Global Testing and Large-Scale Multiple Testing for High-Dimensional Covariance Structures
Tony Cai
Abstract:
Driven by a wide range of contemporary applications, statistical inference for covariance structures has been an active area of current research in high-dimensional statistics. This paper provides a selective survey of some recent developments in hypothesis testing for high-dimensional covariance structures, including global testing for the overall pattern of the covariance structures and simultaneous testing of a large collection of hypotheses on the local covariance structures with false discovery proportion (FDP) and false discovery rate (FDR) control. Both one-sample and two-sample settings are considered. The specific testing problems discussed include global testing for the covariance, correlation, and precision matrices, and multiple testing for the correlations, Gaussian graphical models, and differential networks.