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OPTIMAL ESTIMATION OF THE MEAN FUNCTION BASED ON
DISCRETELY SAMPLED FUNCTIONAL DATA:

PHASE TRANSITION

BY T. TONY CAI1 AND MING YUAN2

University of Pennsylvania and Georgia Institute of Technology

The problem of estimating the mean of random functions based on dis-
cretely sampled data arises naturally in functional data analysis. In this paper,
we study optimal estimation of the mean function under both common and in-
dependent designs. Minimax rates of convergence are established and easily
implementable rate-optimal estimators are introduced. The analysis reveals
interesting and different phase transition phenomena in the two cases. Under
the common design, the sampling frequency solely determines the optimal
rate of convergence when it is relatively small and the sampling frequency
has no effect on the optimal rate when it is large. On the other hand, un-
der the independent design, the optimal rate of convergence is determined
jointly by the sampling frequency and the number of curves when the sam-
pling frequency is relatively small. When it is large, the sampling frequency
has no effect on the optimal rate. Another interesting contrast between the two
settings is that smoothing is necessary under the independent design, while,
somewhat surprisingly, it is not essential under the common design.

1. Introduction. Estimating the mean function based on discretely sampled
noisy observations is one of the most basic problems in functional data analysis.
Much progress has been made on developing estimation methodologies. The two
monographs by Ramsay and Silverman (2002, 2005) provide comprehensive dis-
cussions on the methods and applications. See also Ferraty and Vieu (2006).

Let X(·) be a random function defined on the unit interval T = [0,1] and
X1, . . . ,Xn be a sample of n independent copies of X. The goal is to estimate
the mean function g0(·) := E(X(·)) based on noisy observations from discrete lo-
cations on these curves:

Yij = Xi(Tij ) + εij , j = 1,2, . . . ,mi and i = 1,2, . . . , n,(1.1)

where Tij are sampling points, and εij are independent random noise variables
with Eεij = 0 and finite second moment Eε2

ij = σ 2
0 < +∞. The sample path of X
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is assumed to be smooth in that it belongs to the usual Sobolev–Hilbert spaces of
order r almost surely, such that

E

(∫
T

[
X(r)(t)

]2
dt

)
< +∞.(1.2)

Such problems naturally arise in a variety of applications and are typical in func-
tional data analysis [see, e.g., Ramsay and Silverman (2005), Ferraty and Vieu
(2006)]. Various methods have been proposed. However, little is known about their
theoretical properties.

In the present paper, we study optimal estimation of the mean function in two
different settings. One is when the observations are sampled at the same locations
across curves, that is, T1j = T2j = · · · = Tnj =: Tj for all j = 1, . . . ,m. We shall
refer to this setting as common design because the sampling locations are common
to all curves. Another setting is when the Tij are independently sampled from T ,
which we shall refer to as independent design. We establish the optimal rates of
convergence for estimating the mean function in both settings. Our analysis reveals
interesting and different phase transition phenomena in the two cases. Another
interesting contrast between the two settings is that smoothing is necessary under
the independent design, while, somewhat surprisingly, it is not essential under the
common design. We remark that under the independent design, the number of
sampling points oftentimes varies from curve to curve and may even be random
itself. However, for ease of presentation and better illustration of similarities and
differences between the two types of designs, we shall assume an equal number of
sampling points on each curve in the discussions given in this section.

Earlier studies of nonparametric estimation of the mean function g0 from a col-
lection of discretely sampled curves can be traced back to at least Hart and Wehrly
(1986) and Rice and Silverman (1991) in the case of common design. In this set-
ting, ignoring the temporal nature of {Tj : 1 ≤ j ≤ m}, the problem of estimating g0
can be translated into estimating the mean vector (g0(T1), . . . , g0(Tm))′, a typical
problem in multivariate analysis. Such notions are often quickly discarded because
they essentially lead to estimating g0(Tj ) by its sample mean

Ȳ·j = 1

n

n∑
i=1

Yij ,(1.3)

based on the standard Gauss–Markov theory [see, e.g., Rice and Silverman
(1991)].

Note that E(Yij |T ) = g0(Tij ) and that the smoothness of X implies that g0 is
also smooth. It is therefore plausible to assume that smoothing is essential for
optimal estimation of g0. For example, a natural approach for estimating g0 is to
regress Yij on Tij nonparametrically via kernel or spline smoothing. Various meth-
ods have been introduced along this vein [see, e.g., Rice and Silverman (1991)].
However, not much is known about their theoretical properties. It is noteworthy
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that this setting differs from the usual nonparametric smoothing in that the ob-
servations from the same curve are highly correlated. Nonparametric smoothing
with certain correlated errors has been previously studied by Hall and Hart (1990),
Wang (1996) and Johnstone and Silverman (1997), among others. Interested read-
ers are referred to Opsomer, Wang and Yang (2001) for a recent survey of existing
results. But neither of these earlier developments can be applied to account for the
dependency induced by the functional nature in our setting. To comprehend the
effectiveness of smoothing in the current context, we establish minimax bounds
on the convergence rate of the integrated squared error for estimating g0.

Under the common design, it is shown that the minimax rate is of the order
m−2r + n−1 where the two terms can be attributed to discretization and stochastic
error, respectively. This rate is fundamentally different from the usual nonparamet-
ric rate of (nm)−2r/(2r+1) when observations are obtained at nm distinct locations
in order to recover an r times differentiable function [see, e.g., Stone (1982)]. The
rate obtained here is jointly determined by the sampling frequency m and the num-
ber of curves n rather than the total number of observations mn. A distinct feature
of the rate is the phase transition which occurs when m is of the order n1/2r . When
the functions are sparsely sampled, that is, m = O(n1/2r ), the optimal rate is of
the order m−2r , solely determined by the sampling frequency. On the other hand,
when the sampling frequency is high, that is, m � n1/2r , the optimal rate remains
1/n regardless of m. Moreover, our development uncovers a surprising fact that
interpolation of {(Tj , Ȳ·j ) : j = 1, . . . ,m}, that is, estimating g0(Tj ) by Ȳ·j , is rate
optimal. In other words, contrary to the conventional wisdom, smoothing does not
result in improved convergence rates.

In addition to the common design, another popular sampling scheme is the in-
dependent design where the Tij are independently sampled from T . A natural ap-
proach is to smooth observations from each curve separately and then average over
all smoothed estimates. However, the success of this two-step procedure hinges
upon the availability of a reasonable estimate for each individual curve. In contrast
to the case of common design, we show that under the independent design, the
minimax rate for estimating g0 is (nm)−2r/(2r+1) + n−1, which can be attained by
smoothing {(Tij , Yij ) : 1 ≤ i ≤ n,1 ≤ j ≤ m} altogether. This implies that in the
extreme case of m = 1, the optimal rate of estimating g0 is n−2r/(2r+1), which also
suggests the sub-optimality of the aforementioned two-step procedure because it
is impossible to smooth a curve with only a single observation. Similar to the com-
mon design, there is a phase transition phenomenon in the optimal rate of conver-
gence with a boundary at m = n1/2r . When the sampling frequency m is small, that
is, m = O(n1/2r ), the optimal rate is of the order (nm)−2r/(2r+1) which depends
jointly on the values of both m and n. In the case of high sampling frequency with
m � n1/2r , the optimal rate is always 1/n and does not depend on m.

It is interesting to compare the minimax rates of convergence in the two set-
tings. The phase transition boundary for both designs occurs at the same value,
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m = n1/2r . When m is above the boundary, that is, m ≥ n1/2r , there is no differ-
ence between the common and independent designs, and both have the optimal
rate of n−1. When m is below the boundary, that is, m � n1/2r , the independent
design is always superior to the common design in that it offers a faster rate of
convergence.

Our results connect with several observations made earlier in the literature on
longitudinal and functional data analysis. Many longitudinal studies follow the
independent design, and the number of sampling points on each curve is typically
small. In such settings, it is widely recognized that one needs to pool the data to
obtain good estimates, and the two-step procedure of averaging the smooth curves
may be suboptimal. Our analysis here provides a rigorous justification for such
empirical observations by pinpointing to what extent the two-step procedure is
suboptimal. The phase transition observed here also relates to the earlier work
by Hall, Müller and Wang (2006) on estimating eigenfunctions of the covariance
kernel when the number of sampling points is either fixed or of larger than n1/4+δ

for some δ > 0. It was shown that the eigenfunctions can be estimated at the rate
of n−4/5 in the former case and 1/n in the latter. We show here that estimating the
mean function has similar behavior. Furthermore, we characterize the exact nature
of such transition behavior as the sampling frequency changes.

The rest of the paper is organized as follows. In Section 2 the optimal rate of
convergence under the common design is established. We first derive a minimax
lower bound and then show that the lower bound is in fact rate sharp. This is ac-
complished by constructing a rate-optimal smoothing splines estimator. The min-
imax upper bound is obtained separately for the common fixed design and com-
mon random design. Section 3 considers the independent design and establishes
the optimal rate of convergence in this case. The rate-optimal estimators are easily
implementable. Numerical studies are carried out in Section 4 to demonstrate the
theoretical results. Section 5 discusses connections and differences of our results
with other related work. All proofs are relegated to Section 6.

2. Optimal rate of convergence under common design. In this section we
consider the common design where each curve is observed at the same set of lo-
cations {Tj : 1 ≤ j ≤ m}. We first derive a minimax lower bound and then show
that this lower bound is sharp by constructing a smoothing splines estimator that
attains the same rate of convergence as the lower bound.

2.1. Minimax lower bound. Let P(r;M0) be the collection of probability
measures for a random function X such that its sample path is r times differen-
tiable almost surely and

E

∫
T

[
X(r)(t)

]2
dt ≤ M0(2.1)

for some constant M0 > 0. Our first main result establishes the minimax lower
bound for estimating the mean function over P(r;M0) under the common design.
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THEOREM 2.1. Suppose the sampling locations are common in model (1.1).
Then there exists a constant d > 0 depending only on M0 and the variance σ 2

0
of measurement error εij such that for any estimate g̃ based on observations
{(Tj , Yij ) : 1 ≤ i ≤ n,1 ≤ j ≤ m},

lim sup
n→∞

sup
L(X)∈P(r;M0)

P
(‖g̃ − g0‖2

L2
> d(m−2r + n−1)

)
> 0.(2.2)

The lower bound established in Theorem 2.1 holds true for both common fixed
design where Tj ’s are deterministic, and common random design where Tj ’s are
also random. The term m−2r in the lower bound is due to the deterministic approx-
imation error, and the term n−1 is attributed to the stochastic error. It is clear that
neither can be further improved. To see this, first consider the situation where there
is no stochastic variation and the mean function g0 is observed exactly at the points
Tj , j = 1, . . . ,m. It is well known [see, e.g., DeVore and Lorentz (1993)] that due
to discretization, it is not possible to recover g0 at a rate faster than m−2r for all
g0 such that

∫ [g(r)
0 ]2 ≤ M0. On the other hand, the second term n−1 is inevitable

since the mean function g0 cannot be estimated at a faster rate even if the whole
random functions X1, . . . ,Xn are observed completely. We shall show later in this
section that the rate given in the lower bound is optimal in that it is attainable by a
smoothing splines estimator.

It is interesting to notice the phase transition phenomenon in the minimax
bound. When the sampling frequency m is large, it has no effect on the rate of
convergence, and g0 can be estimated at the rate of 1/n, the best possible rate
when the whole functions were observed. More surprisingly, such saturation oc-
curs when m is rather small, that is, of the order n1/2r . On the other hand, when
the functions are sparsely sampled, that is, m = O(n1/2r ), the rate is determined
only by the sampling frequency m. Moreover, the rate m−2r is in fact also the op-
timal interpolation rate. In other words, when the functions are sparsely sampled,
the mean function g0 can be estimated as well as if it is observed directly without
noise.

The rate is to be contrasted with the usual nonparametric regression with nm

observations at arbitrary locations. In such a setting, it is well known [see, e.g.,
Tsybakov (2009)] that the optimal rate for estimating g0 is (mn)−2r/(2r+1), and
typically stochastic error and approximation error are of the same order to balance
the bias-variance trade-off.

2.2. Minimax upper bound: Smoothing splines estimate. We now consider the
upper bound for the minimax risk and construct specific rate optimal estimators
under the common design. These upper bounds show that the rate of convergence
given in the lower bound established in Theorem 2.1 is sharp. More specifically, it
is shown that a smoothing splines estimator attains the optimal rate of convergence
over the parameter space P(r;M0).
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We shall consider a smoothing splines type of estimate suggested by Rice and
Silverman (1991). Observe that f �→ ∫ [f (r)]2 is a squared semi-norm and there-
fore convex. By Jensen’s inequality,∫

T

[
g

(r)
0 (t)

]2
dt ≤ E

∫
T

[
X(r)(t)

]2
dt < ∞,(2.3)

which implies that g0 belongs to the r th order Sobolev–Hilbert space,

W r
2([0,1]) = {

g : [0,1] → R|g,g(1), . . . , g(r−1)

are absolutely continuous and g(r) ∈ L2([0,1])}.
Taking this into account, the following smoothing splines estimate can be em-
ployed to estimate g0:

ĝλ = arg min
g∈W r

2

{
1

nm

n∑
i=1

m∑
j=1

(
Yij − g(Tj )

)2 + λ

∫
T

[
g(r)(t)

]2
dt

}
,(2.4)

where λ > 0 is a tuning parameter that balances the fidelity to the data and the
smoothness of the estimate.

Similarly to the smoothing splines for the usual nonparametric regression,
ĝλ can be conveniently computed, although the minimization is taken over an
infinitely-dimensional functional space. First observe that ĝλ can be equivalently
rewritten as

ĝλ = arg min
g∈W r

2

{
1

m

m∑
j=1

(
Ȳ·j − g(Tj )

)2 + λ

∫
T

[
g(r)(t)

]2
dt

}
.(2.5)

Appealing to the so-called representer theorem [see, e.g., Wahba (1990)], the so-
lution of the minimization problem can be expressed as

ĝλ(t) =
r−1∑
k=0

dkt
k +

m∑
j=1

ciK(t, Tj )(2.6)

for some coefficients d0, . . . , dr−1, c1, . . . , cm, where

K(s, t) = 1

(r!)2 Br(s)Br(t) − 1

(2r)!B2r (|s − t |),(2.7)

where Bm(·) is the mth Bernoulli polynomial. Plugging (2.6) back into (2.5), the
coefficients and subsequently ĝλ can be solved in a straightforward way. This ob-
servation makes the smoothing splines procedure easily implementable. The read-
ers are referred to Wahba (1990) for further details.

Despite the similarity between ĝλ and the smoothing splines estimate in the
usual nonparametric regression, they have very different asymptotic properties. It
is shown in the following that ĝλ achieves the lower bound established in Theo-
rem 2.1.
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The analyses for the common fixed design and the common random design
are similar, and we shall focus on the fixed design where the common sampling
locations T1, . . . , Tm are deterministic. In this case, we assume without loss of
generality that T1 ≤ T2 ≤ · · · ≤ Tm. The following theorem shows that the lower
bound established in Theorem 2.1 is attained by the smoothing splines estimate ĝλ.

THEOREM 2.2. Consider the common fixed design and assume that

max
0≤j≤m

|Tj+1 − Tj | ≤ C0m
−1(2.8)

for some constant C0 > 0 where we follow the convention that T0 = 0 and
Tm+1 = 1. Then

lim
D→∞ lim sup

n→∞
sup

L(X)∈P(r;M0)

P
(‖ĝλ − g0‖2

L2
> D(m−2r + n−1)

) = 0(2.9)

for any λ = O(m−2r + n−1).

Together with Theorem 2.1, Theorem 2.2 shows that ĝλ is minimax rate optimal
if the tuning parameter λ is set to be of the order O(m−2r + n−1). We note the
necessity of the condition given by (2.8). It is clearly satisfied when the design
is equidistant, that is, Tj = 2j/(2m + 1). The condition ensures that the random
functions are observed on a sufficiently regular grid.

It is of conceptual importance to compare the rate of ĝλ with those generally
achieved in the usual nonparametric regression setting. Defined by (2.4), ĝλ es-
sentially regresses Yij on Tj . Similarly to the usual nonparametric regression, the
validity of the estimate is driven by E(Yij |Tj ) = g0(Tj ). The difference, however,
is that Yi1, . . . , Yim are highly correlated because they are observed from the same
random function Xi(·). When all the Yij ’s are independently sampled at Tj ’s, it
can be derived that the optimal rate for estimating g0 is m−2r + (mn)−2r/(2r+1).
As we show here, the dependency induced by the functional nature of our problem
leads to the different rate m−2r + n−1.

A distinct feature of the behavior of ĝλ is in the choice of the tuning parame-
ter λ. Tuning parameter selection plays a paramount role in the usual nonparamet-
ric regression, as it balances the the tradeoff between bias and variance. Optimal
choice of λ is of the order (mn)−2r/(2r+1) in the usual nonparametric regression.
In contrast, in our setting, more flexibility is allowed in the choice of the tuning
parameter in that ĝλ is rate optimal so long as λ is sufficiently small. In particular,
taking λ → 0+, ĝλ reduces to the splines interpolation, that is, the solution to

min
g∈W r

2

∫
T

[
g(r)(t)

]2 subject to g(Tj ) = Ȳ·j , j = 1, . . . ,m.(2.10)

This amounts to, in particular, estimating g0(Tj ) by Ȳ·j . In other words, there is
no benefit from smoothing in terms of the convergence rate. However, as we will
see in Section 4, smoothing can lead to improved finite sample performance.
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REMARK. More general statements can also be made without the condition
on the spacing of sampling points. More specifically, denote by

R(T1, . . . , Tm) = max
j

|Tj+1 − Tj |
the discretization resolution. Using the same argument, one can show that the op-
timal convergence rate in the minimax sense is R2r + n−1 and ĝλ is rate optimal
so long as λ = O(R2r + n−1).

REMARK. Although we have focused here on the case when the sampling
points are deterministic, a similar statement can also be made for the setting where
the sampling points are random. In particular, assuming that Tj are independent
and identically distributed with a density function η such that inft∈T η(t) ≥ c0 > 0
and g0 ∈ W r∞, it can be shown that the smoothing splines estimator ĝλ satisfies

lim
D→∞ lim sup

n→∞
sup

L(X)∈P(r;M0)

P
(‖ĝλ − g0‖2

L2
> D(m−2r + n−1)

) = 0(2.11)

for any λ = O(m−2r + n−1). In other words, ĝλ remains rate optimal.

3. Optimal rate of convergence under independent design. In many appli-
cations, the random functions Xi are not observed at common locations. Instead,
each curve is discretely observed at a different set of points [see, e.g., James and
Hastie (2001), Rice and Wu (2001), Diggle et al. (2002), Yao, Müller and Wang
(2005)]. In these settings, it is more appropriate to model the sampling points Tij

as independently sampled from a common distribution. In this section we shall
consider optimal estimation of the mean function under the independent design.

Interestingly, the behavior of the estimation problem is drastically different be-
tween the common design and the independent design. To keep our treatment gen-
eral, we allow the number of sampling points to vary. Let m be the harmonic mean
of m1, . . . ,mn, that is,

m :=
(

1

n

n∑
i=1

1

mi

)−1

.

Denote by M(m) the collection of sampling frequencies (m1, . . . ,mn) whose har-
monic mean is m. In parallel to Theorem 2.1, we have the following minimax
lower bound for estimating g0 under the independent design.

THEOREM 3.1. Suppose Tij are independent and identically distributed with
a density function η such that inft∈T η(t) ≥ c0 > 0. Then there exists a constant
d > 0 depending only on M0 and σ 2

0 such that for any estimate g̃ based on obser-
vations {(Tij , Yij ) : 1 ≤ i ≤ n,1 ≤ j ≤ m},

lim sup
n→∞

sup
L(X)∈P(r;M0)

(m1,...,mn)∈M(m)

P
(‖g̃ − g0‖2

L2
> d

(
(nm)−2r/(2r+1) + n−1))

> 0.(3.1)
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The minimax lower bound given in Theorem 3.1 can also be achieved using
the smoothing splines type of estimate. To account for the different sampling fre-
quency for different curves, we consider the following estimate of g0:

ĝλ = arg min
g∈W r

2

{
1

n

n∑
i=1

1

mi

mi∑
j=1

(
Yij − g(Tij )

)2 + λ

∫
T

[
g(r)(t)

]2
dt

}
.(3.2)

THEOREM 3.2. Under the conditions of Theorem 3.1, if λ � (nm)−2r/(2r+1),
then the smoothing splines estimator ĝλ satisfies

lim
D→∞ lim sup

n→∞
sup

L(X)∈P(r;M0)

(m1,...,mn)∈M(m)

P
(‖ĝ − g0‖2

L2
> D

(
(nm)−2r/(2r+1) + n−1))

(3.3)
= 0.

In other words, ĝλ is rate optimal.

Theorems 3.1 and 3.2 demonstrate both similarities and significant differences
between the two types of designs in terms of the convergence rate. For either the
common design or the independent design, the sampling frequency only plays a
role in determining the convergence rate when the functions are sparsely sampled,
that is, m = O(n1/2r ). But how the sampling frequency affects the convergence
rate when each curve is sparsely sampled differs between the two designs. For the
independent design, the total number of observations mn, whereas for the common
design m alone, determines the minimax rate. It is also noteworthy that when m =
O(n1/2r ), the optimal rate under the independent design, (mn)−2r/(2r+1), is the
same as if all the observations are independently observed. In other words, the
dependency among Yi1, . . . , Yim does not affect the convergence rate in this case.

REMARK. We emphasize that Theorems 3.1 and 3.2 apply to both determinis-
tic and random sampling frequencies. In particular for random sampling frequen-
cies, together with the law of large numbers, the same minimax bound holds when
we replace the harmonic mean by

(
1

n

n∑
i=1

E(1/mi)

)−1

,

when assuming that mi ’s are independent.

3.1. Comparison with two-stage estimate. A popular strategy to handle dis-
cretely sampled functional data in practice is a two-stage procedure. In the first
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step, nonparametric regression is run for data from each curve to obtain estimate
X̃i of Xi , i = 1,2, . . . , n. For example, they can be obtained by smoothing splines

X̃i,λ = arg min
f ∈W r

2

{
1

m

m∑
j=1

(
Yij − g(Tij )

)2 + λ

∫
T

[
f (r)(t)

]2
dt

}
.(3.4)

Any subsequent inference can be carried out using the X̃i,λ as if they were the
original true random functions. In particular, the mean function g0 can be estimated
by the simple average

g̃λ = 1

n

n∑
i=1

X̃i,λ.(3.5)

Although formulated differently, it is worth pointing out that this procedure is
equivalent to the smoothing splines estimate ĝλ under the common design.

PROPOSITION 3.3. Under the common design, that is, Tij = Tj for 1 ≤ i ≤ n

and 1 ≤ j ≤ m. The estimate g̃λ from the two-stage procedure is equivalent to the
smoothing splines estimate ĝλ: ĝλ = g̃λ.

In light of Theorems 2.1 and 2.2, the two-step procedure is also rate optimal
under the common design. But it is of great practical importance to note that in
order to achieve the optimality, it is critical that in the first step we undersmooth
each curve by using a sufficiently small tuning parameter.

Under independent design, however, the equivalence no long holds. The suc-
cess of the two-step estimate g̃λ depends upon getting a good estimate of each
curve, which is not possible when m is very small. In the extreme case of m = 1,
the procedure is no longer applicable, but Theorem 3.2 indicates that smoothing
splines estimate ĝλ can still achieve the optimal convergence rate of n−2r/(2r+1).
The readers are also referred to Hall, Müller and Wang (2006) for discussions on
the pros and cons of similar two-step procedures in the context of estimating the
functional principal components.

4. Numerical experiments. The smoothing splines estimators are easy to im-
plement. To demonstrate the practical implications of our theoretical results, we
carried out a set of simulation studies. The true mean function g0 is fixed as

g0 =
50∑

k=1

4(−1)k+1k−2φk,(4.1)

where φ1(t) = 1 and φk+1(t) = √
2 cos(kπt) for k ≥ 1. The random function X

was generated as

X = g0 +
50∑

k=1

ζkZkφk,(4.2)
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where Zk are independently sampled from the uniform distribution on [−√
3,

√
3],

and ζk are deterministic. It is not hard to see that ζ 2
k are the eigenvalues of the co-

variance function of X and therefore determine the smoothness of a sample curve.
In particular, we take ζk = (−1)k+1k−1.1/2. It is clear that the sample path of X

belongs to the second order Sobolev space (r = 2).
We begin with a set of simulations designed to demonstrate the effect of in-

terpolation and smoothing under common design. A data set of fifty curves were
first simulated according to the aforementioned scheme. For each curve, ten noisy
observations were taken at equidistant locations on each curve following model
(1.1) with σ 2

0 = 0.52. The observations, together with g0 (grey line), are given in
the right panel of Figure 1. Smoothing splines estimate ĝλ is also computed with
a variety of values for λ. The integrated squared error, ‖ĝλ − g0‖L2 , as a func-
tion of the tuning parameter λ is given in the left panel. For λ smaller than 0.1,
the smoothing splines estimate essentially reduces to the spline interpolation. To
contrast the effect of interpolation and smoothing, the right panel also includes the
interpolation estimate (solid black line) and ĝλ (red dashed line) with the tuning
parameter chosen to minimize the integrated squared error. We observe from the

FIG. 1. Effect of smoothing under common design: for a typical data set with fifty curves, ten
observations were taken on each curve. The observations and g0 (solid grey line) are given in the
right panel together with the spline interpolation estimate (solid black line) and smoothing splines
estimate (red dashed line) with the tuning parameter chosen to yield the smallest integrated squared
error. The left panel gives the integrated squared error of the smoothing splines estimate as a function
of the tuning parameter. It is noted that the smoothing splines estimate essentially reduces to the
spline interpolation for λ smaller than 0.1.
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figure that smoothing does lead to slightly improved finite sample performance
although it does not affect the convergence rate as shown in Section 2.

The next numerical experiment intends to demonstrate the effect of sample
size n, sampling frequency m as well as design. To this end, we simulated n curves,
and from each curve, m discrete observations were taken following model (1.1)
with σ 2

0 = 0.52. The sampling locations are either fixed at Tj = (2j)/(2m + 1),
j = 1, . . . ,m, for common design or randomly sampled from the uniform distri-
bution on [0,1]. The smoothing splines estimate ĝλ for each simulated data set,
and the tuning parameter is set to yield the smallest integrated squared error and
therefore reflect the best performance of the estimating procedure for each data
set. We repeat the experiment with varying combinations of n = 25,50 or 200,
m = 1,5,10 or 50. For the common design, we restrict to m = 10 or 50 to give
more meaningful comparison. The true function g0 as well as its estimates obtained
in each of the settings are given in Figure 2.

Figure 2 agrees pretty well with our theoretical results. For instance, increasing
either m or n leads to improved estimates, whereas such improvement is more vis-
ible for small values of m. Moreover, for the same value of m and n, independent
designs tend to yield better estimates.

FIG. 2. Effect of m, n and type of design on estimating g0: smoothing splines estimates obtained
under various combinations are plotted together with g0.
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FIG. 3. Effect of design type and sampling frequency on estimating g0: the black solid line and
circles correspond to common design whereas the red dashed lines and circles correspond to in-
dependent design. The error bars correspond to the average ± one standard errors based on two
hundred repetitions. Note that both axes are in log scale to yield better comparison.

To further contrast the two types of designs and the effect of sampling frequency
on estimating g0, we now fix the number of curves at n = 100. For the common
design, we consider m = 10,20,50 or 100. For the independent design, we let
m = 1,5,10,20,50 or 100. For each combination of (n,m), two hundred data
sets were simulated following the same mechanism as before. Figure 3 gives the
estimation error averaged over the one hundred data sets for each combination of
(n,m). It clearly shows that independent design is preferable over common design
when m is small; and the two types of designs are similar when m is large. Both
phenomena are in agreement with our theoretical results developed in the earlier
sections.

5. Discussions. We have established the optimal rates of convergence for esti-
mating the mean function under both the common design and independent design.
The results reveal several significant differences in the behavior of the minimax es-
timation problem between the two designs. These revelations have important the-
oretical and practical implications. In particular, for sparsely sampled functions,
the independent design leads to a faster rate of convergence when compared to the
common design and thus should be preferred in practice.

The optimal rates of convergence for estimating the mean function based on dis-
cretely sampled random functions behave in a fundamentally different way from
the minimax rate of convergence in the conventional nonparametric regression
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problems. The optimal rates in the mean function estimation are jointly deter-
mined by the sampling frequency m and the number of curves n rather than the
total number of observations mn.

The observation that one can estimate the mean function as well as if the the
whole curves are available when m � n1/2r bears some similarity to some recent
findings on estimating the covariance kernel and its eigenfunction under indepen-
dent design. Assuming that X is twice differentiable (i.e., r = 2), Hall, Müller and
Wang (2006) showed that when m � n1/4+δ for some δ > 0, the covariance kernel
and its eigenfunctions can be estimated at the rate of 1/n when using a two-step
procedure. More recently, the cutoff point is further improved to n1/2r logn with
general r by Cai and Yuan (2010) using an alternative method. Intuitively one
may expect estimating the covariance kernel to be more difficult than estimating
the mean function, which suggests that these results may not be improved much
further for estimating the covariance kernel or its eigenfunctions.

We have also shown that the particular smoothing splines type of estimate dis-
cussed earlier by Rice and Silverman (1991) attains the optimal convergence rates
under both designs with appropriate tuning. The smoothing splines estimator is
well suited for nonparametric estimation over Sobolev spaces. We note, however,
other nonparametric techniques such as kernel or local polynomial estimators can
also be used. We expect that kernel smoothing or other methods with proper choice
of the tuning parameters can also achieve the optimal rate of convergence. Further
study in this direction is beyond the scope of the current paper, and we leave it for
future research.

Finally, we emphasize that although we have focused on the univariate Sobolev
space for simplicity, the phenomena observed and techniques developed apply to
more general functional spaces. Consider, for example, the multivariate setting
where T = [0,1]d . Following the same arguments, it can be shown that the min-
imax rate for estimating an r-times differentiable function is m−2r/d + n−1 un-
der the common design and (nm)−2r/(2r+d) + n−1 under the independent design.
The phase transition phenomena thus remain in the multidimensional setting under
both designs with a transition boundary of m = nd/2r .

6. Proofs.

PROOF OF THEOREM 2.1. Let D be the collection all measurable functions
of {(Tij , Yij ) : 1 ≤ i ≤ n,1 ≤ j ≤ m}. First note that it is straightforward to show
that

lim sup
n→∞

inf
g̃∈D

sup
L(X)∈P(r;M0)

P (‖g̃ − g0‖2
L2

> dn−1) > 0

by considering X as an unknown constant function where the problem essentially
becomes estimating the mean from n i.i.d. observations, and 1/n is known as the
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optimal rate. It now suffices to show that

lim sup
n→∞

inf
g̃∈D

sup
L(X)∈P(r;M0)

P (‖g̃ − g0‖2
L2

> dm−2r ) > 0.

Let ϕ1, . . . , ϕ2m be 2m functions from W r
2 with distinct support, that is,

ϕk(·) = hrK

( · − tk

h

)
, k = 1, . . . ,2m,

where h = 1/(2m), tk = (k − 1)/2m + 1/4m, and K : R → [0,∞) is an r times
differentiable function with support [−1/2,1/2]. See Tsybakov (2009) for explicit
construction of such functions.

For each b = (b1, . . . , b2m) ∈ {0,1}2m, define

gb(·) =
2m∑
k=1

bkϕk(·).

It is clear that

min
H(b,b′)≥1

‖gb − gb′‖2
L2

H(b, b′)
= ‖ϕk‖2

L2
= (2m)−(2r+1)‖K‖2

L2
.

The claim then follows from an application of Assouad’s lemma [Assouad (1983)].
�

PROOF OF THEOREM 2.2. It is well known [see, e.g., Green and Silverman
(1994)] that ĝλ can be characterized as the solution to the following:

min
g∈W r

2

∫
T

[
g(r)(t)

]2
dt subject to g(Tj ) = ĝλ(Tj ), j = 1, . . . ,m.

Write

δj = ĝλ(Tij ) − g0(Tij ),

and let h be the linear interpolation of {(Tj , δj ) : 1 ≤ j ≤ m}, that is,

h(t) =

⎧⎪⎪⎨
⎪⎪⎩

δ1, 0 ≤ t ≤ T1,

δj

Tj+1 − t

Tj+1 − Tj

+ δ·j+1
t − Tj

Tj+1 − Tj

, Tj ≤ t ≤ Tj+1,

δm, Tm ≤ t ≤ 1.

(6.1)

Then ĝλ = QT (g0 + h) where QT be the operator associated with the r th order
spline interpolation, that is, QT (f ) is the solution to

min
g∈W r

2

∫
T

[
g(r)(t)

]2
dt subject to g(Tj ) = f (Tj ), j = 1, . . . ,m.
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Recall that QT is a linear operator in that QT (f1 + f2) = QT (f1) + QT (f2)

[see, e.g., DeVore and Lorentz (1993)]. Therefore, ĝλ = QT (g0) + QT (h). By the
triangular inequality,

‖ĝ − g0‖L2 ≤ ‖QT (g0) − g0‖L2 + ‖QT (h)‖L2 .(6.2)

The first term on the right-hand side represents the approximation error of spline
interpolation for g0, and it is well known that it can be bounded by [see, e.g.,
DeVore and Lorentz (1993)]

‖QT (g0) − g0‖2
L2

≤ c0

(
max

0≤j≤m
|Tj+1 − Tj |2r

)∫
T

[
g

(r)
0 (t)

]2
dt(6.3)

≤ c0M0m
−2r .

Hereafter, we shall use c0 > 0 as a generic constant which may take different val-
ues at different appearance.

It now remains to bound ‖QT (h)‖L2 . We appeal to the relationship between
spline interpolation and the best local polynomial approximation. Let

Ij = [Tj−r+1, Tj+r ]
with the convention that Tj = 0 for j < 1 and Tj = 1 for j > m. Denote by Pj the
best approximation error that can be achieved on Ij by a polynomial of order less
that r , that is,

Pj (f ) = min
ak : k<r

∫
Ij

[
r−1∑
k=0

akt
k − f (t)

]2

dt.(6.4)

It can be shown [see, e.g., Theorem 4.5 on page 147 of DeVore and Lorentz (1993)]
that

‖f − QT (f )‖2
L2

≤ c0

(
m∑

j=1

Pj (f )2

)
.

Then

‖QT (h)‖L2 ≤ ‖h‖L2 + c0

(
m∑

j=1

Pj (f )2

)1/2

.

Together with the fact that

Pj (h)2 ≤
∫
Ij

h(t)2 dt,
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we have

‖QT (h)‖2
L2

≤ c0‖h‖2
L2

≤ c0

m∑
j=1

δ2
j (Tj+1 − Tj−1) ≤ c0m

−1
m∑

j=1

δ2
j

= c0m
−1

m∑
j=1

[ĝλ(Tj ) − g0(Tj )]2

≤ c0m
−1

m∑
j=1

([Ȳ·j − ĝλ(Tj )]2 + [Ȳ·j − g0(Tj )]2)
.

Observe that

E

(
m−1

m∑
j=1

[Ȳ·j − g0(Tj )]2

)
= c0σ

2
0 n−1.

It suffices to show that

m−1
m∑

j=1

[Ȳ·j − ĝλ(Tj )]2 = Op(m−2r + n−1).

To this end, note that by the definition of ĝλ,

1

m

m∑
j=1

(
Ȳ·j − ĝλ(Tj )

)2 ≤ 1

m

m∑
j=1

(
Ȳ·j − ĝλ(Tj )

)2 + λ

∫
T

[
ĝ

(r)
λ (t)

]2
dt

≤ 1

m

m∑
j=1

(
Ȳ·j − g0(Tj )

)2 + λ

∫
T

[
g

(r)
0 (t)

]2
dt

≤ Op(m−2r + n−1),

because λ = O(m−2r + n−1). The proof is now complete. �

PROOF OF THEOREM 3.1. Note that any lower bound for a specific case yields
immediately a lower bound for the general case. It therefore suffices to consider
the case when X is a Gaussian process and m1 = m2 = · · · = mn =: m. Denote
by N = c(nm)1/(2r+1) where c > 0 is a constant to be specified later. Let b =
(b1, . . . , bN) ∈ {0,1}N be a binary sequence, and write

gb(·) = M
1/2
0 π−r

2N∑
k=N+1

N−1/2k−rbk−Nϕk(·),
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where ϕk(t) = √
2 cos(πkt). It is not hard to see that∫

T

[
g

(r)
b (t)

]2
dt = M0π

−2r
2N∑

k≥N+1

(πk)2r (N−1/2k−rbk−N)2

= M0N
−1

2N∑
k=N+1

bk−N ≤ M0.

Furthermore,

‖gb − gb′‖2
L2

= M0π
−2rN−1

2N∑
k=N+1

k−2r (bk−N − b′
k−N)2

≥ M0π
−2r (2N)−(2r+1)

2N∑
k=N+1

(bk−m − b′
k−m)2

= c0N
−(2r+1)H(b, b′)

for some constant c0 > 0. By the Varshamov–Gilbert bound [see, e.g., Tsybakov
(2009)], there exists a collection of binary sequences {b(1), . . . , b(M)} ⊂ {0,1}N
such that M ≥ 2N/8, and

H
(
b(j), b(k)) ≥ N/8 ∀1 ≤ j < k ≤ M.

Then ∥∥gb(j) − gb(k)

∥∥
L2

≥ c0N
−r .

Assume that X is a Gaussian process with mean gb, T follows a uniform
distribution on T and the measurement error ε ∼ N(0, σ 2

0 ). Conditional on
{Tij : j = 1, . . . ,m}, Zi· = (Zi1, . . . ,Zim)′ follows a multivariate normal distri-
bution with mean μb = (gb(Ti1), . . . , gb(Tim))′ and covariance matrix �(T ) =
(C0(Tij , Tik))1≤j,k≤m +σ 2

0 I . Therefore, the Kullback–Leibler distance from prob-
ability measure �g

b(j)
to �g

b(k)
can be bounded by

KL
(
�g

b(j)
|�g

b(k)

) = nET

[(
μg

b(j)
− μg

b(k)

)′
�−1(T )

(
μg

b(j)
− μg

b(k)

)]
≤ nσ−2

0 ET

∥∥μg
b(j)

− μg
b(k)

∥∥2

= nmσ−2
0

∥∥gb(j) − gb(k)

∥∥2
L2

≤ c1nmσ−2
0 N−2r .

An application of Fano’s lemma now yields

max
1≤j≤M

Eg
b(j)

∥∥g̃ − gb(j)

∥∥
L2

≥ c0N
−r

(
1 − log(c1nmσ−2

0 N−2r ) + log 2

logM

)

� (nm)−r/(2r+1)
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with an appropriate choice of c, for any estimate g̃. This in turn implies that

lim sup
n→∞

inf
g̃∈D

sup
L(X)∈P(r;M0)

P
(‖g̃ − g0‖2

L2
> d(nm)−2r/(2r+1)) > 0.

The proof can then be completed by considering X as an unknown constant func-
tion. �

PROOF OF THEOREM 3.2. For brevity, in what follows, we treat the sampling
frequencies m1, . . . ,mn as deterministic. All the arguments, however, also apply
to the situation when they are random by treating all the expectations and prob-
abilities as conditional on m1, . . . ,mn. Similarly, we shall also assume that Tj ’s
follow uniform distribution. The argument can be easily applied to handle more
general distributions.

It is well known that W r
2 , endowed with the norm

‖f ‖2
W r

2
=

∫
f 2 +

∫ (
f (r))2

,(6.5)

forms a reproducing kernel Hilbert space [Aronszajn (1950)]. Let H0 be the collec-
tion of all polynomials of order less than r and H1 be its orthogonal complement
in W r

2 . Let {φk : 1 ≤ k ≤ r} be a set of orthonormal basis functions of H0, and
{φk :k > r} an orthonormal basis of H1 such that any f ∈ W r

2 admits the repre-
sentation

f = ∑
ν≥1

fνφν.

Furthermore,

‖f ‖2
L2

= ∑
ν≥1

f 2
ν and ‖f ‖2

W r
2
= ∑

ν≥1

(1 + ρ−1
ν )f 2

ν ,

where ρ1 = · · · = ρr = +∞ and ρν � ν−2r .
Recall that

ĝ = arg min
g∈H(K)

{
�mn(g) + λ

∫ [
g(r)]2

}
,

where

�mn(g) = 1

n

n∑
i=1

1

mi

mi∑
j=1

(
Yij − g(Tij )

)2
.

For brevity, we shall abbreviate the subscript of ĝ hereafter when no confusion
occurs. Write

�∞(g) = E

(
1

n

n∑
i=1

1

mi

mi∑
j=1

[Yij − g(Tij )]2

)

= E
([Y11 − g0(T11)]2) +

∫
T
[g(s) − g0(s)]2 ds.
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Let

ḡ = arg min
g∈H(K)

{
�∞(g) + λ

∫ [
g(r)]2

}
.

Denote

�mn,λ(g) = �mn(g) + λ

∫ [
g(r)]2; �∞,λ(g) = �∞(g) + λ

∫ [
g(r)]2

.

Let

g̃ = ḡ − 1
2G−1

λ D�mn,λ(ḡ),

where Gλ = (1/2)D2�∞,λ(ḡ) and D stands for the Fréchet derivative. It is clear
that

ĝ − g0 = (ḡ − g0) + (ĝ − g̃) + (g̃ − ḡ).

We proceed by bounding the three terms on the right-hand side separately. In par-
ticular, it can be shown that

‖ḡ − g0‖2
L2

≤ c0λ

∫ [
g

(r)
0

]2(6.6)

and

‖g̃ − ḡ‖2
L2

= Op

(
n−1 + (nm)−1λ−1/(2r)).(6.7)

Furthermore, if

nmλ1/(2r) → ∞,

then

‖ĝ − g̃‖2
L2

= op

(
n−1 + (nm)−1λ−1/(2r)).(6.8)

Therefore,

‖ĝ − g0‖2
L2

= Op

(
λ + n−1 + (nm)−1λ−1/(2r)).

Taking

λ � (nm)−2r/(2r+1)

yields

‖ĝ − g0‖2
L2

= Op

(
n−1 + (nm)−2r/(2r+1)).

We now set to establish bounds (6.6)–(6.8). For brevity, we shall assume in
what follows that all expectations are taken conditionally on m1, . . . ,mn unless
otherwise indicated. Define

‖g‖2
α = ∑

ν≥1

(1 + ρ−1
ν )αg2

ν ,(6.9)
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where 0 ≤ α ≤ 1.
We begin with ḡ − g0. Write

g0(·) = ∑
k≥1

akφk(·), g(·) = ∑
k≥1

bkφk(·).(6.10)

Then

�∞(g) = E
([Y11 − g0(T11)]2) + ∑

k≥1

(bk − ak)
2.(6.11)

It is not hard to see

b̄k := 〈ḡ, φk〉L2 = arg min{(bk − ak)
2 + λρ−1

k b2
k} = ak

1 + λρ−1
k

.(6.12)

Hence,

‖ḡ − g0‖2
α = ∑

k≥1

(1 + ρ−1
k )α(b̄k − ak)

2

= ∑
k≥1

(1 + ρ−1
k )α

(
λρ−1

k

1 + λρ−1
k

)2

a2
k

≤ c0λ
2 sup

k≥1

ρ
−(1+α)
k

(1 + λρ−1
k )2

∞∑
k=1

ρ−1
k a2

k

≤ c0λ
1−α

∫ [
g

(r)
0

]2
.

Next, we consider g̃ − ḡ. Notice that D�mn,λ(ḡ) = D�mn,λ(ḡ) − D�∞,λ(ḡ) =
D�mn(ḡ) − D�∞(ḡ). Therefore

E[D�mn,λ(ḡ)f ]2 = E[D�mn(ḡ)f − D�∞(ḡ)f ]2

= 4

n2

n∑
i=1

1

m2
i

Var

[
mi∑

j=1

([Yij − ḡ(Tij )]f (Tij )
)]

.

Note that

Var

[
mi∑

j=1

([Yij − ḡ(Tij )]f (Tij )
)]

= Var

[
E

(
mi∑

j=1

[Yij − ḡ(Tij )]f (Tij )|T
)]

+ E

[
Var

(
mi∑

j=1

Yijf (Tij )|T
)]

= Var

[
mi∑

j=1

([g0(Tij ) − ḡ(Tij )]f (Tij )
)] + E

[
Var

(
mi∑

j=1

Yijf (Tij )|mi,T

)]
.
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The first term on the rightmost-hand side can be bounded by

Var

[
mi∑

j=1

([g0(Tij ) − ḡ(Tij )]f (Tij )
)]

= mi Var
([g0(Ti1) − ḡ(Ti1)]f (Ti1)

)
≤ miE

([g0(Ti1) − ḡ(Ti1)]f (Ti1)
)2

= mi

∫
T

([g0(t) − ḡ(t)]f (t)
)2

dt

≤ mi

∫
T
[g0(t) − ḡ(t)]2 dt

∫
T

f 2(t) dt,

where the last inequality follows from the Cauchy–Schwarz inequality. Together
with (6.6), we get

Var

[
mi∑

j=1

([g0(Tij ) − ḡ(Tij )]f (Tij )
)] ≤ c0mi‖f ‖2

L2
λ.(6.13)

We now set out to compute the the second term. First observe that

Var

(
mi∑

j=1

Yijf (Tij )|T
)

=
mi∑

j,k=1

f (Tij )f (Tik)
(
C0(Tij , Tik) + σ 2

0 δjk

)
,

where δjk is Kronecker’s delta. Therefore,

E

[
Var

(
m∑

j=1

Y1j f (T1j )|T
)∣∣∣mi

]

= mi(mi − 1)

∫
T ×T

f (s)C0(s, t)f (t) ds dt

+ miσ
2
0 ‖f ‖2

L2
+ mi

∫
T

f 2(s)C(s, s) ds.

Summing up, we have

E[D�mn,λ(ḡ)φk]2 ≤ c0

n2

(
n∑

i=1

1

mi

)
+ 4ck

n
,(6.14)

where

ck =
∫

T ×T
φk(s)C0(s, t)φk(t) ds dt.(6.15)
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Therefore,

E‖g̃ − ḡ‖2
α = E

∥∥∥∥1

2
G−1

λ D�nm,λ(ḡ)

∥∥∥∥
2

α

= 1

4
E

[∑
k≥1

(1 + ρ−1
k )α(1 + λρ−1

k )−2(D�nm,λ(ḡ)φk)
2
]

≤ c0

n2

(
n∑

i=1

1

mi

) ∑
k≥1

(1 + ρ−1
k )α(1 + λρ−1

k )−2

+ 1

n

∑
k≥1

(1 + ρ−1
k )α(1 + λρ−1

k )−2ck.

Observe that ∑
k≥1

(1 + ρ−1
k )α(1 + λρ−1

k )−2 ≤ c0λ
−α−1/(2r)

and ∑
k≥1

(1 + ρ−1
k )α(1 + λρ−1

k )−2ck ≤ ∑
k≥1

(1 + ρ−1
k )ck = E‖X‖2

W r
2
< ∞.

Thus,

E‖g̃ − ḡ‖2
α ≤ c0

[
1

n2

(
n∑

i=1

1

mi

)
λ−α−1/(2r) + 1

n

]
.

It remains to bound ĝ − g̃. It can be easily verified that

ĝ − g̃ = 1
2G−1

λ [D2�∞(ḡ)(ĝ − ḡ) − D2�mn(ḡ)(ĝ − ḡ)].(6.16)

Then

‖ĝ − g̃‖2
α = ∑

k≥1

(1 + ρ−1
k )α(1 + λρ−1

k )−2

×
[

1

n

n∑
i=1

1

mi

mi∑
j=1

(
ĝ(Tij ) − ḡ(Tij )

)
φk(Tij )

−
∫

T

(
ĝ(s) − ḡ(s)

)
φk(s) ds

]2

.

Clearly, (ĝ − ḡ)φk ∈ H(K). Write

(ĝ − ḡ)φk = ∑
j≥1

hjφj .(6.17)
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Then, by the Cauchy–Schwarz inequality,
[

1

n

n∑
i=1

1

mi

mi∑
j=1

(
ĝ(Tij ) − ḡ(Tij )

)
φk(Tij ) −

∫
T

(
ĝ(s) − ḡ(s)

)
φk(s) ds

]2

=
[ ∑

k1≥1

hk1

(
1

n

n∑
i=1

1

mi

mi∑
j=1

φk1(Tij ) −
∫

T
φk1(s) ds

)]2

≤
[ ∑
k1≥1

(1 + ρ−1
k1

)γ h2
k1

]

×
[ ∑

k1≥1

(1 + ρ−1
k1

)−γ

(
1

n

n∑
i=1

1

mi

mi∑
j=1

φk1(Tij ) −
∫

T
φk1(s) ds

)2]

≤ ‖ĝ − ḡ‖2
γ (1 + ρ−1

k )γ

×
[ ∑

k1≥1

(1 + ρ−1
k1

)−γ

(
1

n

n∑
i=1

1

mi

mi∑
j=1

φk1(Tij ) −
∫

T
φk1(s) ds

)2]

for any 0 ≤ γ ≤ 1, where in the last inequality, we used the fact that

‖(ĝ − ḡ)φk‖γ ≤ ‖ĝ − ḡ‖γ ‖φk‖γ = ‖ĝ − ḡ‖γ (1 + ρ−1
k )γ /2.(6.18)

Following a similar calculation as before, it can be shown that

E

[ ∑
k1≥1

(1 + ρ−1
k1

)−γ

(
1

n

n∑
i=1

1

mi

mi∑
j=1

φk1(Tij ) −
∫

T
φk1(s) ds

)2]

≤ 1

n2

(
n∑

i=1

1

mi

) ∑
k1≥1

(1 + ρ−1
k1

)−γ ,

which is finite whenever γ > 1/2r . Recall that m is the harmonic mean of
m1, . . . ,mn. Therefore,

‖ĝ − g̃‖2
α ≤ Op

(
1

nmλα+γ+1/(2r)

)
‖ĝ − ḡ‖2

γ .(6.19)

If α > 1/2r , then taking γ = α yields

‖ĝ − g̃‖2
α = Op

(
1

nmλ2α+1/(2r)

)
‖ĝ − ḡ‖2

α = op(‖ĝ − ḡ‖α),(6.20)

assuming that

nmλ2α+1/(2r) → ∞.(6.21)
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Together with the triangular inequality

‖g̃ − ḡ‖α ≥ ‖ĝ − ḡ‖α − ‖ĝ − g̃‖α = (
1 − op(1)

)‖ĝ − ḡ‖α.(6.22)

Therefore,

‖ĝ − ḡ‖2
α = Op(‖g̃ − ḡ‖2

α) = Op

(
n−1 + (nm)−1λ−α−1/(2r)).(6.23)

Together with (6.19),

‖ĝ − g̃‖2
L2

= Op

(
1

nmλα+1/(2r)

(
n−1 + (nm)−1λ−α−1/(2r)))

= op

(
n−1λα + (nm)−1λ−1/(2r)).

We conclude by noting that in the case when m1, . . . ,mn are random, m can
also be replaced with the expectation of the harmonic mean thanks to the law of
large numbers. �

PROOF OF PROPOSITION 3.3. Let QT,λ be the smoothing spline operator, that
is, QT,λ(f1, . . . , fm) is the solution to

min
g∈W r

2

{
1

m

m∑
j=1

(
fj − g(Tj )

)2 + λ

∫
T

[
g(r)(t)

]2
dt

}
.

It is clear that

ĝλ = QT,λ(Ȳ·1, Ȳ·2, . . . , Ȳ·m)

and

X̃i,λ = QT,λ(Yi1, Yi2, . . . , Yim).

Because QT,λ is a linear operator [see, e.g., Wahba (1990)], we have

g̃λ = 1

n

∑
i=1

X̃i,λ = 1

n

n∑
i=1

QT,λ(Yi1, Yi2, . . . , Yim)

= QT,λ(Ȳ·1, Ȳ·2, . . . , Ȳ·m) = ĝλ. �
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