Data Mining

A regression modeler’s view on where it is and where it’s likely to go.

Bob Stine
Department of Statistics
The Wharton School of the Univ of Pennsylvania
March 30, 2006

Acknowledgments

Colleagues
- Dean Foster in Statistics
- Lyle Ungar in Computer Science

Support from Wharton Financial Institutions Center

Cooperation of Federal Reserve Bank of Philadelphia

Overview

- Some examples of data mining
 - More detail on some than others
- Methods used in data mining
 - Lots of choices!
- Challenges faced in data mining
 - Common to all methods, old and new
- Directions

Examples

- Finance
 - Can I predict the stock market?
 - Which loans are most likely to default?
- Management
 - Which applicants to hire and train?
- Health
 - Who is at greater risk of a disease?
- Images
 - Is there a face in this image?
Lots of Data

- **Once upon a time...**
 - A large data set had 50 to 100 rows and perhaps 5 to 10 columns.
 - A big multiple regression had 4 or 5 predictors
- **That’s changed...**
 - Modern data sets are immense, with thousands to millions of rows and hundreds to thousands of columns.
 - The models have grown as well

Similar Goals

- Numerous, repeated decisions with asymmetric costs attached to mistakes.
- **Hiring**
 - Firm trains 250 new employees monthly
 - Which are the best candidates (need to rate them, then pick the best)
 - Miss a good candidate: Lose sales for the firm (~ $100,000/month)
 - Train a poor candidate: Wasted the seat and the $10,000 training fee

Lots of Data

- **Credit**
 - Millions of credit card users
 - History, economics, transactions
- **Hiring**
 - Several thousand past employees
 - Numerous application characteristics
- **Health**
 - Thousands of patient records at one hospital
 - Genetic markers, physician reports, tests
- **Images**
 - Millions of images from video surveillance
 - All those pixel patterns

Similar Goals

- Numerous, repeated decisions with asymmetric costs attached to mistakes.
- **Credit**
 - Manage thousands of accounts in each line
 - Which accounts are going bad?
 - Miss a bad account: Defaults typically on the order of $10,000 to $30,000
 - Annoy a good customer: Might lose that customer and the 18% interest you’re earning.
Similar Use of Models

- Predictive models
 - Better predictions mean a competitive advantage
- Classification
- Prediction

- But you sacrifice interpretation...
 - Realize that the model is not causal.
 - Collinearity among features makes interpretation of the model a risky venture.
- Lure of finding cause and effect

Wide Data Sets

<table>
<thead>
<tr>
<th>Application</th>
<th>Rows</th>
<th>Columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit</td>
<td>3,000,000</td>
<td>350</td>
</tr>
<tr>
<td>Faces</td>
<td>10,000</td>
<td>1,400</td>
</tr>
<tr>
<td>Genetics</td>
<td>1,000</td>
<td>10,000</td>
</tr>
<tr>
<td>CiteSeer</td>
<td>500</td>
<td>∞</td>
</tr>
</tbody>
</table>

Choices in Modeling

- Structure of the model
 - Regression \(Y = b_0 + b_1 X_1 + b_2 X_2 + \ldots \)
 - Projection pursuit \(Y = c_0 + c_1 D(X_1, X_2, \ldots) + \ldots \)
 - Trees \(Y = \text{if}(X_1 < a) \text{ then } \ldots \)

- Scope of the search
 - Raw features, observed measurements
 - Combinations of features, interactions
 - Transformation of features

- Selection
 - Which features to use?
Hands-on Example

Small model for pricing stocks suggests most of the key issues

Context

Theory in Finance known as the Capital Asset Pricing Model says that only one predictor explains returns on a stock...

namely returns on the whole market.

Day traders know this is wrong!

Devise “technical trading rules” based on turning points, patterns in recent history

A Better Model

Add 16 features that implement variety of technical trading rules.

Doubled R^2 to 91%

Overall F = 17.8

“Beta” about half prior size

t-statistic for slope still impressively large ($t = 4.9$)

Seven other predictors have p-values less than 0.0001.

Other Features

Seven additional predictors add significant variation to the model

Many have larger t-statistics than the SP500 index

Model looks great from variety of perspectives.

Statistician says “great model”

What are these other predictors?

CAPM Relationship

Returns on McDonalds

Returns on S&P 500

48 months, 2002-2005

Slope is called “beta” of the stock

$R^2 = 46.5\%$

t-stat for slope is 6.3

We can do better than that!
Better Mousetrap?
- Added predictors are random noise!
- So why do they look so good?
 - Selection bias
 - Pick variables to add from suite of 50 columns of random noise.
 - Forward stepwise regression
 - Greedy search adds most significant next predictor to the current model
 “Optimization capitalizes on chance”
- Result
 - Biased estimate of noise variance inflates t-stat and produces “cascade” of features

Feature Selection
- Don’t blame stepwise for these problems
- Failure: uncontrolled modeling process
 - The final model looks great on paper, if you don’t know how the predictors were chosen.
 - Cannot wait “until the end” and use classical methods to evaluate a model
- Flaws in this example happen elsewhere
 - Automatic methods expand the scope of the search for structure to wider spaces

Consequences
- Expanding the model
 - Claims better structure, higher accuracy
 - Replaces $\beta > 1$ to $\beta < 1$.
- But in reality the expanded model is junk...
 - Adding random predictors ruins predictions
 - Conveys wrong impression of the role of the market on the returns of this stock
- Stepwise regression... Evil?

Easy to Fix
- Once you recognize the problem, it is relatively easy to control the modeling
 - Must keep random features out of model
- Cross-validation
 - Use a “hold-back” or “test” sample to evaluate the model.
 - Painful to give up data when you don’t have many cases (n = 48 here, or in genetics)
- Bonferroni methods
 - Use all data to fit and evaluate model
Second Example

- Classification problem
 - Identify onset of personal bankruptcy
- Illustrate
 - Scope of data and size of models
 - Control greedy modeling process without using cross validation
 - Save validation data to show that “it works” rather than to pick the model itself
- Make a claim about regression

Goals for Model

- Goal
 - Reduce loss from bankrupt accounts without irritating profitable customers
- Ideal customer
 - Borrow lots of money, pay back slowly
- Business strategy: triage
 - Contact customers who are “at risk” and keep them paying

Building a Predictive Model

- Claim
 - Regression is competitive with other types of predictive models
- Keys
 - Expand the scope of features
 - Interactions: subsets, nonlinearity
 - Missing data treated as interaction
 - Cautious control of selection of features
 - Avoid bias in noise variance
 - Don’t trust CLT to produce accurate p-value

Data

- Rows
 - 3,000,000 months of activity
 - 2200 bankruptcies
- Columns
 - 350 basic features
 - Credit application
 - Location demographics
 - Past use of credit
 - Missing data indicators
 - Add all interactions... 66,430 more predictors
Results

- Use cross-validation to evaluate the model
- Fit on 600,000, and then classify the other 2.4 million
- Lift chart displays ordering of cases compared to random selection
- If call 1,000, find 400 bankrupt cases.
- Triage becomes economically viable

Every added variable improved the results!

Controlling Selection

- Where to stop the addition of variables?
- Over-fitting occurs when the model begins to add random features that are predictive in-sample
- Our method stopped after adding 39 predictors
- Avoids over-fitting: Error increases if the model is expanded further.

Comparison to Tree

- Always good to have a benchmark
- C4.5 is a commercial classifier that builds trees
- Cost ratio is the ratio of the cost of missing a bankrupt customer to the cost of annoying a good customer.
- Regardless of the ratio of costs, regression achieves lower costs

How does it work?

- Basically stepwise regression
- Caution: Don't try this with standard SAS/R
- Three ingredients
 1. Rearrange order of computing
 2. Hard thresholding rule
 - Compare p-value to $\approx 1/67000$
 - AIC would let in about 16% of all features!
 3. Cautious standard error
 - Use residuals from fit without predictor
 - Allow for Poisson-like variation (Bennett) even though n is large (recall spare nature of data)
Conclude from Example

- Regression is competitive with other methodologies for data mining... if you adapt it to the context
- Ability to study residuals and other diagnostics facilitated improvements
- Details
 - Other adjustments include calibration
 - Foster and Stine, 2004, JASA
 - Portions of data are available from Dean's web page

Challenges

- "That's the way we used to work"
 - Population drift, moving target
 - Model in business changes the population
 - Credit: effective screening removes features
 - Hiring: model changed data collection
 - Cross-validation is optimistic!
 - In CV, you truly predict new observations from the same population
- How to fix this one?
 - Can you detect this problem?

Challenges

- "Simple models are better"
 - Often find that complex models offer little that not found with simpler model
 (Hand, 2006, forthcoming Stat Science)
 - Not our experience: Linear models do not find predictive structure in BR application, fare poorly compared to trees
- Still suggests room to improve...
 - Yuk: All but one predictor is an interaction
 - A different type of search finds linear terms

Lots of room for improvement!
Challenges

- “You missed some things”
 - Knowledgeable modelers with years of experience can suggest features that improve the model
 - Simple feature space omits special features that use domain-specific transformations
- Can do better...
 - Alternative methods allow additional expert input and do find richer structure

Overcoming Challenges

- Still building regression models

Problems

- Population drift
 - Better mix of simple features
 - Incorporate expert guidance
 - Explore richer spaces of predictors
 - Run faster

Come back tomorrow!