
Statistica Sinica

1

A Locally Adaptive Algorithm for Multiple Testing

with Network Structure

Ziyi Lianga, T. Tony Caib, Wenguang Sunc, Yin Xiad

aDepartment of Mathematics, University of Southern California

bDepartment of Statistics and Data Science, University of Pennsylvania

c School of Management and Center for Data Science, Zhejiang University

dDepartment of Statistics and Data Science, Fudan University

Abstract

Incorporating auxiliary information alongside primary data can significantly

enhance the accuracy of simultaneous inference. However, existing multiple

testing methods face challenges in efficiently incorporating complex side in-

formation, especially when it differs in dimension or structure from the pri-

mary data, such as network side information. This paper introduces a locally

adaptive structure learning algorithm (LASLA), a flexible framework designed

to integrate a broad range of auxiliary information into the inference pro-

cess. Although LASLA is specifically motivated by the challenges posed by

network-structured data, it also proves highly effective with other types of

side information, such as spatial locations and multiple auxiliary sequences.
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LASLA employs a p-value weighting approach, leveraging structural insights

to derive data-driven weights that prioritize the importance of different hy-

potheses. Our theoretical analysis demonstrates that LASLA asymptotically

controls the false discovery rate (FDR) under independent or weakly depen-

dent p-values, and achieves enhanced power in scenarios where the auxiliary

data provides valuable side information. Simulation studies are conducted to

evaluate LASLA’s numerical performance, and its efficacy is further illustrated

through two real-world applications.

Key words and phrases: Covariate-assisted inference, Distance matrix, False discovery rate, p-value weight-

ing, Structure Learning.

1. Introduction

1.1 Motivating application for network data

Statistical analysis of network-structured data is an important topic with a wide

range of applications. Our study is motivated by genome-wide association studies

(GWAS), where a primary objective is to identify disease-associated single-nucleotide

polymorphisms (SNPs) across diverse populations. Previous studies have indicated

that linkage analysis can provide insights into the genetic basis of complex diseases.

Particularly, SNPs in linkage disequilibrium (LD) can jointly contribute to the repre-

sentation of the disease phenotype (Schaub et al., 2012; Joiret et al., 2019). However,

existing research in GWAS has often overlooked or underutilized the LD network
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information, representing a significant limitation. Therefore, it is essential to de-

velop new integrative analytical tools that can effectively combine GWAS data with

auxiliary data from linkage analysis.

Let m denote the number of SNPs and [m] = {1, . . . ,m}. The primary data,

as provided by GWAS, consists of a list of test statistics TTT = {Ti : i ∈ [m]}, which

assess the association strength of individual SNPs with a phenotype of interest. Let

PPP = {Pi : i ∈ [m]} denote the corresponding p-values. The auxiliary data, as provided

by linkage analysis, is a matrix comprising pairwise correlations SSS = (rij : i, j ∈ [m]),

where rij measures the LD correlation between SNP i and SNP j. To illustrate, we

construct an undirected LD graph based on the pairwise LD correlation in Figure 1,

where each node represents an SNP, and an edge is drawn to connect two SNPs if

their correlation exceeds a pre-determined cutoff.

Incorporating the network structured auxiliary data, such as the LD correlation

matrix, is desirable as it may improve the power and interpretability of analysis.

However, developing a principled approach that cross-utilizes data from different

sources is a challenging task. Firstly, the primary data TTT and the auxiliary data SSS

are usually collected from different populations. For instance, in our data analysis

detailed in Section 5.1, the target population in GWAS consists of 77,418 individuals

with Type 2 diabetes, while the auxiliary data for linkage analysis are collected from

the general population [1000 Genomes (1000G) Phase 3 Database]. Secondly, the

dimensions of TTT and SSS may not match as in the conventional settings. Specifically,
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Figure 1: Auxiliary linkage data provide structural information that can be utilized
to identify significant SNPs.

TTT ∈ Rm is a vector of statistics while SSS ∈ Rm×m is a network matrix.

Motivated by the observation that SNPs in the same sub-network can exhibit

similar distributional characteristics and tend to work together in GWAS (Schaub

et al., 2012), this article develops a locally adaptive structure learning algorithm

(LASLA) which integrates the structural knowledge in auxiliary data by computing

a set of data-driven weights {wi : i ∈ [m]} to adjust the p-values {Pi : i ∈ [m]}. In

summary, LASLA follows a two-step strategy:

Step 1: Learn the relational or structural knowledge of the high-dimensional param-

eter through auxiliary data.
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Step 2: Apply the structural knowledge by adaptively placing differential weights

wi on p-values Pi, for i ∈ [m].

While LASLA is unique in its ability to directly leverage network side informa-

tion, its versatility extends beyond networks. For instance, when identifying signifi-

cant regions using functional Magnetic Resonance Imaging (fMRI) data, as discussed

in Section 5.2, LASLA can effectively incorporate 3D spatial locations as auxiliary

information. Additionally, in high-dimensional regression models aimed at identify-

ing disease-related genetic variants, LASLA can integrate data from related diseases

to enhance detection power by prioritizing shared risk factors and genetic variants,

as detailed in Section S1 of the Supplementary Material. LASLA offers a flexible

and powerful tool that adapts to various forms of auxiliary information, making it

suitable for a wide range of applications beyond its original focus on network data

integration.

1.2 Related work and our contribution

Structured multiple testing has gained increasing attention in recent years (Cai et al.,

2019; Li and Barber, 2019; Castillo and Roquain, 2020; Ren and Candès, 2023).

The strategy is to augment the sequence of primary statistics TTT = {Ti : i ∈ [m]},

which may consist of p-values or z-values, with an auxiliary sequence UUU = {Ui :

i ∈ [m]} in order to enhance the statistical power and accuracy of inference. The

auxiliary data can be collected through various methods, including: (a) external
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sources, such as prior studies and secondary datasets (Ignatiadis et al., 2016; Basu

et al., 2018); (b) internal sources within the same dataset, achieved by carefully

constructing independent sequences (Cai et al., 2019; Xia et al., 2020); (c) intrinsic

patterns associated with the data, such as the natural order of data streams (Foster

and Stine, 2008; Lynch et al., 2017) or spatial locations (Lei et al., 2020; Cai et al.,

2022). The aforementioned studies primarily focus on an auxiliary sequence UUU ∈ Rm

that has the same dimension as TTT ∈ Rm. However, there has been limited research

conducted on exploiting a wider variety of side information, such as LD matrices or

multiple auxiliary sequences.

Moreover, existing structure-adaptive methods (Cai et al., 2019; Li and Barber,

2019; Xia et al., 2020) primarily focus on leveraging sparsity structures in auxiliary

data. However, research has shown that other forms of structural information can also

significantly enhance inference (Roeder and Wasserman, 2009; Peña et al., 2011; Lei

and Fithian, 2018; Fu et al., 2022). For instance, Roeder and Wasserman (2009) illus-

trates the power gains achieved by constructing weights based on signal amplitudes,

Fu et al. (2022) demonstrates the advantages of adjusting for heteroscedasticity, and

Peña et al. (2011) highlights the benefits of adapting to hierarchical structures. De-

spite these advancements, most methods typically concentrate on a specific type of

structural information. Therefore, developing a unified framework that can system-

atically integrate various types of side information is highly desirable.

Our contributions are three-fold. Firstly, LASLA employs a carefully designed
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distance matrix to characterize the relational knowledge of the p-values, providing

a principled and generic strategy for integrative inference. Secondly, LASLA can

leverage various types of structural information by deriving data-driven weights to

emulate a hypothetical oracle (Sun and Cai, 2007; Heller and Rosset, 2021), result-

ing in significant power improvement compared to existing methods (Roquain and

Van De Wiel, 2009; Ignatiadis and Huber, 2021; Cai et al., 2022). Lastly, we have

developed theory to demonstrate that LASLA asymptotically controls the False Dis-

covery Proportion (FDP) and the False Discovery Rate (FDR) for both independent

and weakly dependent p-values, while also achieving proven power gain under mild

conditions.

The rest of this article is organized as follows. Section 2 presents the problem

formulation and provides details on the development of the LASLA procedure. Sec-

tion 3 investigates the theoretical properties of LASLA in the independent case and

establishes its superiority in ranking. Section 4 presents simulation results compar-

ing LASLA with existing methods. In Section 5, we illustrate LASLA through two

real-world applications. Additional simulation results, theoretical results for the de-

pendent case, and proofs of the theories can be found in the Supplementary Material.

2. A Locally Adaptive Structure Learning Algorithm

We present the problem formulation and the basic framework in Section 2.1, followed

by the derivation of the oracle rule under a suitable working model in Section 2.2.
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Subsequently, we discuss the strategies for approximating the related unknown quan-

tities and derive the oracle-assisted weights in Section 2.3. We address the selection

of a threshold for the weighted p-values and present the LASLA procedure in Section

2.4. Finally, we demonstrate the superiority of the LASLA weights over conventional

sparsity-adaptive weights in Section 2.5.

2.1 Problem formulation and basic framework

Suppose we are interested in testing m hypotheses:

H0,i : θi = 0 vs. H1,i : θi = 1, i ∈ [m], (2.1)

where θθθ = (θi : i ∈ [m]) is a vector of binary random variables indicating the

existence or absence of signals at the testing locations. A multiple testing rule can

be represented by a binary vector δδδ = (δi : i ∈ [m]) ∈ {0, 1}m, where δi = 1 indicates

that we reject H0,i and δi = 0 otherwise. In this paper we focus on problem (2.1) with

the goal of controlling the FDP and FDR (Benjamini and Hochberg, 1995) defined

respectively by:

FDP(δδδ) =

∑m
i=1(1− θi)δi

max(
∑m

i=1 δi, 1)
, and FDR = E {FDP(δδδ)} .

An ideal procedure should maximize power, which is interpreted as the expected

number of true positives:

ETP = E

{
m∑
i=1

θiδi

}
.

Our approach involves the calculation of a distance matrix DDD = (1 − r2ij : i, j ∈
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[m]) based on the LD matrix SSS = (r2ij : i, j ∈ [m]), where rij ∈ [0, 1] represents the

Pearson’s correlation coefficient that measures the LD between SNPs i and j. Note

that the distance matrixDDD contains the same information as SSS, as the transformation

from SSS to DDD involves a simple linear operation: 1− r2ij, applied to each entry in the

LD matrix. This transformation facilitates our definition of the local neighborhood

and subsequent data-driven algorithms. Specifically, SNPs with higher correlation

rij are considered “closer” in distance. The driving assumption behind our method-

ological development is that clusters of SNPs with small pairwise distances are part

of the same local neighborhood and demonstrate similar distributional character-

istics. Conversely, SNPs that are widely separated are more likely to belong to

different neighborhoods and exhibit distinct patterns in terms of sparsity levels and

distributions. Deriving a distance matrix DDD from the LD matrix SSS is a relatively

straightforward process. In Section S2 of the Supplementary Material, we discuss

extensions that allow for the construction of distance matrices using other types of

side information. Harnessing the heterogeneity across different neighborhoods plays

a crucial role in constructing informative weights for the p-values. By incorporating

weights that encode the network structure, the identification of SNP clusters is facili-

tated, enabling a more accurate representation of the underlying biological processes

and genetic basis of complex diseases. These insights serve as the motivation for our

proposed LASLA procedure, which aims to enhance both the interpretability and

power of FDR analysis.
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2.2 The oracle rule under a working model

One effective strategy to incorporate relevant domain knowledge in multiple testing

is through the use of p-value weighting (Genovese et al., 2006; Sun et al., 2015;

Basu et al., 2018). The proposed LASLA builds upon this strategy. This subsection

introduces an oracle procedure under an ideal setting. In Sections 2.3, we present

details for the development of a data-driven algorithm that emulates the oracle.

This algorithm utilizes a distance matrix learned from auxiliary data to construct

informative weights for the p-values.

Assume the primary test statistics {Ti : i ∈ [m]} follow a hierarchical model:

θi
ind∼ Bernoulli(π∗

i ), P(Ti ≤ t|θi) = (1− θi)F0(t) + θiF
∗
1i(t), (2.2)

where F0(t) and F ∗
1i(t) respectively represent the null and alternative cumulative

distribution functions (CDF) of Ti. Then Ti obeys the following mixture distribution

F ∗
i (t) := P(Ti ≤ t) = (1− π∗

i )F0(t) + π∗
i F

∗
1i(t). (2.3)

We would like to provide further clarification on our notations. Firstly, Model

(2.2) is utilized as a working model to provide an approximation of the true data-

generating process. Its primary goal is to facilitate the derivation of our data-driven

weights. Secondly, the incorporation of π∗
i and F ∗

1i(t) aims to account for the potential

heterogeneity across testing units, which arises due to the availability of auxiliary

data. In contrast, the null distribution F0(t) is assumed to be known and remains

the same across all testing units.
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The optimal testing rule, which has the largest ETP among all valid marginal

FDR/FDR procedures (Sun and Cai, 2007; Cai et al., 2019; Heller and Rosset, 2021),

is a thresholding rule based on the local false discovery rate (lfdr):

L∗
i = P(θi = 0|Ti) = (1− π∗

i )f0(Ti)/f
∗
i (Ti),

where f0(·) and f ∗
i (·) respectively denote the density functions corresponding to

the CDFs F0(·) and F ∗
i (·). A step-wise algorithm (e.g. Sun and Cai, 2007) can

be used to determine a data-driven threshold along the L∗
i ranking. Let L∗

(1) ≤

· · · ≤ L∗
(m) be the ordered statistics of L∗

i , and H(1), . . . , H(m) be the correspond-

ing null hypotheses. At FDR level α, the rejection threshold is determined by

k∗ = max
{
j : j−1

∑j
i=1 L

∗
(i) ≤ α

}
, and the algorithm rejects H(1), . . . , H(k∗).

2.3 Data-driven weights

It is essential to note that π∗
i and f ∗

i (t) represent hypothetical and non-accessible ora-

cle quantities that cannot be directly employed in data-driven algorithms. Therefore,

we develop data-driven quantities to approximate the oracle quantities.

In our derivation of the data-driven quantity to approximate π∗
i , we utilize the

screening strategy outlined in the work of Cai et al. (2022). To ensure completeness,

we reiterate the key steps below. Let Dij be the distance between entries i and j. A

key assumption is that π∗
i is close to π∗

j if Dij is small (and the distributional infor-

mations for the two hypotheses are identical if Dij=0), which enables us to estimate

π∗
i by borrowing strength from neighboring points. Let K: R → R be a positive,
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bounded, and symmetric kernel function that satisfies the following conditions:∫
R
K(x)dx = 1,

∫
R
xK(x)dx = 0,

∫
R
x2K(x)dx = σ2

K < ∞. (2.4)

DefineKh(x) = h−1K(x/h), where h is the bandwidth, and Vh(i, j) = Kh(Dij)/Kh(0).

We construct a data-driven quantity that resembles π∗
i by

πi = 1−
∑

j ̸=i[Vh(i, j)I{Pj > τ}]
(1− τ)

∑
j ̸=i Vh(i, j)

, i ∈ [m], (2.5)

where τ is a screening parameter that will be chosen in Section S4 of the Supple-

mentary Material. Similarly, we introduce a data-driven quantity that resembles the

hypothetical density f ∗
i (t) for i ∈ [m] by:

fi(t) =

∑
j ̸=i[Vh(i, j)Kh(Tj − t)]∑

j ̸=i Vh(i, j)
, (2.6)

which describes the likelihood of Ti taking a value in the vicinity of t. Consequently,

the data-driven lfdr is given by

Li = (1− πi)f0(Ti)/fi(Ti). (2.7)

Let L(1) ≤ . . . ≤ L(m) denote the sorted values of Li. Following the thresholding

approach in Section 2.2, we choose L(k) to be the rejection threshold, where k =

max{j : j−1
∑j

i=1 L(i) ≤ α}.

Now we are ready to develop the oracle-assisted weights that mimic thresholding

rules based on lfdr given in (2.7). Without loss of generality we assume that the

function f0 is symmetric about zero. In cases where this assumption does not hold, we

can always transform the primary statistics into z-statistics or t-statistics. Intuitively,
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the thresholding rule Li < t is approximately equivalent to:

Ti < t−i or Ti > t+i . (2.8)

Here t−i ≤ 0 and t+i ≥ 0 are coordinate-specific thresholds that lead to asymmetric

rejection regions, which are useful for capturing structures of the alternative distri-

bution, such as unequal proportions of positive and negative signals (Sun and Cai,

2007; Li and Barber, 2019; Fu et al., 2022).

The next step is to derive weights that can emulate the rule (2.8). When Ti ≥ 0,

let t+i = ∞ if (1− πi)f0(t)/fi(t) > L(k) for all t ≥ 0, else let

t+i = inf
{
t ≥ 0 : (1− πi)f0(t)/fi(t) ≤ L(k)

}
(2.9)

The rejection rule Ti > t+i is equivalent to the p-value rule Pi < 1 − F0(t
+
i ), where

Pi is the one-sided p-value. Define the weighted p-values as {Pw
i = Pi/wi : i ∈ [m]}.

Intuitively, a larger rejection region Ti > t+i implies a proportionally larger weight wi

to prioritize the rejection of Hi. Therefore, if we choose a universal threshold for all

Pw
i , using weight wi = 1− F0(t

+
i ) can effectively emulate the rule Ti > t+i .

Similarly, when Ti < 0, let t−i = −∞ if (1 − πi)f0(t)/fi(t) > L(k) for all t ≤ 0,

else let

t−i = sup
{
t ≤ 0 : (1− πi)f0(t)/fi(t) ≤ L(k)

}
(2.10)

The corresponding weight is given by wi = F0(t
−
i ).

To ensure the robustness of the algorithm, we set wi = max{wi, ξ} and wi =

min{wi, 1 − ξ}, where 0 < ξ < 1 is a small constant. In all numerical studies, we
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set ξ = 10−5. To expedite the calculation and facilitate our theoretical analysis, we

propose to use only a subset of p-values in the neighborhood to obtain πi and fi(t)

for i ∈ [m]. Specifically, we define Ni = {j ̸= i : Dij ≤ aϵ} as a neighborhood set that

only contains indices with distance to i smaller than aϵ and satisfies |Ni| = m1−ϵ for

some small constant ϵ > 0. Moreover, we require that Dij1 ≤ Dij2 for any j1 ∈ Ni,

j2 /∈ Ni, and j2 ̸= i. This approach has minimal impact on numerical performance,

as p-values that are far apart contribute little. We summarize the computation of

the data-driven weights in Algorithm 1 below.

Algorithm 1 Data-driven weights

1: Input: Nominal FDR level α; ϵ specifying the size of the sub-neighborhood;
2: ”Input: kernel function K(·); primary statistics TTT = {Ti : i ∈ [m]} and
3: ””Input:distance matrix DDD = (Dij : i, j ∈ [m]).
4: For i ∈ [m] do:
5: Estimate πi as given by (2.5) with summation taken over Ni.
6: Estimate fi(t) as given by (2.6) with summation taken over Ni.
7: Compute Li by (2.7). Denote the sorted statistics by L(1) ≤ . . . ≤ L(m).

8: Let L(k) be the oracle threshold, where k = max{j ∈ [m] : j−1
∑j

i=1 L(i) ≤ α}.
9: For i ∈ [m] do:

10: If Ti ≥ 0: Compute t+i by (2.9), and the weight by wi = 1− F0(t
+
i ).

11: If Ti < 0: Compute t−i by (2.10), and the weight by wi = F0(t
−
i ).

12: Output: Data-driven weights {wi : i ∈ [m]}.

2.4 The LASLA procedure

Consider the weighted p-values {Pw
i : i ∈ [m]}, where Pw

i := Pi/wi and {wi : i ∈ [m]}

represent the data-driven LASLA weights. Assume that Pi is independent with wi,

for i ∈ [m]. This assumption only serves as a motivation for the thresholding rule, and
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is not required for the theoretical analysis. It follows that, given the set of weights,

the expected number of false positives (EFP) for a threshold tw can be calculated as

tw
∑m

i=1wi(1− π∗
i ) under the working model (2.2). Suppose we reject j hypotheses

along the ranking provided by Pw
(i) for i ∈ [m], namely, set the threshold as tw = Pw

(j).

Then the FDP can be estimated as: F̂DP =
(
Pw
(j)/j

)∑m
i=1 wi(1− πi). We choose the

largest possible threshold such that F̂DP is less than the nominal level α. Specifically,

we find

kw = max

{
j :
(
Pw
(j)/j

) m∑
i=1

wi(1− πi) ≤ α

}
, (2.11)

and reject H(1), · · · , H(kw), which are the hypotheses with weighted p-values no larger

than Pw
(kw).

Remark 1. One could replace (2.11) with other thresholding rules, such as the

weighted BH (WBH) procedure (Genovese et al., 2006). However, empirical ev-

idence suggests that WBH tends to be overly conservative. The adaptive WBH

method (Ramdas et al., 2019) improves the power of WBH by adjusting to an esti-

mated global sparsity level, but it is less effective when the sparsity level is hetero-

geneous. See Section S4.6 of the Supplementary Material for a detailed numerical

comparison.

2.5 Oracle-assisted weights vs sparsity-adaptive weights

This section presents a comparison between the oracle-assisted weights and the sparsity-

adaptive weights discussed in Section S3 of the Supplementary Material. In summary,
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the sparsity-adaptive weights only utilize the signal sparsity level π∗
i , whereas the

oracle-assisted weights can leverage the structural information embedded in the mix-

ture density f ∗
i (t). Consider the oracle sparsity-adaptive weights w

laws
i = π∗

i /(1−π∗
i )

for i ∈ [m], as reviewed in Section S3. In the case where neighborhood information

is provided by spatial locations, the sparsity-adaptive weights are equivalent to the

weights employed by the LAWS procedure (Cai et al., 2022). Intuitive examples

are provided to illustrate potential information loss associated with the sparsity-

adaptive weights (referred to as LAWS weights), and the advantages of the newly

proposed weights (referred to as LASLA weights) are highlighted. We focus on sce-

narios where π∗
i is homogeneous, but it’s important to note that the inadequacy of

sparsity-adaptive weights extends to cases where π∗
i is heterogeneous. This short-

coming arises from the fact that the sparsity-adaptive weights ignore structural in-

formation in alternative distributions.

In the following comparisons, the oracle LASLA weights are obtained via Al-

gorithm 1, with πi and fi replaced by their oracle counterparts π∗
i and f ∗

i (t). We

implement both weights with oracle quantities to emphasize the methodological dif-

ferences. Consider two examples where {Ti : i ∈ [m]} follow the mixture distribution

in (2.3) with m = 1000 and π∗
i = 0.1.

Example 1. Set F ∗
1i(t) = γN(3, 1) + (1− γ)N(−3, 1), where γ controls the relative

proportions of positive and negative signals. We vary γ from 0.5 to 1; when γ

approaches 1, the level of asymmetry increases.
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Example 2. Set F ∗
1i(t) = 0.5N(3, σ2

i ) + 0.5N(−3, σ2
i ), where σi controls the shape

of the alternative distribution, and P(σi = 1) = 0.5 and P(σi = σ) = 0.5. We vary σ

from 0.2 to 1; the heterogeneity is most pronounced when σ = 0.2.
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Figure 2: Empirical FDR and power comparison for oracle LASLA (LASLA.OR),
oracle LAWS (LAWS.OR) and unweighted oracle p-value procedure (PV.OR) that
leverages π∗

i to determine the rejection thresholds, with nominal FDR level α =
0.05. Results for LASLA, LAWS and the unweighted oracle procedure are derived
by applying the thresholding rule in Section 2.4 respectively with LASLA weights,
LAWS weights, and weights equal to 1. (a): Example 1: increasing asymmetry level
γ; (b): Example 2: decreasing shape heterogeneity σ.

In both examples, since π∗
i and wlaws

i remain constant for all i ∈ [m], the ora-

cle LAWS reduces to the unweighted p-value procedure (Genovese and Wasserman,
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2002). On the contrary, LASLA weights are able to capture the signal asymmetry in

Example 1 and the shape heterogeneity in the alternative distribution in Example 2,,

resulting in notable power gain in both settings. Additional examples are provided

in Section S4.2 to further demonstrate LASLA’s strength in leveraging hypothesis-

specific information.

3. Theoretical Analysis

We first introduce in Section 3.1 a modified version of the data-driven weights to

facilitate the theoretical analysis, and then study in Section 3.2 the FDP and FDR

control of LASLA under a marginal independence assumption. Finally, Section 3.3

demonstrates the theoretical power gain of the proposed weighting strategy.

3.1 Modified data-driven weights

To show the asymptotic validity of LASLA with minimal assumptions as shown in

Section 3.2, we slightly modify the data-driven weights from Algorithm 1. It is

worthy noting that, by imposing stronger conditions as presented in Section S7 of

the Supplementary Material, such modification is no longer needed.

Specifically, to facilitate the theoretical analysis, we propose to compute an index-

dependent threshold Li
(k) which only relies on |Ni| statistics as opposed to the uni-

versal threshold L(k) defined in Section 2.3. This modification arises from the subtle

fact that, though Li in (2.7) is estimated without using Ti itself (the sign of Ti is
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used, but it will not affect the validity of the algorithm), wi still correlates with Ti

since the determination of k in the universal threshold relies on all primary statis-

tics. This intricate dependence structure poses challenges for the theoretical analysis.

Therefore, we compute the index-dependent threshold Li
(k) to ensure that given the

sign of Ti, wi is independent of Ti under the null hypothesis at the cost of computa-

tional efficiency. This modification has little impact on the numerical performance,

but greatly facilitates the establishment of the asymptotic validity of the correspond-

ing weighted multiple testing strategy in Section 3.2. We summarize the modified

method in Algorithm 2.

Algorithm 2 Modified data-driven weights

1: Input: Nominal FDR level α; ϵ specifying the size of the sub-neighborhood;
2: Input: kernel function K(·); primary statistics TTT = {Ti : i ∈ [m]} and
3: Input: distance matrix DDD = (Dij : i, j ∈ [m]).
4: For i ∈ [m] do:
5: Estimate πi by (2.5) and fi(t) by (2.6) with summation taken over Ni.
6: For j ∈ Ni do:
7: Estimate πi

j by (2.5) and f i
j(t) by (2.6) with the summation taken over Ni.

8: Compute Li
j as in (2.7) with πj replaced by πi

j; fj(t) by f i
j(t).

9: Denote the sorted statistics by Li
(1) ≤ . . . ≤ Li

(|Ni|).

10: Let k = max{j ∈ [|Ni|] : j−1
∑j

l=1 L
i
(l) ≤ α}.

11: If Ti ≥ 0 then:
12: Compute t+i as given by (2.9), with L(k) replaced by Li

(k);

13: Compute the weight by wi = 1− F0(t
+
i ).

14: If Ti < 0 then:
15: Compute t−i as given by (2.10), with L(k) replaced by Li

(k).

16: Compute the weight by wi = F0(t
−
i ).

17: Output: Modified weights {wi : i ∈ [m]}.

We remark on the distinctions between Algorithm 1 and Algorithm 2. Theo-
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retically, the weighted multiple testing procedure based on Algorithm 2 can achieve

asymptotic FDR and FDP control with minimal assumptions as shown in Section

3.2, while the validity of the alternative procedure based on Algorithm 1 requires

more technical assumptions, as discussed in Section S7 of the Supplementary Mate-

rial. Practically, weights obtained through both methods are very similar, leading to

nearly identical empirical FDR and power performance. Hence, we recommend using

Algorithm 1 for practical applications due to its computation efficiency. Note that

throughout the paper, the alternative weights from Algorithm 2 are only employed

for theoretical purposes in Theorems 1 and 2.

3.2 Asymptotic validity of LASLA

We establish the asymptotic validity of LASLA when each p-value is marginally inde-

pendent of other p-values under the null. This assumption formally outlined in (A1)

provides a comprehensible starting point for our analysis and methodology develop-

ment, and the dependent cases will be studied in Section S7 of the Supplementary

Material.

(A1) Pi is marginally independent of PPP−i = {Pj, j ∈ [m], j ̸= i} under H0,i, for

i ∈ [m].

By convention, we assume that the auxiliary variables only affect the alternative

distribution but not the null distribution of the primary statistics. Furthermore, we

assume that θj has no impact on the null distribution of Ti for i ̸= j, i.e. P(Ti ≤ t |
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θi = 0, θj) = P(Ti ≤ t | θi = 0) = F0(t). This assumption is mild and can be fulfilled

by the class of structured probabilistic models (e.g. Goodfellow et al., 2016).

We start with the theoretical analysis on the data-driven estimator πi, as its

consistency is needed for valid FDR control. LetDDDi be the ith column of the observed

distance matrix DDD, and the corresponding observed network of the indices i ∈ [m]

is considered as a partial network. In contrast, we refer to the network as a full

network when the nodes encompass the entire population under the oracle setting.

The associated distance matrix is denoted as D. Define Di to be the collection

of distances from all nodes in the entire population to index i. Adopting the fixed-

domain asymptotics in Stein (1995), we assume thatDDDi → Di uniformly for all i ∈ [m]

as m → ∞, where Di is a continuousi finite domain (with respect to coordinate i) in

R with positive measure, and each d ∈ Di is a distance and 0 ∈ Di. Note that, DDDi

and Di can be viewed as collections of distances respectively measured from partial

and full networks with DDDi ⊂ Di. The details on the theoretical analysis employing

fixed-domain asymptotics, i.e., DDDi → Di as m → ∞, are relegated to Section S6

in the Supplementary Material. The next assumption requires that, in light of full

network information, the distributional quantities vary smoothly in the vicinity of

location i.

(A2) For all i, j, P(Pj > τ |Dj, Dij = x) is continuous at x, and has bounded first and

second derivatives.
iThe assumption on the continuity of Di can be relaxed. For example, our theory can be easily

extended to the case where Di is the union of disjoint continuous domains.
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It is important to note that marginally independent p-values will become de-

pendent conditional on auxiliary data. The next assumption generalizes the com-

monly used “weak dependence” notion in Storey (2003). It requires that most of the

neighborhood p-values (conditional on auxiliary data) do not exhibit strong pairwise

dependence.

(A3) Var
(∑

j∈Ni
Kh(Dij)I{Pj > τ}|DDD

)
≤ C

∑
j∈Ni

Var (Kh(Dij)I{Pj > τ}|DDDj) for

some constant C > 1, for all i ∈ [m].

Remark 2. Though marginal independence is assumed, we allow p-values to be

weakly dependent conditional on auxiliary data. Additionally, Condition (A3) can

be further relaxed by selecting a larger bandwidth h for the kernelKh(·). For instance,

if we choose h ∼ m−1/6, a common bandwidth selection, then by the proof of Propo-

sition 1, Assumption (A3) can be relaxed to: for some constant C ′ > 1, and for all i ∈

[m], Var
(∑

j∈Ni
Kh(Dij)I{Pj > τ}|DDD

)
≤ mcC ′∑

j∈Ni
Var (Kh(Dij)I{Pj > τ}|DDDj) for

c < 5/6. This relaxation permits the p-values to be highly correlated given the side

information.

The next proposition establishes the convergence of πi (estimated by (2.5) with

summation taken over Ni) to an intermediate quantity πτ
i :

πτ
i = 1− P(Pi > τ | Di)

1− τ
, 0 < τ < 1,

which offers a good approximation of π∗
i with a suitably chosen τ . Intuitively, when τ

is large, null p-values are dominant in the tail area [τ, 1]. Hence P(Pi > τ | Di)/(1−τ)
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approximates the overall null proportion.

Proposition 1. Recall that |Ni| = m1−ϵ. Under Assumptions (A2) and (A3),

if m−1 ≪ h ≪ m−ϵ, we have, uniformly for all i ∈ [m], E [(πi − πτ
i )

2|DDDi] →

0, as DDDi → Di.

Define Zi = Φ−1(1− Pi/2) and denote by Z = (Z1, . . . , Zm)
T . We collect below

several regularity conditions for proving the asymptotic validity of LASLA.

(A4) Assume that
∑m

i=1 P(θi = 0|Di) ≥ cm for some constant c > 0 and that

Var [
∑m

i=1 I{θi = 0}|D] = O(m1+ζ) for some 0 ≤ ζ < 1, where D = {Di}i∈[m].

(A5) Define Sρ =
{
i : 1 ≤ i ≤ m, |µi| ≥ (logm)(1+ρ)/2

}
, where µi = E(Zi). For some

ρ > 0 and δ > 0, |Sρ| ≥ [1/(π1/2α)+ δ](logm)1/2, where π ≈ 3.14 is a constant.

Remark 3. Condition (A4) assumes that the model is sparse and that {θi}mi=1 are

not perfectly correlated (conditional on auxiliary data). Condition (A5) requires

that there are a slowly growing number of signals having magnitude of the order

{(logm)/n}(1+ρ)/2 if n samples are employed to obtain the p-value.

Let tw = Pw
(kw), where kw is calculated based on the step-wise algorithm (2.11)

with weights from Algorithm 2. Denote by δδδw ≡ δδδw(tw) = {δwi (tw) : i ∈ [m]} the set

of decision rules, where δwi (t
w) = I{Pw

i ≤ tw}. Then the FDP and FDR of LASLA

are respectively given by

FDP(δδδw) =

∑m
i=1(1− θi)I{Pw

i ≤ tw}
max{

∑m
i=1 I{Pw

i ≤ tw}, 1}
, and FDR = E {FDP(δδδw)} .
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The next theorem states that LASLA controls both the FDP and FDR at the nominal

level asymptotically.

Theorem 1. Under Assumptions (A1), (A4), (A5) and the conditions in Proposition

1, we have for any ε > 0:

lim
DDDi→Di,∀i

FDR ≤ α, and lim
DDDi→Di,∀i

P(FDP(δδδw) ≤ α + ε) = 1.

In Section S7 of the Supplementary Material, we extend our study to examine

the asymptotic control of FDP and FDR for dependent p-values. This analysis is

crucial, as it more accurately reflects real-world applications, such as the motivating

GWAS example, where complex dependency structures are common. We demonstrate

that with additional sufficient regularity conditions on the density functions of the

primary statistics, LASLA remains theoretically valid for weakly dependent p-values.

Numerical simulations in Section S5 further confirm that LASLA performs robustly

across various types of dependencies.

3.3 Asymptotic power analysis

This section provides a theoretical analysis to demonstrate the benefit of the proposed

weighting strategy. To simplify the analysis, we assume that the distance matrix D

of the full network is known.

Denote by δδδv(t) = {δvi (t) : i ∈ [m]} a class of testing rules based on weighted p-

values, where δvi (t) = I{P v
i ≤ t}, P v

i = Pi/vi is the weighted p-value, and vi is the pre-

specified weight. It can be shown that (e.g. Proposition 2 of Cai et al. (2022)) under
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mild conditions, the FDR of δδδv(t) can be written as FDR{δδδv(t)} = Qv(t|D) + o(1),

where

Qv(t|D) =

∑m
i=1(1− π∗

i )vit∑m
i=1(1− π∗

i )vit+
∑m

i=1 π
∗
i F

∗
1i(vit|Di)

corresponds to the limiting value of the FDR. In what follows, we omit the condition-

ing on D for the simplicity of notation. The power of δδδv(t) can be evaluated using

the expected number of true positives with threshold t: Ψv(t) =
∑m

i=1 π
∗
i F

∗
1i(vit).

Let w̃i = wi[
∑m

j=1(1−π∗
j )]/[

∑m
j=1(1−π∗

j )wj], where wi’s are the modified weights

from Algorithm 2. It is easy to see that LASLA and δδδw̃(t) share the same ranking

of hypotheses. The goal is to compare the LASLA weights (vi = w̃i : i ∈ [m]) with

the naive weights {vi = 1 : i ∈ [m]}. Denote by tvo = sup{t : Qv(t) ≤ α} the oracle

threshold for the p-values with generic weights {vi : i ∈ [m]}. The oracle procedure

with LASLA weights and the (unweighted) oracle p-value procedure (Genovese and

Wasserman, 2002) are denoted by δw̃(tw̃o ) and δ1(t1o), respectively.

Next, we discuss some assumptions needed in our power analysis. The first

condition states that weights should be “informative” in the sense that on average,

small/large π∗
i correspond to small/large wi. A similar assumption has been used in

Genovese et al. (2006).

(A6) The oracle-assisted weights satisfy∑m
i=1(1− π∗

i )∑m
i=1(1− π∗

i )wi

·
∑m

i=1 π
∗
i∑m

i=1 π
∗
iw

−1
i

≥ 1.

The second condition is concerned with the shape of the alternative p-value dis-
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tributions. When the densities are homogeneous, i.e. F ∗
1i(t) ≡ F ∗

1 (t), it reduces to

the condition that x → F ∗
1 (t/x) is a convex function, which is satisfied by commonly

used density functions (Hu et al., 2010; Cai et al., 2022).

(A7) For any 0 ≤ ai ≤ 1, mini∈[m] w̃
−1
i ≤ xi ≤ maxi∈[m] w̃

−1
i and t1o/mini∈[m] w̃

−1
i ≤ 1,

m∑
i=1

aiF
∗
1i

(
t

xi

)
≥

m∑
i=1

aiF
∗
1i

( ∑m
j=1 ajt∑m
j=1 ajxj

)
.

The above two conditions are mild in many practical settings. For example, we

checked that both are easily fulfilled in all our simulation studies with the proposed

LASLA weights. The next theorem provides insights into why the weighting strategy

used in LASLA provides power gain, as we shall see in our numerical studies.

Theorem 2. Assume Conditions (A1), (A6) and (A7) hold. Then (a) Qw̃(t1o) ≤

Q1(t1o) ≤ α; and (b) Ψw̃(tw̃o ) ≥ Ψw̃(t1o) ≥ Ψ1(t1o).

The theorem implies that (a) if the same threshold t1o is used, then δw̃(t1o) has

smaller FDR and larger power than δ1(t1o); (b) the thresholds satisfy tw̃o ≥ t1o. Since

Ψv(t) is non-decreasing in t, we conclude that δw̃(tw̃o ) (oracle procedure with LASLA

weights) dominates δw̃(t1o) and hence δ1(t1o) (unweighted oracle p-value procedure) in

power.

4. Simulation

This section considers a model that mimics the scenario with network structured

side information. Additional simulation results for high-dimensional regression, la-
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tent variable model, multiple auxiliary samples, and the implementation details in-

cluding parameter tuning are relegated to Section S4 of the Supplementary Mate-

rial. Simulations with dependent data can be found in Section S5. Software imple-

menting the algorithms and replicating all data experiments are available online at

https://github.com/ZiyiLiang/r-Blasla.

For i ∈ [m], let θi
ind∼ Bernoulli(0.1) denote the existence or absence of the signal

at index i. The primary data TTT = (Ti : i ∈ [m]) are independently generated as

Ti ∼ (1−θi)N(0, 1)+θiN(µ1, 1) with µ1 controlling the signal strength. The distance

matrix DDD = (Dij)1≤i,j≤m follows Dij ∼ I{θi=θj}|N(µ2, 0.7)|+ I{θi ̸=θj}|N(1, 0.7)|, where

0 ≤ µ2 ≤ 1 controls the informativeness of the distance matrix. Intuitively, if θi = θj,

then Dij should be relatively small. We investigate two settings.

• Setting 1: Fix µ2 = 0, m = 1200, vary µ1 from 2.5 to 3 by 0.1;

• Setting 2: Fix µ1 = 3, m = 1200, vary µ2 from 0 to 1 by 0.2. DDD becomes less

informative as µ2 gets closer to 1.

Although existing structured multiple testing methods cannot directly incorpo-

rate network side information, Yurko et al. (2020) proposes a gradient-boosted trees

implementation of the AdaPT procedure (Lei and Fithian, 2018), which indirectly

utilizes network information by preprocessing it through hierarchical clustering. For

each index i, they generate a vector of indicators denoting cluster memberships, which

is then used as side information. In our simulation, we adopt this strategy by cluster-

https://github.com/ZiyiLiang/r-lasla
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ing the distance matrix DDD into 5, 10, and 20 clusters, respectively. We then compare

the data-driven LASLA (LASLA.DD) with the clustering-based AdaPT approach

and the vanilla BH method, which disregards auxiliary information. The simulation

results, averaged over 100 randomized datasets, are summarized in Figure 3.

FDR Power
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Figure 3: Empirical FDR and power comparison for data-driven LASLA, AdaPT
and BH. (a): Setting 1: increasing signal strength µ1; (b): Setting 2: decreasing
informativeness of network side information (controlled by µ2).

All methods successfully control the FDR at the nominal level. However, in both

settings, LASLA demonstrates a substantial power advantage over both the BH and

AdaPT methods. In addition, an incorrect choice of the number of clusters for the

AdaPT method can lead to either a substantial computational burden or a significant
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loss of power.

In Setting 2, we evaluate the performance of LASLA as the informativeness of

DDD varies. As µ2 approaches 1, DDD becomes less informative. Notably, even when DDD

becomes completely non-informative (µ2 = 1), LASLA still outperforms BH. This is

because LASLA effectively captures the asymmetry within the alternative distribu-

tion of the primary statistics. This finding is consistent with Sun and Cai (2007),

which shows that the lfdr (Efron et al., 2001) procedure dominates BH in power. In

contrast, the performance of the AdaPT procedure heavily depends on the quality of

the side information. This phenomenon is consistently observed in data-sharing high-

dimensional regression and latent variable settings, as shown in Figures S4.3-S4.4 in

the Supplementary Material.

Furthermore, we extend this network simulation to dependent scenarios in Sec-

tions S5.1-S5.2, mimicking the potential dependency structure of GWAS dataset.

The results demonstrate that LASLA’s performance remains robust across various

types of dependencies.

5. Real Data Applications

5.1 Detecting T2D-associated SNPs with auxiliary data from linkage

analysis

This section focuses on conducting association studies of Type 2 diabetes (T2D), a

prevalent metabolic disease with strong genetic links. Our primary goal is to identify
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SNPs associated with T2D in diverse populations. We construct the distance matrix

from LD information to gain valuable insights into the genetic basis of complex

diseases as previously described in Section 2.1.

Spracklen et al. (2020) performs a meta-analysis to combine 23 studies on a to-

tal of 77,418 individuals with T2D and 356,122 controls. For illustration purposes,

we randomly choose m = 5000 SNPs from Chromosome 6 to be the target of in-

ference. Primary statistics are the z-values provided in Spracklen et al. (2020) and

the auxiliary LD matrix is constructed by the genetic analysis tool Plink from the

1000 Genomes (1000G) Phase 3 Database. It is important to note that the primary

and auxiliary data are collected from different populations and are not matched in

dimension.

We apply BH and LASLA at different FDR levels and compare them with the

Bonferroni correction which is commonly used in GWAS to control Family-wise Error

Rate (FWER). The numbers of rejections by different methods are summarized in

Tables 1 and 2. Both BH and LASLA are more powerful than the Bonferroni method.

Moreover, at the same FDR level, LASLA makes notably more rejections than BH,

and the discrepancy becomes larger as the nominal FDR level increases.

Table 1: Number of rejections by different methods

FDR 0.001 0.01 0.05 0.1

BH 35 61 128 179
LASLA 36 101 184 271
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Table 2: Number of rejections by Bonferroni Correction

FWER 0.001 0.01 0.05 0.1

Bonferroni 21 29 35 43

To illustrate the power gain of LASLA over BH, we visualize the rejected hy-

potheses in Figure 4. Red nodes in the figure present SNPs detected by LASLA but

not by BH at FDR level 0.05. Nodes connected by an edge are in linkage disequi-

librium. The graph highlights LASLA’s ability to leverage the LD matrix’s network

structure for inference, leading to the identification of clusters of SNPs in LD. In

contrast, BH could potentially miss important variants. Notably, LASLA detects

T2D-risk variants within the gene CCHCR1, a candidate gene for T2D reported by

Brenner (2020).

5.2 Detecting significant brain regions in ADHD patients using fMRI

data

In this section, we focus on identifying significant brain regions in patients with At-

tention Deficit Hyperactivity Disorder (ADHD) using functional Magnetic Resonance

Imaging (fMRI) data, incorporating the spatial distance network as side information.

The dataset, obtained from the ADHD-200 Sample Initiative, was preprocessed by the

Neuro Bureau and is publicly available at http://neurobureau.projects.nitrc.

org/ADHD200/Data.html.

The dataset includes 931 individuals, comprising 356 diagnosed with ADHD and

http://neurobureau.projects.nitrc.org/ADHD200/Data.html
http://neurobureau.projects.nitrc.org/ADHD200/Data.html
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Figure 4: Sub-network identified by LASLA (all nodes). BH only detects the blue
nodes.

575 neurotypical controls. Following Li and Zhang (2017), we downsize the original

MRI images, with a resolution of 256×198×256, to a lower resolution of 30×36×30

by aggregating neighboring pixels into larger blocks. This additional preprocessing

step provides two key advantages. First, it enhances the signal-to-noise ratio and

reduces potential misalignment issues during measurement, thereby improving the

accuracy of the analysis. Second, it effectively reduces dependency by capturing

localized correlations within each block.

Next, we perform two-sample t-tests on the aggregated blocks to compare the
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two groups, using a normal approximation to calculate the p-values. The results are

summarized in Figure 5.2. LASLA reveals a clearer pattern of brain regions that

exhibit significant differences between individuals with ADHD and those without.

Specifically, the BH procedure identified 349 regions, while LASLA detected 540 at

an FDR level of 0.05.

(a) BH rejection regions (b) LASLA rejection regions

Figure 5: Differential brain regions between ADHD patients and controls identified
by BH and LASLA at an FDR level of 0.05.

Supplementary Material

The Supplementary material includes numerical implementation details, additional

simulations and applications of LASLA, as well as theoretical results for the depen-

dent case and the proofs of all theories.



REFERENCES 34

Acknowledgments

The research of Yin Xia was supported in part by the National Natural Science

Foundation of China (Grant No. 12331009, 12022103). The research of Tony Cai

was supported in part by the National Science Foundation (Grant DMS-2413106)

and the National Institutes of Health (Grants R01-GM129781 and R01-GM123056).

References

Basu, P., T. T. Cai, K. Das, and W. Sun (2018). Weighted false discovery rate control in large-scale multiple

testing. J. Am. Statist. Assoc. 113 (523), 1172–1183.

Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: A practical and powerful

approach to multiple testing. J. Roy. Statist. Soc. B 57 (1), 289–300.

Brenner, L. N. e. a. (2020). Analysis of glucocorticoid-related genes reveal cchcr1 as a new candidate gene

for type 2 diabetes. J. Endocr. Soc. 4 (11), bvaa121.

Cai, T. T., W. Sun, and W. Wang (2019). CARS: Covariate assisted ranking and screening for large-scale

two-sample inference (with discussion). J. Roy. Statist. Soc. B 81, 187–234.

Cai, T. T., W. Sun, and Y. Xia (2022). LAWS: A Locally Adaptive Weighting and Screening Approach to

Spatial Multiple Testing. J. Am. Statist. Assoc. 117, 1370–1383.
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