopt the proposed spline estimate. Interested readers are referred to Cai and Yuan

(2010) for more detailed discussions on optimal estimation of the mean function.
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Remark 1 Other loss function may also be used in place of `n to measure the goodness of the fit

to the data in (13). One particular example occurs when the random function X follows a Gaussian

process and the measurement error ε follows a centered normal distribution. In this case, it is not

hard to see that the random vector Yi· follows a multivariate normal distribution. It is then natural

to use the negative log-likelihood instead of `n in (13). Here we opt for `n because of its general

applicability.

3 Computation

We now turn to the implementation of the procedure as well as computation of the functional

principal components. The estimator Ĉλ defined in the previous section is particularly easy to

calculate. An R package implementing our method has been developed and is publicly available on

the web at http://stat.wharton.upenn.edu/~tcai/paper/html/Covariance-Function.html.

Although the minimization in (13) is taken over infinite dimensional spaces, the solutions can

actually be found in finite dimensional spaces thanks to the so-called representer lemma.

Lemma 2 There exist m × m symmetric matrices A1, . . . , An whose diagonal entries are zeros

such that

Ĉλ(s, t) =
n∑

i=1

{
[K(s, Tij)]1≤j≤mAi[K(t, Tij)]′1≤j≤m

}
. (16)

Lemma 2 can be proved by a similar argument as that of Theorem 1.3.1 in Wahba (1990) and we

omit the proof here for brevity. Write

Gi1i2 = [K(Ti1j1 , Ti2j2)]1≤j1,j2≤m, 1 ≤ i1, i2 ≤ n. (17)

Observe that for any function Ĉλ that admits representation (16), its squared RKHS norm ‖Ĉλ‖2
H(K⊗K)

can be written as

‖Ĉλ‖2
H(K⊗K) =

n∑

i1,i2=1

trace(Gi1i2Ai2Gi2i1Ai1), (18)

which is a convex quadratic function of the entries of Ai’s. Because `n is also convex and quadratic,

computing Ĉλ, or equivalently solving for the Ai’s becomes a convex quadratic programming prob-

lem and can be solved fairly easily. The readers are also referred to Wahba (1990) and Gu (2002)

for further discussions on algorithms and strategies to solve this type of problems efficiently.

Although our main focus is on the covariance function estimation, representation (16) also gives

rise to easily computable functional principal component estimates which can be useful in many
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applications. By Mercer’s theorem, C0 admits the following spectral decomposition:

C0(s, t) =
∑

k≥1

θkψk(s)ψk(t) (19)

where {ψk : k ≥ 1} is a set of orthonormal basis on L2 and θ1 ≥ θ2 ≥ . . . are the associated

eigenvalues. Note that {(θk, ψk) : k ≥ 1} generally differs from the eigen system {(ρk, ϕk) : k ≥ 1}
of the reproducing kernel K. Estimating the functional principal components is one of the most

fundamental tasks in functional data analysis and has attracted a lot of attention in the litera-

ture (see, e.g., Ramsay and Silverman, 2005). In particular, ψks are commonly estimated by the

eigenfunctions of a covariance function estimation. Computing the eigenfunctions of a symmetric

bivariate function is generally non-trivial. Typically this is done by discretizing the covariance func-

tion estimation and approximate its eigenfunctions by the respective eigenvectors (see, e.g., Rice

and Silverman, 1991; Capra and Müller, 1997). One therefore trades the computational complexity

with approximation accuracy. Fortunately in our case, the eigenfunctions of Ĉλ can actually be

computed explicitly without resorting to such numerical techniques thanks to the representation

(16).

Let

A =




A1 0 0 . . . 0

0 A2 0 . . . 0
...

...
. . .

...
...

0 0 0 . . . An




, (20)

and

Q =




Q11 Q12 Q13 . . . Q1n

Q21 Q22 Q23 . . . Q2n

...
...

. . .
...

...

Qn1 Qn2 Qn3 . . . Qnn




(21)

where

Qi1i2 =
[∫

T
K(s, Ti1j1)K(s, Ti2j2)ds

]

1≤j1,j2≤m

, 1 ≤ i1, i2 ≤ n. (22)

Lemma 3 The eigenfunctions of Ĉλ defined by (13) can be expressed as

ψ̂k(·) = U ′
kg(·), k = 1, . . . , n, (23)

where Uk is the k-th column of U = Q−1/2V and V is the eigenvectors of Q1/2AQ1/2, and

g(·) = (K(·, T11), . . . ,K(·, T1m),K(·, T21), . . . , K(·, Tnm))′. (24)
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4 Numerical Experiments

This section considers the finite sample performance of our estimator. We shall first investigate

the numerical performance of the estimator through simulation studies and then apply our method

to the analysis of a longitudinal CD4 dataset. The theoretical properties of the estimator will be

investigated in Section 5.

4.1 Simulation studies

As mentioned in Section 3, the estimator Ĉλ of the covariance function C0 can be calculated

efficiently by convex quadratic programming. To demonstrate the merits of the proposed estimator

in finite sample settings, we carried out a set of simulation studies with different combinations

of sampling frequency, smoothness, and sample size. A collection of random functions Xis were

generated independently as follows:

X(t) =
50∑

k=1

ζkZk cos(kπt), t ∈ [0, 1], (25)

where Zks were independently sampled from the uniform distribution on [−√3,
√

3] and ζk =

(−1)k+1k−α. It is not hard to see that the covariance function of X is

C0(s, t) =
50∑

k=1

k−2α cos(kπs) cos(kπt). (26)

Fifty random functions were simulated from this model with α = 2. From each function, m random

locations were uniformly generated from [0, 1] and noisy observations of the function is obtained

following model (2). Two values of m are considered, m = 5 and m = 10. The error standard

deviation σ0 is set to be 0.368 to yield an average signal to noise ratio of 2 : 1. We apply the proposed

method to the simulated datasets to obtain covariance function estimates as well as estimates of

the functional principal components. As is common in most smoothing methods, the choice of the

tuning parameter λ plays an important role in the determining the performance of Ĉλ. Data-driven

optimal choice of the tuning parameter is generally difficult. Here we apply the commonly used

practical strategy of empirically choosing the value of λ through five fold cross validation.

Figures 1 and 2 provide a visual inspection of a typically simulated data along with the proposed

covariance function estimation as well as the functional principal components. The fifty curves were

given in the top left panel of Figure 1. The top right panel of Figure 1 shows the observed data

for m = 5 where observations from the same curve are connected together. Also given in the lower

panels of Figure 1 are the first two estimated functional principal components based on m = 5 or
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m = 10 observations on each curve together with the those obtained from the sample covariance

function as well as the truth.
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Figure 1: A typical simulated dataset: The top left panel shows 50 simulated functions. Noisy

observations at m = 5 random locations on each curve are given in the top right panel. The

bottom panels give the first two estimated functional principal components. The solid black lines

correspond to the truth. The red dashed and green dot-dashed represent those estimated with

m = 5 and 10 observations on each curve respectively. The blue long dashed lines are estimates

obtained from the sample covariance function, which is only computable when each curve is observed

completely without noise.
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Covariance function estimates obtained with m = 5 and 10 respectively are plotted along with

C0 in Figure 2. For comparison, we also included the sample covariance function based on observing

each curve completely and without noise. In a certain sense, it reflects how well an estimate can

perform when m = ∞ observations on each curve. It is evident that our estimate captures the main

characteristics of C0 with as few as five observations on each curve. When the sampling frequency

increases, the quality of the estimate improves. The difference between our estimate with m = 10

and the sample covariance function or C0 is negligible, which is also supported by our theoretical

development given in Section 5.
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Figure 2: Covariance function estimation with different sampling frequency: Fifty Xs were first

simulated. Noisy observations are obtained at m = 5 or 10 random locations. The corresponding

covariance function estimate is given for each sampling frequency. Also given is the true covariance

function and the sample covariance function computed with each function observed completely.
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Clearly the value of α in our simulation model determines the smoothness of the simulated curves

and subsequently the difficulty of estimation. For comparison purpose, we now consider α = 1.

Figure 3 shows a typical set of fifty simulated curves as well as covariance function estimates with

different sampling frequencies. It is obvious from the figure that the true covariance function is

not as smooth as the case when α = 2. As a result, higher sampling frequency is required to yield

estimates of similar qualities.
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Figure 3: A typical simulated dataset: The top left panel shows the fifty simulated functions,

followed by covariance function estimates obtained with m = 5, 10 and 50 randomly sampled

observations from each curve. The bottom middle panel gives the sample covariance function

based on the fifty curves. The bottom right panel is the true covariance function.
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To obtain further insight, we repeat the experiment for 200 times with both n = 50 and n = 100

curves. To fix ideas, we focus on the case when α = 2, which corresponds to the situation when

the sample path of X is twice differentiable. The estimation error measured by integrated squared

error for m = 5, 10 or ∞ are reported in Table 1. It is evident from Table 1 that the proposed

method performs very well. It can also be observed that the performance improves as the sampling

frequency m or sample size n increases.

m = 5 m = 10 m = ∞
n = 50 0.0229 (0.0011) 0.0142 (0.0005) 0.0046 (0.0004)

n = 100 0.0142 (0.0005) 0.0073 (0.0003) 0.0025 (0.0002)

Table 1: Average integrated squared error ‖Ĉ − C0‖2
L2

: averaged over two hundred runs, the

numbers in parentheses are the standard errors.

4.2 Longitudinal CD4 count data analysis

To further illustrate the usefulness of the proposed covariance function estimator, we now apply

it to a longitudinal CD4 count dataset. The data, reported by Kaslow et al. (1987), recorded

CD4+ cell counts for a total of 369 infected men enrolled in the Multicenter AIDS Cohort Study.

The human immune deficiency virus (HIV) causes AIDS by attacking CD4+ cells and reducing an

individual’s ability to fight infections. A healthy person has around 1100 CD4+ cells per milliliter

of blood. CD4+ cells decrease in number from infection. Therefore the cell count constitutes a

critical assessment of the health of the immune system and progression of the disease. In this

particular study, the patients were scheduled to have their cell counts measured twice a year.

Because of missing appointments among other factors, the actual times of measurement is random

and relatively sparse. The number of observations per subject ranges from 1 to 12 yielding a total

of 2376 records. This dataset is a classical example of longitudinal data analysis and further details

can be found in Diggle et al. (2002).

One of the main objectives of the analysis of the data is to characterize the time course of

the cell counts. This can be accomplished by examining the covariance function. We applied

the proposed method to this dataset. The covariance function estimate along with the first three

functional principal components are given in the left panels of Figure 4. From a statistical modeling

perspective, it is of particular interest to check if the time course can be modeled by a stationary

process. From the covariance function estimate, however, this does not appear to be the case.

Along with the CD4+ counts, several other variables are also recorded in this dataset. In
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Figure 4: Covariance function and functional principal component estimation for the CD4 data.

The left panels correspond to the estimates obtained with the full data including a total of 369

men. The middle panels are estimates obtained with only record from those who used recreational

drug throughout the study. The right panels are estimates obtained with only record from those

who did not use recreational drug at all throughout the study. Note that the top panels are in

different color scales in order to better demonstrate how the function value changes within each

panel.
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particular, the participants were asked whether or not they were using recreational drug between

visits. Among the 369 men, 209 used recreational drug throughout the study, 36 stayed away from

it altogether. Of interest here is whether or not the two more homogeneous sub-populations of

those who used recreational drug on a regular basis or those who did not use it at all may display

different behaviors and therefore require separate modeling. To this end, we estimate the covariance

function as well as the functional principal components for both subsets and the results are given

in the middle and left panels of Figure 4 for comparison purpose. We note that the covariance

function estimates for the full data and the subsets are plotted with different color scale for better

visualization within each plot. It is interesting to note that many of the main characteristics of

the covariance function are shared in all three estimates. The estimate obtained from the full

data, however, displays strong covariation in the early phase of the study, which is absent from the

estimate based on only those who use drug regularly. Such discrepancy can be further witnessed

from the first three principal components. Although they are quite similar for time greater than 0,

significant and consistent differences can be observed at earlier times.

5 Rates of Convergence

In this section we investigate the theoretical properties of the covariance function estimator Ĉλ and

establish the rate of convergence. Let P(α;M0, c0) be the collection of probability measures of X

such that

(a) the sample path of X belongs to H(K) almost surely and E‖X‖2
H(K) < M0;

(b) K is a Mercer kernel with eigenvalues satisfying ρk ∼ k−2α;

(c) there exists a numerical constant c0 > 0 such that EX4(t) ≤ c0[EX2(t)]2 for any t ∈ T , and

E
(∫

T
X(t)f(t)dt

)4

≤ c0

(
E

(∫

T
X(t)f(t)dt

)2
)2

, (27)

for any f ∈ L2(T ).

The first two conditions essential specify the smoothness of X, which is more specifically related

to the decay rate of ρk. For example, when Sobolev space W2
α([0, 1]) is considered, it is well known

that ρk ∼ k−2α. The last condition concerns the fourth moment of X and is satisfied with c0 = 3

when X follows a Gaussian process.

The next theorem establishes the rate of convergence of Ĉλ in terms of integrated squared error.
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Theorem 4 Assume that Eε4 < ∞, Tij are independent and identically distributed with a density

bounded away from zero on T and the mean function estimate µ̂ satisfies

‖µ̂− µ0‖2
L2

= Op

((
log n

mn

) 2α
2α+1

+
1
n

)
. (28)

Then

lim
D→∞

lim sup
n→∞

sup
L(X)∈P(α;M0,c0)

P

(
‖Ĉλ − C0‖2

L2
> D

((
log n

mn

) 2α
2α+1

+
1
n

))
= 0, (29)

if λ ³ ( log n
mn )

2α
2α+1 .

The condition on the mean function estimation (28) is satisfied by the spline estimate suggested

by Cai and Yuan (2010). In particular, it was shown that the mean function can be estimated at the

rate of Op

(
(mn)−

2α
2α+1 + n−1

)
in terms of integrated squared error. It is quite surprising to note

that even though the covariance function is of higher dimension than the mean function, the two

rates at most differ by a factor of (log n)
2α

2α+1 . This is in stark contrast with the common wisdom.

Consider, for example, the case when the sample path of X belongs to Sobolev spaceW2
2 ([0, 1]), i.e.,

twice differentiable functions on [0, 1]. It is natural to think of C0 as a member of the second order

Sobolev space on the unit square W2
2 ([0, 1]2), i.e., twice differentiable functions on [0, 1]2. As shown

by Stone (1982), the optimal rate for estimating functions from W2
2 ([0, 1]) or W2

2 ([0, 1]2) is M−4/5

and M−2/3 respectively if independent observations are available at M different locations. For

estimating the covariance function, a total of nm2 observations {(Yij1 − µ0(Tij1))(Yij2 − µ0(Tij2)) :

1 ≤ i ≤ n, 1 ≤ j1 6= j2 ≤ m} are obtained. But there are significant redundancy among these

observations as we are observing nm Yijs after all. Also the data are correlated due to the functional

nature of Xis.

To appreciate the importance of the association between C0 and the tensor product space, we

first consider the case when m is finite. The number of observations in this case is of the order

O(n) for estimating both the mean and covariance functions. Cai and Yuan (2010) showed that

the mean function can be estimated at the optimal rate of n−4/5. Similarly, the rate of n−2/3 can

be achieved, in particular, by the local polynomial estimate of Hall, Müller and Wang (2006) using

the fact that C0 is twice differentiable. But as shown by Theorem 1, the space from which C0

comes is the tensor product space W2
2 ([0, 1])⊗W2

2 ([0, 1]), which is much smaller than W2
2 ([0, 1]2).

As a consequence, the rate attained by our method, (n/ log n)−4/5, is much better than the best

possible rate of n−2/3 for estimating functions from second order Sobolev space on [0, 1]2.

It is also interesting to compare our results with those obtained by Paul and Peng (2009) who

consider a particular setting where C0 can be approximated by a function with a fixed number of
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non-vanishing eigenvalues and eigenfunctions from W4
2 . Under various regularity conditions, they

show that when m is bounded, the restricted MLE that based on this particular structure can

achieve the convergence rate of Op((n/ log n)−8/9). See, e.g., Theorem 2.1 and Corollary 2.1 of

Paul and Peng (2009). The rate matches that from Theorem 4 because in this case it is well known

that α = 4. Despite the similarity, however, we note that the two approaches and therefore their

implications are very different. The particular covariance function model studied by Paul and Peng

(2009) is very specialized. The restricted MLE discussed in their paper uses the knowledge of this

particular model whereas our method does not require such information and achieves the same rate

for a much more general class of covariance functions. Moreover, we do not require many of the

technical conditions imposed by Paul and Peng (2009).

The situation when m is not finite is more complex because it is then necessary to address how

much data redundancy and correlation may affect our ability to estimate the covariance function.

Theorem 4 reveals an curious phase transition behavior of the convergence rate. When the functions

are densely sampled, i.e., m À n
1
2α log n, the sampling frequency does not matter and the rate is

determined solely by the number of curves:

‖Ĉ − C0‖2
L2

= Op

(
n−1

)
. (30)

This suggests that when sampled frequently enough, we can estimate the covariance function as well

as if the entire functions are observable. But when the functions are sparsely sampled, i.e., m ¿
n

1
2α log n, the rate is jointly determined by the number of curves and the number of observations

on each curve through the total number of observations N := nm:

‖Ĉ − C0‖2
L2

= Op

(
(N/ log N)−

2α
2α+1

)
. (31)

Little is known about how other methods may behave when m is not finite. One exception

is Hall, Müller and Wang (2006) who showed that, when assuming that the sample path of X is

twice differentiable, the two step procedure where one estimates each curve by smoothing and then

estimates C0 by the sample covariance function of those smoothed curves achieves the convergence

rate of 1/n if m À n1/4+δ for some δ > 0. Our result is comparable and slightly better in that we

only require m À n
1
2α log n to achieve 1/n convergence rate for general α > 1/2.

Although not our main focus, we note that convergence rates of the estimated functional prin-

cipal components can be easily derived from Theorem 4. To this end, we consider the theoreti-

cal properties of ψ̂k for k ≤ K0 where K0 is fixed. Without loss of generality, we assume that

〈ψk, ψ̂k〉 ≥ 0. Then we have the following result.

18



Corollary 5 Under the conditions of Theorem 4, if θk is of multiplicity one, then

lim
D→∞

lim sup
n→∞

sup
L(X)∈P(α;M0,c0)

P
(
‖ψ̂k − ψk‖2

L2
> D

(
(mn/ log n)−

2α
2α+1 + n−1

))
= 0, (32)

if λ ∼ (mn/ log n)−
2α

2α+1 .

The results for estimating the functional principal components again improves the one given in

Paul and Peng (2009) who obtained the rate of Op((n/ log n)−8/9) in the case of α = 4 under a

much more restrictive setting. Theoretical analysis of functional principal component analysis can

also be found in Yao, Müller and Wang (2005) and Hall, Müller and Wang (2006) among others.

In particular, Hall, Müller and Wang (2006) considered the case when m is bounded and showed

that, when assuming that the sample path of X has bounded second derivative, the optimal rate

for estimating the functional principal components is Op(n−2α/(2α+1)) and can be achieved by local

polynomial regression procedures. They also show that when m À n1/4+δ for some δ > 0, the

optimal rate is Op(1/n) and can be achieved by the sample covariance function of pre-smoothed

Xis. Since the estimating strategy differs between the two situations, it is not clear how to deal

with the intermediate cases. In contrast, the functional principal components computed from our

covariance function estimation in a vanilla fashion are applicable to all cases. Under much weaker

conditions, it achieves the optimal rate of Op(1/n) when m À n1/4 log n. The threshold is slightly

better than that (n1/4+δ) identified by Hall, Müller and Wang (2006). Furthermore, it attains a

rate within a factor (log n)4/5 of the optimal when m is bounded.

Finally, we note that the rate achieved by the estimator Ĉλ can not be much improved. As

stated in the next theorem, even if C0 is known a priori to be of rank one, i.e., X has a single

principal component, the best rate attainable is O((mn)−
2α

2α+1 + n−1), which differs from that of Ĉ

by at most a factor of (log n)2α/(2α+1). To this end, let P ′(α;M0) be the collection of probability

measures of X such that X(·) = xψ(·) where x is a centered random variable with bounded second

moment and ‖ψ‖2
H(K) ≤ M0. It is clear that P ′(α;M0) ⊂ P(α; M0, c0).

Theorem 6 There exists a constant d > 0 depending only on M0 and σ2
0 such that for any estimate

C̃ base on observations {(Tij , Yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ m},

lim sup
n→∞

sup
L(X)∈P ′(α;M0)

P
(
‖C̃ − C0‖2

L2
> d

(
(nm)−

2α
2α+1 + n−1

))
> 0. (33)

6 Discussions

We have developed a regularization method for covariance function estimation based on a random

sample of discrete observations with measurement errors. Despite its similarity to the standard
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bivariate smoothing problem, we show that covariance function estimation can be fundamentally

different from the usual Sobolev space based bivariate smoothing due to the fact that it lies in

a particular type of tensor product space. It is shown that the proposed method enjoy superior

theoretical properties to some of the known results in the literature both for estimating the co-

variance functions and for estimating the functional principal components. The procedure is also

easily implementable.

In the present paper, for ease of presentation we have assumed that there are equal number

of sampling points on each curve to better demonstrate the joint effects of the number of curves

n and the sampling frequency m on estimating the covariance function. It should be noted that

this assumption is not essential and can be easily relaxed. In a more general setting, one may have

different number of sampling points on different curves. Let mi be the number of sampling points

on the ith curve. Following the same argument, it can be shown that the proposed method enjoys

the same properties if the numbers of sampling points on individual curves are of the same order

of magnitude. That is, there exist constants c1 ≥ c2 > 0 such that

c2m ≤ min
1≤i≤n

mi ≤ max
1≤i≤n

mi ≤ c1m.

More generally, the number of sampling points mi may be itself random. In such a case, our results

continue to hold for m := E(mi) if there exists a constant 0 < σ2∗ < ∞ such that var(mi) ≤ σ2∗.

We also note that although we have focused on random curves defined on a compact subset T of

the real line, the proposed method can be readily applied to functional data defined on more general

compact domains and the convergence rates established in Section 5 continue to hold with minor

modifications. Such extension could be useful, for instance, when modeling images. For example,

if the sample path of X belongs to the α-order Sobolev space on [0, 1]d, the rate of convergence for

the proposed estimator given in Theorem 4 is changed to (nm/ log n)2α/(2α+d) + n−1.

The study of the covariance function estimation given in this paper is expected to have implica-

tions in a number of related problems such as functional linear regression, classification or clustering

where the estimate of the covariance kernel plays a prominent role. We leave these topics for future

research.

7 Proofs

We prove the main results in this section. Throughout this section we use C to denote a covariance

function and the lower case c stands for a positive constant which may vary from place to place.

Two technical lemmas used in the proofs of the main results are proved in the Appendix.
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7.1 Proof of Theorem 1

Note that C0(s, t) = g0(s, t)− µ0(s)µ0(t) where g0(s, t) = EX(s)X(t). By Jensen’s inequality,

‖µ0‖2
H(K) = ‖EX‖2

H(K) ≤ E‖X‖2
H(K) < ∞, (34)

which implies that µ0 ∈ H(K). Therefore, µ0 ⊗ µ0 ∈ H(K ⊗ K). It remains to show that

g0 ∈ H(K ⊗K).

It suffices to verify that

‖g0‖2
H(K⊗K) =

∑

j,k≥1

ρ−1
j ρ−1

k E(xjxk)2 < ∞. (35)

Observe that E(xjxk)2 ≤ E(x2
j )E(x2

k). Therefore,

‖g0‖2
H(K⊗K) ≤

∑

j,k≥1

ρ−1
j ρ−1

k E(x2
j )E(x2

k)

=


∑

k≥1

ρ−1
k E(x2

k)




2

=
(
E‖X‖2

H(K)

)2
< ∞.

This completes the proof of Theorem 1.

7.2 Proof of Lemma 3

We first show that ψ̂ks are orthonormal. Observe that
∫

T
g(s)g′(s)ds = Q. (36)

Therefore, ∫

T
ψ̂k1(s)ψ̂k2(s)ds = U ′

k1
QUk2 = V ′

k1
Q−1/2QQ−1/2Vk2 = δk1k2 , (37)

where δ is the Kronecker’s delta.

Denote by θ̂k the eigenvalues of Q1/2AQ1/2, then

∑

k

θ̂kψ̂k(s)ψ̂k(t) = g′(s)

(∑

k

θ̂kUkU
′
k

)
g(t)

= g′(s)
(
Q−1/2V diag(θ̂1, . . .)V ′Q−1/2

)
g(t)

= g′(s)Ag(t)

= Ĉλ(s, t),

which completes the proof.
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7.3 Proof of Theorem 4

For brevity, we shall consider here only the case when µ0(·) is known and (14) is employed in

defining Ĉλ. The effect of this assumption in establishing the convergence rate of Ĉλ is negligible

because of the condition (28), which essentially controls the error term that may come with using

an estimated mean function instead of the true mean function. The proof follows from the same

line of argument when using µ̂ but gets considerably more tedious.

For technical purpose, we first introduce a class of norms on H(K ⊗ K). To this end, recall

that any f ∈ H(K ⊗K) can be written as

f(s, t) =
∑

j,k≥1

fjkϕj(s)ϕk(t) (38)

where fjk = 〈f, ϕj(·)ϕk(·)〉L2 . By the construction of {ϕk : k ≥ 1}, we have

‖f‖2
L2

=
∑

j,k≥1

f2
jk, and ‖f‖2

H(K×K) =
∑

j,k≥1

γ−1
jk f2

jk (39)

where γjk = ρjρk. Define, for 0 ≤ a ≤ 1,

‖f‖2
a =

∑

j,k≥1

γ−a
jk f2

jk. (40)

It is clear that ‖ · ‖0 = ‖ · ‖L2 and ‖ · ‖1 = ‖ · ‖H(K⊗K).

For brevity, we shall assume that µ0(·) = 0 and T follows a uniform distribution without loss

of generality. Recall that

Ĉλ = argmin
C∈H(K⊗K)

{
`mn(C) + λ‖C‖2

H(K⊗K)

}
(41)

where

`mn(C) =
1

nm(m− 1)

n∑

i=1

∑

1≤j 6=k≤m

(YijYik − C(Tij , Tik))
2 . (42)

Observe that

`∞(C) : = E`mn(C)

=
1

m(m− 1)
E


 ∑

1≤j 6=k≤m

[Y1jY1k − C(T1j , T1k)]
2




= Var (Y11Y12) + E
(
[C(T11, T12)− C0(T11, T12)]

2
)

.

Write

C̄λ = argmin
C∈H(K⊗K)

{
`∞(C) + λ‖C‖2

H(K⊗K)

}
. (43)
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Then

Ĉλ − C0 = (C̄λ − C0) + (Ĉλ − C̄λ). (44)

The two terms can be regarded as deterministic and stochastic error respectively. Write

`∞,λ(C) = `∞(C) + λ‖C‖2
H(K⊗K);

`mn,λ(C) = `mn(C) + λ‖C‖2
H(K⊗K).

Denote Gλ = D2`∞,λ(C̄λ) and

C̃λ = C̄λ −G−1
λ D`mn,λ(C̄λ), (45)

where D stands for the Fréchet derivatives. It is clear that the stochastic error can be further

decomposed as

Ĉλ − C̄λ =
(
Ĉλ − C̃λ

)
+

(
C̃λ − C̄λ

)
. (46)

We now bound C̄λ − C0, Ĉλ − C̃λ and C̃λ − C̄λ separately.

We first consider the deterministic error C̄λ − C0.

Lemma 7 There exists a constant c > 0 such that

∥∥C̄λ − C0

∥∥2

a
≤ cλ1−a‖C0‖2

H(K⊗K).

Proof. Write

C0(s, t) =
∞∑

k1,k2=1

ak1k2ϕk1(s)ϕk2(t), C̄λ(s, t) =
∞∑

k1,k2=1

b̄k1k2ϕk1(s)ϕk2(t).

Then

b̄k1,k2 = (1 + λγ−1
k1k2

)−1ak1k2 . (47)

It follows that

∥∥C̄λ − C0

∥∥2

a
=

∞∑

k1,k2=1

(1 + γ−1
k1k2

)a(b̄k1k2 − ak1k2)
2

=
∞∑

k1,k2=1

(1 + γ−1
k1k2

)a

(
λγ−1

k1k2

1 + λγ−1
k1k2

)2

a2
k1k2

≤ cλ2 sup
k1,k2

γ
−(1+a)
k1k2(

1 + λγ−1
k1k2

)2

∞∑

k=1

γ−1
k1k2

a2
k1k2

≤ cλ1−a‖C0‖2
H(K⊗K).
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Hereafter, we use c to denote a generic positive constant which may take different values at each

appearance.

Next, we consider C̃λ − C̄λ.

Lemma 8 There exists a constant c > 0 such that

E
∥∥∥C̃λ − C̄λ

∥∥∥
a
≤ c

(
n−1 + n−1m−1λ−(a+(1/2α)) log(1/λ) + n−1λ1−(a+(1/2α)) log(1/λ)

)
. (48)

Proof. By definition

D`mn,λ(C̄λ) + D2`∞,λ(C̄λ)(C̃λ − C̄λ) = 0. (49)

Notice that

D`mn,λ(C̄λ) = D`mn,λ(C̄λ)−D`∞,λ(C̄λ) = D`mn(C̄λ)−D`∞(C̄λ). (50)

Therefore

E
[
D`mn,λ(C̄λ)f

]2 = E
[
D`mn(C̄λ)f −D`∞(C̄λ)f

]2

=
1

n2m2(m− 1)2
Var




n∑

i=1

∑

1≤j<k≤m

([
YijYik − C̄λ(Tij , Tik)

]
f(Tij , Tik)

)



=
1

nm2(m− 1)2
Var


 ∑

1≤j 6=k≤m

([
Y1jY1k − C̄λ(T1j , T1k)

]
f(T1j , T1k)

)



=
1

nm2(m− 1)2
Var


 ∑

1≤j 6=k≤m

([
C0(T1j , T1k)− C̄λ(T1j , T1k)

]
f(T1j , T1k)

)



+
1

nm2(m− 1)2
E


Var


 ∑

1≤j 6=k≤m

Y1jY1kf(T1j , T1k)
∣∣∣∣T







We now bound the two terms separately. The second term can be bounded using the following

technical lemma which is proved in the Appendix.

Lemma 9 Let Yj = X(Tj) + εj where X is a mean zero second order stochastic process whose

probability law belongs to P(α;M0, c0), Tj are independent uniform random variables defined on

T , and εj are independent measurement error with mean zero and variance σ2
0. Denote, for f, g ∈

L2(T ),

U =
∑

1≤j 6=k≤m

YjYkf(Tj)g(Tk). (51)
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Then

E [Var(U |T )] ≤ 4c0m
4E

(∫
X(s)f(s)ds

)2

E
(∫

X(s)g(s)ds

)2

+ O(m3). (52)

In particular, if f = ϕk1 and g = ϕk2, then

E [Var(U |T )] ≤ 4c0m
4ak1k1ak2k2 + O(m3), (53)

where {ajk : j, k ≥ 1} is the Fourier coefficients of C0 with respect to orthonormal basis {ϕj ⊗ ϕk :

j, k ≥ 1}.

The second term can now be bounded using Lemma 9. By taking f = ϕk1 ⊗ ϕk2 in Lemma 9,

we have

E


Var


 ∑

1≤j<k≤m

Y1jY1kf(T1j , T1k)
∣∣∣∣T





 ≤ cm4ak1k1ak2k2 + O(m3). (54)

To bound the first term, denote by

Vm =
∑

1≤j<k≤m

([
C0(T1j , T1k)− C̄λ(T1j , T1k)

]
f(T1j , T1k)

)
. (55)

Observe that

Var(Vm) ≤ E(V 2
m)

=
∑

1≤j<k 6=m
1≤j′ 6=k′≤m

E
( [

C0(T1j , T1k)− C̄λ(T1j , T1k)
]
f(T1j , T1k)

× [
C0(T1j′ , T1k′)− C̄λ(T1j′ , T1k′)

]
f(T1j′ , T1k′)

)

≤ m!
(m− 4)!

(∫

T ×T

[
C0(s, t)− C̄λ(s, t)

]
f(s, t)dsdt

)2

+ cm3

≤ m4

∫

T ×T

[
C0(s, t)− C̄λ(s, t)

]2
dsdt

∫

T ×T
f2(s, t)dsdt + cm3

≤ c

(
m4λ

∫

T ×T
f2(s, t)dsdt + m3

)
.

Take f = ϕk1 ⊗ ϕk2 , i.e., f(s, t) = ϕk1(s)ϕk2(t). Then the first term can be bounded by c0n
−1(λ +

m−1).

In summary, we have

E
[
D`mn,λ(C̄λ)ϕk1 ⊗ ϕk2

]2 ≤ cn−1
(
ak1k1ak2k2 + λ + m−1

)
. (56)

25



Therefore,

E
∥∥∥C̃λ − C̄λ

∥∥∥
2

a
= E

∥∥G−1
λ D`n,λ(C̄)

∥∥2

a

= E


 ∑

k1,k2≥1

(1 + γ−1
k1k2

)a(1 + λγ−1
k1k2

)−2
(
D`n,λ(b̄)ϕk1 ⊗ ϕk2

)2




≤ cn−1


 ∑

k1,k2≥1

(1 + γ−1
k1k2

)a(1 + λγ−1
k1k2

)−2ak1k1ak2k2




+cn−1(λ + m−1)
∑

k1,k2≥1

(1 + γ−1
k1k2

)a(1 + λγ−1
k1k2

)−2

Observe that

 ∑

k1,k2≥1

(1 + γ−1
k1k2

)a(1 + λγ−1
k1k2

)−2ak1k1ak2k2




≤
∑

k1,k2≥1

(1 + γ−1
k1

)a(1 + γ−1
k2

)aak1k1ak2k2

=


∑

k1≥1

(1 + γ−1
k1

)aak1k1




2

≤

∑

k1≥1

(1 + γ−1
k1

)ak1k1




2

.

Recall that

ak1k1 =
∫

T ×T
ϕk1(s)ϕk1(t)C0(s, t)dsdt

= E
(∫

T
X(t)ϕk1(t)dt

)2

.

We get
∑

k1≥1

(1 + γ−1
k1

)ak1k1 = E
∞∑

k1=1

(1 + γ−1
k1

)
(∫

T
X(t)ϕk1(t)dt

)2

= E ‖X‖2
K . (57)

Hence the first term can be bounded by cn−1. Together with the fact that (see, e.g., Lin, 2000)

∞∑

k1,k2=1

(1 + γ−1
k1k2

)a(1 + λγ−1
k1k2

)−2 ∼ λ−(a+(1/2α)) log(1/λ), (58)

The proof can now be completed by collecting all these inequalities.

It now remains to bound Ĉλ − C̃λ.
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Lemma 10 If there exists some 1/(2α) < b ≤ 1 such that

log(1/λ)
nmλ2b+1/(2α)

→ 0, (59)

then for any 0 ≤ a ≤ b,
∥∥∥Ĉλ − C̃λ

∥∥∥
2

a
= op

(
n−1 + n−1λ1−a− 1

2α log(1/λ) + (nm)−1λ−a− 1
2α log(1/λ)

)
. (60)

Before proving Lemma 10, we state the following technical lemma which is proved in the Ap-

pendix.

Lemma 11 Under the conditions of Theorem 4, if 1/2α < b ≤ 1, then for any 0 ≤ a ≤ b

∥∥∥Ĉλ − C̃λ

∥∥∥
2

a
= Op

(
log(1/λ)

nmλa+b+1/(2α)

) ∥∥∥Ĉλ − C̄λ

∥∥∥
2

b
. (61)

Proof of Lemma 10: By Lemma 11,
∥∥∥Ĉλ − C̃λ

∥∥∥
2

a
= Op

(
log(1/λ)

nmλa+b+1/(2α)

) ∥∥∥Ĉλ − C̄λ

∥∥∥
2

b
. (62)

.

If a > 1/2α, then taking b = a yields
∥∥∥Ĉλ − C̃λ

∥∥∥
2

a
= Op

(
log(1/λ)

nmλ2a+1/(2α)

) ∥∥∥Ĉλ − C̄λ

∥∥∥
2

a
. (63)

Assuming that
log(1/λ)

nmλ2a+1/(2α)
→ 0, (64)

then ∥∥∥Ĉλ − C̃λ

∥∥∥
a

= op

(∥∥∥Ĉλ − C̄λ

∥∥∥
a

)
. (65)

Together with the triangular inequality
∥∥∥C̃λ − C̄λ

∥∥∥
a
≥

∥∥∥Ĉλ − C̄λ

∥∥∥
a
−

∥∥∥Ĉλ − C̃λ

∥∥∥
a

= (1− op(1))
∥∥∥Ĉλ − C̄λ

∥∥∥
a
. (66)

Therefore,
∥∥∥Ĉλ − C̄λ

∥∥∥
2

a
= Op

(∥∥∥C̃λ − C̄λ

∥∥∥
2

a

)

= Op

(
n−1 + n−1λ1−a− 1

2α log(1/λ) + (nm)−1λ−a− 1
2α log(1/λ)

)
.

Now consider the case when a ≤ 1/2α. From the previous discussion, we know that for any

b > 1/(2α) such that
log(1/λ)

nmλ2b+1/(2α)
→ 0, (67)
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we have

∥∥∥Ĉλ − C̄λ

∥∥∥
2

b
= Op

(
n−1 + n−1λ1−b− 1

2α log(1/λ) + (nm)−1λ−b− 1
2α log(1/λ)

)
(68)

Hence,

∥∥∥Ĉλ − C̃λ

∥∥∥
2

a
= Op

(
log(1/λ)

nmλa+b+1/(2α)

)

×Op

(
n−1 + n−1λ1−b− 1

2α log(1/λ) + (nm)−1λ−b− 1
2α log(1/λ)

)

= op

(
n−1λb−a + n−1λ1−a− 1

2α log(1/λ) + (nm)−1λ−a− 1
2α log(1/λ)

)
.

To sum up, if there exists some 1/(2α) < b ≤ 1 such that

log(1/λ)
nmλ2b+1/(2α)

→ 0, (69)

then for any 0 ≤ a ≤ b,

∥∥∥Ĉλ − C̃λ

∥∥∥
2

a
= op

(
n−1 + n−1λ1−a− 1

2α log(1/λ) + (nm)−1λ−a− 1
2α log(1/λ)

)
. (70)

Combining the bounds on C̄λ − C0, C̃λ − C̄λ and Ĉλ − C̃λ, we have

‖Ĉλ − C0‖2
L2

= Op

(
λ + n−1 + n−1λ1− 1

2α log(1/λ) + (nm)−1λ−
1
2α log(1/λ)

)
. (71)

Taking

λ ∼ (nm/ log n)−
2α

2α+1 (72)

yields that

‖Ĉλ − C0‖2
L2

= Op

(
(nm/ log n)−

2α
2α+1 + n−1

)
. (73)

7.4 Proof of Corollary 5

As shown by Bhatia, Davis and McIntosh (1983),

sup
k≥1

δk‖ψ̂k − ψk‖ ≤ 81/2‖Ĉ − C‖L2 , (74)

where δk = min1≤j≤k(θj − θj+1). The proof can then be completed by Theorem 4 and the fact that

θk is of multiplicity one.
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7.5 Proof of Theorem 6

First note that, by taking d > 0 small enough,

lim sup
n→∞

sup
L(X)∈P ′(α;M0)

P
(
‖C̃ − C0‖2

L2
> dn−1

)
> 0, (75)

by taking ψ(·) to be a constant function. It suffices to show that for some d > 0,

lim sup
n→∞

sup
L(X)∈P ′(α;M0)

P
(
‖C̃ − C0‖2

L2
> d(nm)−2α/(2α+1)

)
> 0. (76)

In what follows, we shall assume that T follows a uniform distribution on T for brevity. We

shall also assume that M0 = 1 and ρ1 = 1 without loss of generality. Let X(·) = βψ(·) where

P (β = 1) = P (β = −1) = 1/2 and ψ ∈ H(K). Clearly L(X) ∈ P ′(α; 1) if and only ‖ψ‖2
H(K) ≤ 1.

Let M = cM (nm)1/(2α+1). For a binary vector b ∈ {±1}M , denote

ψb(·) = M−1/2
2M∑

k=M+1

bk−Mρ
1/2
k ϕk(·). (77)

It is not hard to see that

‖ψb‖2
H(K) = M−1

2M∑

k=M+1

b2
k−M = 1. (78)

Furthermore,

‖ψb − ψb′‖2
L2
≥ cM−1

2M∑

k=M+1

k−2α(bk−M − b′k−M )2 ≥ cM−(2α+1)H(b, b′) (79)

where H(·, ·) represents the Hamming distance.

By Varshamov-Gilbert bound, there exists a collection of binary sequences {b(1), . . . , b(N)} ⊂
{±1}m such that N ≥ 2M/8, and

H(b(j), b(k)) ≥ M/8, ∀1 ≤ j < k ≤ N. (80)

Therefore,

‖ψb(j) − ψb(k)‖L2 ≥ c(nm)−α/(2α+1). (81)

Let Πk be the probability measure of (X,T, ε) such that ψ = ψk := (1 + ψb(k))/2 and Π0 be

such that ψ = ψ0 := 1/2. It is easy to derive that

‖C0(ψk)− C0(ψk′)‖2
L2

= ‖ψk ⊗ ψk − ψk′ ⊗ ψk′‖2
L2
≥ c(nm)−2α/(2α+1), (82)

where C0(ψk) is the covariance function of X when ψ = ψk. On the other hand, the Kullback-

Leibler distance from probability measure Πk to Π0 can be bounded by

KL(Πk|Π0) ≤ cnm‖ψk − ψ0‖2
L2
≤ c(nm)1/(2α+1) ≤ c log N. (83)

The proof can now be completed using Fano’s lemma by taking cM large enough.
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Appendix

In this appendix we prove Lemmas 9 and 11 which are used in the proof of the main results given

in Section 7.

A.1 Proof of Lemma 9

Observe that

U =
∑

1≤j 6=k≤m

X(Tj)X(Tk)f(Tj)g(Tk) +
∑

1≤j 6=k≤m

εjX(Tk)f(Tj)g(Tk)

+
∑

1≤j 6=k≤m

εkX(Tj)f(Tj)g(Tk) +
∑

1≤j 6=k≤m

εjεkf(Tj)g(Tk)

=: U1 + U2 + U3 + U4.

By Cauchy-Schwartz inequality,

E [Var(U |T )] ≤ E[E(U2|T )] ≤ 4
(
E(U2

1 ) + E(U2
2 ) + E(U2

3 ) + E(U2
4 )

)
. (84)

We now bound the four terms on the rightmost hand side separately.

We begin with E(U2
1 ).

E(U2
1 ) = E


 ∑

1≤j1 6=j2 6=j3 6=j4≤m

X(Tj1)X(Tj2)X(Tj3)X(Tj4)f(Tj1)g(Tj2)f(Tj3)g(Tj4)




+E


 ∑

1≤j1 6=j2 6=j3≤m

X(Tj1)X
2(Tj2)X(Tj3)f(Tj1)g(Tj2)f(Tj2)g(Tj3)




+ . . . . . . +

+E


 ∑

1≤j1 6=j2≤m

X2(Tj1)X
2(Tj2)X(Tj3)f

2(Tj1)g
2(Tj2)




= m(m− 1)(m− 2)(m− 3)E

[(∫
X(s)f(s)ds

)2 (∫
X(s)g(s)ds

)2
]

+m(m− 1)(m− 2)E
[(∫

X(s)f(s)ds

)(∫
X(s)g(s)ds

)(∫
X2(s)f(s)g(s)ds

)]

+m(m− 1)(m− 2)E

[(∫
X(s)f(s)ds

)2 (∫
X2(s)g2(s)ds

)]

+m(m− 1)(m− 2)E

[(∫
X(s)g(s)ds

)2 (∫
X2(s)f2(s)ds

)]

+m(m− 1)E
[(∫

X2(s)f2(s)ds

) (∫
X2(s)g2(s)ds

)]
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By Cauchy-Schwartz inequality,

E

[(∫
X(s)f(s)ds

)2 (∫
X(s)g(s)ds

)2
]

≤
[
E

(∫
X(s)f(s)ds

)4
]1/2 [

E
(∫

X(s)g(s)ds

)4
]

≤ c0E
(∫

X(s)f(s)ds

)2

E
(∫

X(s)g(s)ds

)2

,

where the last inequality holds because of (27). Next, note that

E
[(∫

X(s)f(s)ds

)(∫
X(s)g(s)ds

)(∫
X2(s)f(s)g(s)ds

)]

≤
(
E

[(∫
X(s)f(s)ds

)2 (∫
X(s)g(s)ds

)2
])1/2 (

E

[(∫
X2(s)f(s)g(s)ds

)2
])1/2

Observe that

E

[(∫
X2(s)f(s)g(s)ds

)2
]

=
∫

T 2

E[X2(s)X2(t)]f(s)g(s)f(t)g(t)dsdt

≤
∫

T 2

(
E[X4(s)]E[X4(t)]

)1/2
f(s)g(s)f(t)g(t)dsdt

≤ c0

(∫

T
C(s, s)f(s)g(s)ds

)2

.

We have

E
[(∫

X(s)f(s)ds

) (∫
X(s)g(s)ds

) (∫
X2(s)f(s)g(s)ds

)]

≤ c0

[
E

(∫
X(s)f(s)ds

)2

E
(∫

X(s)g(s)ds

)2
]1/2 (∫

T
C(s, s)f(s)g(s)ds

)
.

Similarly,

E

[(∫
X(s)f(s)ds

)2 (∫
X2(s)g2(s)ds

)]
≤ c0E

(∫
X(s)f(s)ds

)2 (∫

T
C(s, s)g2(s)ds

)
,

E

[(∫
X(s)g(s)ds

)2 (∫
X2(s)f2(s)ds

)]
≤ c0E

(∫
X(s)g(s)ds

)2 (∫

T
C(s, s)f2(s)ds

)
,

E
[(∫

X2(s)f2(s)ds

)(∫
X2(s)g2(s)ds

)]
≤ c0

(∫

T
C(s, s)f2(s)ds

)(∫

T
C(s, s)g2(s)ds

)
.

Collecting all these inequalities, we conclude that

E(U2
1 ) ≤ c0m

4E
(∫

X(s)f(s)ds

)2

E
(∫

X(s)g(s)ds

)2

+ O(m3). (85)
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Now consider E(U2
2 ) = E(U2

3 ).

E(U2
2 ) = E


 ∑

1≤j1 6=j2 6=j3≤m

ε2j1X(Tj2)X(Tj3)f
2(Tj1)g(Tj2)g(Tj3)




+E


 ∑

1≤j1 6=j2≤m

ε2j1X
2(Tj2)f

2(Tj1)g
2(Tj2)




= m(m− 1)(m− 2)σ2
0

(∫

T
f2(s)ds

)(∫

T 2

C(s, t)g(s)g(t)dsdt

)

+m(m− 1)σ2
0

(∫

T
f2(s)ds

)(∫

T
C(s, s)g2(s)ds

)
.

At last, we look at E(U2
4 ).

E(U2
4 ) = E


 ∑

1≤j1 6=j2≤m

ε2j1ε
2
j2f

2(Tj1)g
2(Tj2)




= m(m− 1)σ4
0

(∫

T
f2(s)ds

)(∫

T
g2(s)ds

)
.

In summary, we have

E(U2) ≤ 4c0m
4E

(∫
X(s)f(s)ds

)2

E
(∫

X(s)g(s)ds

)2

+ O(m3). (86)

The second statement of the lemma follows immediately from the fact that

akk =
∫

T ×T
ϕk(s)ϕk(t)C0(s, t)dsdt = E

(∫

T
X(t)ϕk(t)dt

)2

. (87)

A.2 Proof of Lemma 11

By definition

Gλ(Ĉλ − C̃λ) = D2`∞,λ(C̄λ)(Ĉλ − C̃λ). (88)

First order condition implies that

D`mn,λ(Ĉλ) = D`mn,λ(C̄λ) + D2`mn,λ(C̄λ)(Ĉλ − C̄λ) = 0, (89)

where we used the fact that `mn,λ is quadratic. Together with (49), we have

D2`∞,λ(C̄λ)(Ĉλ − C̃λ) = D2`∞,λ(C̄λ)(Ĉλ − C̄λ) + D2`∞,λ(C̄λ)(C̄λ − C̃λ)

= D2`∞,λ(C̄λ)(Ĉλ − C̄λ)−D2`mn,λ(C̄λ)(Ĉλ − C̄λ)

= D2`∞(C̄λ)(Ĉλ − C̄λ)−D2`mn(C̄λ)(Ĉλ − C̄λ).
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Therefore,

Ĉλ − C̃λ = G−1
λ

[
D2`∞(C̄λ)(Ĉλ − C̄λ)−D2`mn(C̄λ)(Ĉλ − C̄λ)

]
. (90)

Then
∥∥∥Ĉλ − C̃λ

∥∥∥
2

a
=

∞∑

k1,k2=1

(1 + γ−1
k1k2

)a(1 + λγ−1
k1k2

)−2

×

 1

nm(m− 1)

n∑

i=1

∑

1≤j 6=k≤m

h(Tij , Tik)−
∫

T ×T
h(s, t)dsdt




2

,

where

h(s, t) = (Ĉλ(s, t)− C̄λ(s, t))ϕk1(s)ϕk2(t) ∈ H(K ⊗K). (91)

Write

h =
∑

j1,j2≥1

hj1j2ϕj1 ⊗ ϕj2 . (92)

Then

 1

nm(m− 1)

n∑

i=1

∑

1≤j 6=k≤m

h(Tij , Tik)−
∫

T ×T
h(s, t)dsdt




2

=


 ∑

j1,j2≥1

hj1j2


 1

nm(m− 1)

n∑

i=1

∑

1≤j 6=k≤m

ϕj1(Tij)ϕj2(Tik)−
∫

T ×T
ϕj1(s)ϕj2(t)dsdt







2

≤
∑

j1,j2≥1

γ−b
j1j2

h2
j1j2

∑

j1,j2≥1

γb
j1j2


 1

nm(m− 1)

n∑

i=1

∑

1≤j 6=k≤m

ϕj1(Tij)ϕj2(Tik)−
∫

T ×T
ϕj1(s)ϕj2(t)dsdt




2

.

Observe that

E


 1

nm(m− 1)

n∑

i=1

∑

1≤j 6=k≤m

ϕj1(Tij)ϕj2(Tik)−
∫

T ×T
ϕj1(s)ϕj2(t)dsdt




2

=
1
n
E


 1

m(m− 1)

∑

1≤j 6=k≤m

ϕj1(Tij)ϕj2(Tik)−
∫

T ×T
ϕj1(s)ϕj2(t)dsdt




2

≤ 1
nm2(m− 1)2

E


 ∑

1≤j 6=k≤m

ϕj1(Tij)ϕj2(Tik)




2

=
1

nm2(m− 1)2
∑

1≤j 6=k≤m
1≤j′ 6=k′≤m

E
[
ϕj1(Tij)ϕj2(Tik)ϕj1(Tij′)ϕj2(Tik′)

]

≤ 1
n

[(
1

m2(m− 1)2
m!

(m− 4)!
− 1

)(∫

T ×T
ϕj1(s)ϕj2(t)

)2

+ cm−1

]

≤ c

nm
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where we used the fact that
(∫

T ×T
ϕj1(s)ϕj2(t)dsdt

)2

≤
∫

T ×T
ϕ2

j1(s)ϕ
2
j2(t)dsdt = 1. (93)

Therefore, whenever b > 1/2α,

∥∥∥Ĉλ − C̃λ

∥∥∥
2

a
≤ Op

(
1

nm

) ∑

k1,k2≥1

(1 + γ−1
k1k2

)a(1 + λγ−1
k1k2

)−2 ‖h‖2
b

≤ Op

(
1

nm

) ∑

k1,k2≥1

(1 + γ−1
k1k2

)a(1 + λγ−1
k1k2

)−2
∥∥∥Ĉλ − C̄λ

∥∥∥
2

b
‖ϕk1 ⊗ ϕk2‖2

b

= Op

(
1

nm

)∥∥∥Ĉλ − C̄λ

∥∥∥
2

b

∑

k1,k2≥1

(1 + λγ−1
k1k2

)−2(1 + γ−1
k1k2

)a+b

= Op

(
log(1/λ)

nmλa+b+1/(2α)

)∥∥∥Ĉλ − C̄λ

∥∥∥
2

b
.
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